Buscar

ativ aval ERROS INATOS ODONTO 2022_b44bdb24ead582104cbe7a994258ca41 (1)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Atividade Avaliativa 
Erros Inatos 
 
Nome: Ana Claudia Gonçalves de Almeida GRR:20201738 
Nome: Ana Clara Rigon Pereira GRR:20201658 
 
 
 
 
 
1- Acesse o link https://www.inagemp.bio.br/videos/quatro-
herancas-geneticamedica-populacional/ 
Veja o vídeo e responda as questões abaixo: 
a)Quais doenças, dentre as mostradas no vídeo, podem ser 
classificadas como erros inatos do metabolismo? 
R: Mucopolissacaridose (tipo 6)e Fenilcetonúria. 
b) De que forma a questão da consanguinidade é tratada no 
filme como o filme ilustra os efeitos dos casamentos 
consanguíneos nas populações e nas famílias? 
R:O documentário explica que a população do município de 
Monte Santo, BA, dentre as pessoas disponíveis eles preferem 
se relacionar com pessoa que tenham uma maior familiaridade. 
Desta forma, o casamento consanguíneo e o um dos principais 
causadores para o aparecimento de doenças que não eram 
comuns entre a população, pois além de ser constante entre 
a população , ocasiona também uma diminuição de 
variabilidade genética, e assim, aumenta a probabilidade 
de ocorrer doenças genéticas recessivas e raras. 
 
 
c) O filme menciona o “efeito fundador”. O que vem a ser 
esse fenômeno? Pesquise outros exemplos de efeito fundador 
em grupos humanos. 
R: O efeito fundador é definido como um fenômeno ocasionado 
pela colonização de uma região a partir de uma comunidade 
maior, fazendo com que as características que antes eram 
consideradas raras se tornem mais frequentes entre os 
descendentes a partir deste pequeno grupo. Um exemplo de 
efeito fundador foi o ocorrido na ilha Pingelap, pois após 
um tufão a população foi reduzida para apenas 20 pessoas, 
entre essa pessoas havia uma mulher heterozigota que portava 
um alelo para acromatopsia (doença recessiva que se 
caracterizava pela falta de visão das cores pelos seus 
portadores ), com cerca de 3.000 habitantes 1 em cada 20 
habitantes possui a acromatopsia. Outro exemplo é é o efeito 
fundador que ocorre na comunidade dos dankerts , onde tem 
uma maior frequência do alelo Ia no sistema ABO. 
 
d) O filme mostra doenças parasitárias como a 
leishmaniose. Qual a relação que há entre a genética e 
esse tipo de doença? 
R: Como mencionado no filme a genética esta associada a 
proteção ou deixando o individuo mais susceptível a essas 
doenças. Desta forma, a leishmaniose se caracteriza por 
protozoários que atacam os macrófagos presentes no 
organismo. No entanto, a resposta imunológica ocorre 
diferentemente de individuo para individuo de acordo com as 
proteínas que são produzidas por cada um, pois a falta de 
uma determinada proteína que não foi produzida por algum 
erro genético ira definir se o individuo terá um organismo 
 
 
mais vulnerável ao parasita ou quando existe essa 
determinada proteína ira definir se o individuo é menos 
suscetível a doença. 
e)Existem casos em que há possibilidade de identificar 
doenças genéticas de manifestação tardia, testando os 
indivíduos muito antes que os primeiros sintomas se 
manifestem. Quais os prós e contras desse tipo de 
investigação? 
R: Quando é feita a identificação antecipada de doenças 
genéticas através da avaliação familiar, pode contribuir 
para o tratamento precoce e também pode diminuir a gravidade 
do problema. No entanto, quando o ocorre a notificação do 
diagnostico poderá causar no paciente angustia e ansiedade 
, pois ele não poderá fazer nada para que o problema seja 
evitado ou curar a enfermidade que ele possui. 
f)De que forma foi destruída a ideia de que um médico 
nazista tivesse interferido, através de experimentação, na 
frequência de nascimentos de gêmeos no município de 
Cândido Godói? 
R:Através dos registros de nascimentos e batizados de gêmeos 
do século XX, desta forma, se essa informação fosse 
verdadeira a frequência de nascimentos de gêmeos deveria 
ter ocorrido um aumento a partir dos anos 60, no entanto 
isso não ocorreu, a frequência continuou a mesma. 
 
 
 
 
2-Pesquise quais os erros inatos do metabolismo que podem 
ser detectados pelo teste do pezinho. Mencione a fonte da 
informação. 
R: Segundo Gov.br, as doenças classificadas como erros 
inatos são: Fenilcetonúria, hipotiroidismo congênito, 
hiperplasia adrenal congênita, deficiência da biotinidase, 
galactosemias, aminoácidospatias, doenças lissosomicas e 
distúrbios do ciclo da uréia e da betaoxidação dos ácidos 
graxos. 
https://www.in.gov.br/en/web/dou/-/lei-n-14.154-de-26-de-
maio-de-2021-322209993 
 
3-Leia o artigo anexo e faça uma resenha crítica. 
 No presente artigo sobre farmacogenômica e prática 
odontológica, podemos observar uma vasta proposta e 
pesquisas sobre este novo módulo de farmacogênomica, 
trazendo boas respostas e desenvolvimento para a 
odontologia. Grandes avanços nos estudos de fármacogenética 
e farmacogenômica estão acontecendo, visando sempre 
utilizar estes estudos na contribuição para respostas de 
organismos a diferentes fármacos, aumentando sua eficácia 
e reduzindo sua toxicidade. A iniciativa no desenvolvimento 
de fármacos terá grandes importâncias na otimização de 
tratamentos odontológicos, diagnósticos e biomateriais, 
levando em consideração a boca a porta de entrada para 
tratamento e descobertas de várias doenças. 
 As doenças e distúrbios podem ser causadas por vários 
fatores, como mutações, variações genéticas ou a combinação 
de fatores que levam a doença. Estás combinações de fatores 
levam a descoberta de doenças e ajuda a fármacoeconômia na 
descoberta de hereditariedade na suscetibilidade, 
moléculas, vias celulares associadas, genes e compostos que 
melhoram o tratamento e prevenção de doenças como doenças 
 
 
periodontais, candidose oral, distúrbio, síndromes, 
defeitos de esmalte e dentina, ossos, cartilagem e câncer. 
Porém o artigo cita que a cárie é uma doença contagiosa e 
que pode ser prevenida com desenvolvimento de vacina. 
 No artigo, a farmacogenômica, se mostrou muito boa e 
propícia para a saúde geral e oral na descoberta de novas 
doenças, prevenção e terapias personalizadas. Porém as 
conclusões apresentadas no artigo são rasas, levando a 
posições parcialmente inadequadas, como foi abordado com a 
doença cárie, tendo que então se aprofundar um pouco mais 
nos estudos e trazer mais conhecimentos para este tópico. 
 
 
Odontol. Clín.-Cient., Recife, 11 (2) 97-101, abr./jun., 
2012 
www.cro-
pe.org.br 
 REVISTA_CRO_ABR.indd 97 29/08/2012 16:09:00 
Artigo de Revisão / Review Articie 
Pharmacogenomics and dental practice: clinical 
implications and current researches 
Farmacogenômica e a prática odontológica: 
implicações clínicas e pesquisas atuais 
Irlan de Almeida Freires1; Lívia Araújo Alves1; Ricardo Dias de Castro2 
1. Scientific Initiation Student. Federal University of Paraiba, Paraiba, Brazil 
2. DDS, MSc, PhD, Adjunct Professor. Department of Clinics and Social Dentistry. School of Dentistry. Federal University of Paraiba, Paraiba, Brazil 
 
Keywords: 
Pharmacogenomics; 
Dentistry; Phamarcology; 
Genetic polymorphism. 
DESCRITORES: 
Farmacogenômica; 
Odontologia; 
Farmacologia; 
Polimorfismo genético. 
Correspondence to 
Ricardo Dias de Castro 
Av. Cajazeiras, 475/102, 
Coral Gables 
Manaíra - João Pessoa 
Paraíba/Brazil 
ZIP CODE: 58038-040 Email: ricardodiasdecastro@yahoo.com.br 
INTRODUCTION 
ABSTRACT 
Variations in the response to dental treatments may be due to several factors, including genetic variability. 
Pharmacogenomics is the application of genomics technology to the development of specific drugs and its relationship 
with dentistry is a recent area of research. This paper aims to discuss the relationship between pharmacogenomics and 
dental practice, focusing on clinical implications and current researches. It was used technique of documentation based 
on literature available at Scielo (Scientific Electronic LibraryOnline) and MEDLINE between 2000 and 2010. Diseases 
and disorders can be associated with misspellings or genetic mutations. The knowledge of how genetic variation 
interferes in the response to treatment will allow the development of drugs to be used, for instance, in oral and systemic 
infection therapy; for the management of oral lesions (e.g. herpes, squamous cell carcinoma), bone resorption (e.g. 
periodontal diseases); chronic oral and facial pain; for the management of autoimmune and temporomandibular joint 
disorders. Periodontics, Cariology, Oral Pathology, among other areas, represent a vast field of research yet to be 
explored. In summary, dentistry begins to show an increasingly close relationship with pharmacogenomics, which may 
result in the development and improvement of treatment modalities more individualized and potentially more effective. 
RESUMO 
Variações na resposta aos tratamentos odontológicos ocorrem devido a vários fatores, incluindo variabilidade genética. 
Farmacogenômica é a aplicação da tecnologia genômica para o desenvolvimento de fármacos 
específicos, e sua relação com a odontologia é uma área recente de pesquisa. Este trabalho objetiva discutir a relação entre 
farmacogenômica e a prática odontológica, enfocando as implicações clínicas e pesquisas 97 
atuais. Foi utilizada técnica de documentação com base na literatura disponível no Scielo e MEDLINE, entre 2000 e 
2010. Doenças e distúrbios podem ser associados a erros de transcrição ou mutações genéticas. O conhecimento de 
como a variação genética interfere na resposta ao tratamento vai permitir o desenvolvimento de medicamentos a 
serem utilizados, como na terapia de infecção oral e sistêmica, para o manejo de lesões orais (por exemplo, herpes, 
carcinoma de células escamosas); reabsorção óssea (por exemplo, doenças periodontais); dores orais e faciais crônicas; 
doenças autoimunes e distúrbios da articulação temporomandibular. Periodontia, Cariologia, Patologia Oral, entre 
outras áreas, representam um vasto campo de investigação a ser ainda explorado. Em síntese, a Odontologia vem 
apresentando uma relação cada vez mais estreita com a farmacogenômica, que pode resultar no desenvolvimento e 
aperfeiçoamento de modalidades de tratamento mais individualizado e potencialmente mais eficaz. 
It has long been known that patients treated with the 
various drugs have variability of response and susceptibility to 
drug toxicity.1,2 The variations in the response to treatment may 
be due to several factors such as illness, differences in 
pharmacokinetics and pharmacodynamics of drugs, 
environmental factors and genetic factors.1,3 Whereas genetic 
factors may contribute to the effectiveness and safety of a drug, 
pharmacogenomics has been recently discussed.1 
Pharmacogenomics is the application of genomics technology 
to the discovery and development of drugs.4,5 It is 
According to Shomron7 (2010), this field of the clinical 
pharmacology studies the contribution of genomes, 
transcriptomes and proteomes in determining drug-response 
phenotypes (safety and efficacy). The major goal of 
pharmacogenomics research is the development of genotype or 
transcriptome-based predictive tests of drug efficacy or toxicity. 
It’s well known that therapeutic efficacies and side effect 
profiles of drugs differ among individuals. Genetic variations in 
genes encoding components of drug metabolizing enzymes, 
transporters, primary and secondary targets of metabolites, 
 
 REVISTA_CRO_ABR.indd 98 29/08/2012 16:09:00 
a field that 
encompas
ses the 
study of 
genetic 
polymorp
hisms that 
underlie 
individual 
difference
s in drug 
response.
6 
Freires IA, et al. 
and downstream pathways are 
all considered to underlie this 
difference.3 
Molecular dentistry, the 
Human Genome Project, 
transcriptomes and proteomes 
have recently opened vast 
opportunities for translation of 
basic science discoveries to oral 
health care at the chairside and 
bedside through the 
intermediary process of clinical 
research.8 
The mouth is a portal of 
entry as well as a mirror that 
reflects a wealth of information 
that can be derived from oral 
fluids9,10 and tissues. The recent 
progress of the human and 
microbial genomes provides 
unprecedented opportunities to 
not only understand the 
molecular basis of oral diseases, 
but to design and fabricate new 
generations of diagnostics, 
therapeutics and biomaterials. 
In parallel developments, 
remarkable progress is being 
made to understand human as 
well as oral microbial (viral, 
bacterial and yeast) genetic 
variations including their 
respective responses to drug 
therapies.11 
Pharmacogenomics 
provides new insights into how 
human genetic variations 
influence individual drug 
absorption and allows the 
development of drugs to be 
used for oral and systemic 
infection therapy (viral, 
bacterial and yeast); for the 
management of oral lesions (e.g. 
herpes, squamous cell 
carcinoma), bone resorption 
(e.g. periodontal diseases, 
osteoporosis, osteopetrosis, 
osteoarthritis); for the 
management of chronic oral and 
facial pain (e.g. trigeminal 
neuralgia), autoimmune 
disorders (e.g. Sjogren’s syndrome with xerostomia); and for the management of temporomandibular 
joint diseases and disorders.8 
Besides that, the knowledge of how genetic variation interferes in the response to treatment will 
allow the development of drugs that control, for instance, orthodontic tooth movement through the 
regulation of repair processes and formation of bone and periodontal ligament fibers.12 
As can be seen, the completion of human and microbial genome projects will provide a wealth of 
information that will 98 permit the application of pharmacogenomics – how genetic variations will impact the 
efficacy of drugs and the diagnosis and treatment of oral diseases.13 
Thus, this review aims to discuss the relationship between pharmacogenomics and dental 
practice, focusing on clinical implications and current researches. 
METHODS 
It was used an inductive methodological approach and technical documentation based on pre-
existing literature on international scientific papers, theses and books, found on the internet and in 
libraries. 
The composition of this paper resulted from research on the databases Pubmed (U.S. National 
Library of Medicine) – Indexed for Medline and Scielo (Scientific Electronic Library Online) between 2000 
and 2010, using the keywords “Pharmacogenomics”, “Pharmacogenomics AND Dental Practice,” 
“Genetics AND Dental “and” Polymorphism, Genetic”. 
Papers from previous years are listed or they are in the bibliography according to their importance 
for the issue at hand. 
LITERATURE REVIEW 
• Clinical Implications for Dental Practice 
Diseases and disorders can be associated with misspellings or genetic mutations of one or more 
nucleotides, and these mutations can be caused or induced by infectious mi- 
Odontol. Clín.-Cient., Recife, 11 (2) 97-101, abr./jun., 2012 www.cro-pe.org.br 
crobes, environmental factors such as physical and chemical mutagens, genetic mutations and 
variations, or (more likely) combinations of these multiple factors.14 
Variations or polymorphisms in a single base or nucleotide within the genome (i.e., one 
of the 3.2 billion bases) may be informative for the diagnosis of a disease.14 The approximately 
three million different single nucleotide variance or polymorphism (SNPs) are physically 
distributed throughout the entire genome. SNPs are single nucleotide polymorphisms or one-
letter variations in the DNA sequence. These variations in SNPs contribute to differences among 
individuals. The majority of SNPs may have no deleterious effects; others cause subtle 
differences in countless characteristics such as tooth size and shape, while others affect the risk 
for diseases or disorders and are associated with human complex diseases.14,15 
Besides that, asthe gateway to the body, a constant barrage of invaders — viruses, 
bacteria, parasites, and fungi — challenges the mouth. Therefore, transmissible infectious 
diseases, notably dental caries and periodontal disease, predominate among the ills that can 
compromise oral health.11 
Dental caries is a transmissible infectious disease and the bacterial pathogens are 
transmitted from caregiver to infant during early childhood.11 These microbes form a complex 
dental plaque of biofilms that adheres to tooth surfaces.11,16 Within these biofilms, mutans 
streptococci and several other bacteria ferment sugars and other carbohydrates to form lactic 
and other acids. Repeated cycles of acid generation can result in the microscopic dissolution of 
minerals in tooth enamel.11,17,18 The initiation and progression of this chronic infectious disease 
is modulated by genetic variations of the microbial quorum sensing, colonization and acid 
production within the biofilms, the host genetic variations in enamel matrix composition and 
structure, the environment such as the presence of fluoride in drinking water, and caregiver as 
well as infant/toddler/child behavioral factors (frequency and duration of consumption and 
composition of food and drink choices along with personal oral hygiene).11,19 
Mechanical tooth brushing, chemicals as well as immunological (i.e. monoclonal 
antibodies for passive immunization against microbial antigens related to colonization) 
methods are used to inhibit or reduce microbial colonization on tooth surfaces. The advances 
from human and microbial genomics provide many opportunities for targeted therapies such 
as vaccine developments for children at risk for dental caries.11 
Oral microbial infections are also associated with systemic diseases including 
cardiovascular disease, cerebrovascular disease, low-birth weight, premature babies, 
osteoarthritis, a number of pulmonary diseases and disorders, and the management of type 1 
diabetes.20 
Pharmacogenomics and dental practice: clinical implications and current researches 
 
Odontol. Clín.-Cient., Recife, 11 (2) 97-101, abr./jun., 2012 
www.cro-pe.org.br 
 REVISTA_CRO_ABR.indd 99 29/08/2012 16:09:00 
According to 
Cohen and Slavkin21 
(2000) one of the major 
chronic infections is 
Periodontitis. The 
virulence of periodontal 
pathogens includes 
their role in colonization 
in subgingival biofilms, 
synthesis and secretion 
of cytokines that can 
directly injure adjacent 
tissues, and their 
capacity to invoke 
inflammatory 
responses. 
There’s been 
shown that some 
growth factors like IGF 
(insulin-like growth 
factor), PDGF (Platelet-
derived growth factor) 
and TGF (Transforming 
growth factor) and IL-1 
(interleukin 1) are 
associated with 
inflammatory exudate 
that occurs in the 
gingiva and periodontal 
ligament in patients 
with periodontitis.22 
Karimbux et al.23 
(1998) conducted a 
study in which was 
verified that chemically 
modified tetracycline 
(CMT-1) increased 
collagen expression in 
induced periodontal 
lesions in rats Sprague 
Dawley. The use of 
CMT-1 as an adjuvant 
treatment of 
periodontal disease is 
advantageous because 
it can prevent problems 
of microbial resistance 
and retain anti-
inflammatory effects of 
mechanical therapy. 
Another 
considerable disease 
that affects oral health 
is candidiasis. 
Deficiencies in the 
immune and endocrine 
systems in children and 
adults as well as cancer 
chemotherapy invoke 
oral candidiasis, which 
is mainly cause by 
Candida albicans (the 
most common fungal 
pathogen isolated from 
the oral cavity). The 
spread of candidiasis to the esophagus or lungs, especially in immunodeficient individuals, can 
often be life threatening. The near completion of the Candida albicans genome will soon 
accelerate the identification of innovative antifungal therapies.11 
Thus, the completion of the human genome, microbial genomes and functional genomic 
studies will reveal the hereditability of susceptibility to a variety of infectious diseases 
(including periodontitis and oral candidiasis); and will elucidate critical cellular pathways 
associated with the initiation and progression of disease, and may also provide candidate 
targets for combined drug therapies.24,25 The knowledge of molecules and genes trigger in the 
development of caries, periodontal disease, cancer, syndromes, TMJ disorders, sleep apnea, 
and malocclusion will allow the creation of specific individual drugs for caries, periodontal and 
joint inflammation, sleep apnea, cancer, Sjogren syndrome and malocclusions.12 
Birth defects (developmental malformations) appear most commonly as cases of cleft lip 
with or without cleft palate; facial clefting and/or other craniofacial defects can also be part of 
complex hereditary diseases or craniofacial syndromes. At this time, hundreds of genetic 
mutations have been identified that result in facial developmental defects and dental 
extracellular matrix tissue defects such as enamel (Amelogenesis imperfecta), dentin 
(Dentinogenesis imperfecta), bone (osteogenesis imperfecta), and cartilage 
(chondrodysplasia).11 
In the field of orthodontics the pharmacogenomic studies can also be very useful in the 
future. Once the knowledge in biology of tooth movement is still in progress, 
immunohistochemical techniques have been useful in investigations related to cellular 
reactions that occur in the periodontal ligament after applying an orthodontic force. Endothelin 
1 (ET-1) is a cytokine that is present in the periodontal ligament and in the microvascular bed 
of orthodontically moved teeth. This peptide also plays an important role in embryogenesis on 
the following processes: vascular remodeling, regulation of cell proliferation, matrix synthesis, 
release of growth factors and adhesion molecules and the development of dentofacial 
anomalies.26 
Otero12 (2003) points out that the knowledge about these and other molecules involved 
in biological response to mechanical force produced by orthodontics will allow, in the future, 
the control of orthodontic tooth movement by the administration of pharmaceutical molecules 
that target blood vessels in the periodontal ligament. 
Besides that, the study of molecules involved in the growth of teeth, bone and 
periodontal tissues supports the design of specific drugs to stimulate or inhibit growth in 
skeletal malocclusions and craniofacial pathologies.12 
The opportunities for pharmacogenomics to impact the study of differential gene 
expression applied to drug discovery and optimization are remarkable. These advances will 
likely include the discovery of new drug targets, the discovery of new disease and disorder 
mechanism(s) of the drug, the confirmation of expected action(s) of mechanism of a drug, and 
the optimal clinical efficacy of the drug or therapeutic for oral health care.11 
• Current Researches 
The identification of genes responsible for diseases will allow the pharmaceutical 
industry to synthesize more individual and specific drugs. Gene therapy may be used more 
reliably and with fewer side effects than those reported today.12 Freires IA, et al. 
The relationship of dentistry with the field of pharmacogenetics (effects of single genes) or 
pharmacogenomics (effects of several genes and their interactions) is a recent area of scientific research 
and, in some respects, hasn’t brought major changes from the clinical point of view yet. 
However, studies have been already conducted to elucidate aspects of clinical cariology such as 
identification of cariogenic bacteria in human saliva through PCR (Polymerase Chain Reaction)19; 
association of polymorphisms with salivary buffer capacity, dental plaque pH, and caries index27; 
relationship between gene polymorphisms and children’s dental fluorosis28, among many others. 
Saliva (oral fluid) is an emerging biofluid for non-invasive diagnostics used in the detection ofhuman diseases8,9 as well as for the management of drug therapy, and for a number of forensic 
applications8. For instance, Aydin29 (2007) points out that specific salivary biomarkers such as glucose, 
α-amylase, and ghrelin appetite hormone exhibit strong diagnostic potential for diseases such as 
diabetes. 
The ability to monitor health status, disease onset, progression, recurrence and treatment 
outcome through non-invasive means is highly important to advancing health care management. Saliva 
is a perfect medium to be explored for personalized individual medicine/dentistry including diagnostics, 
offering a non-invasive, easy to obtain means for detecting and monitoring diseases.9 
In order to develop researches concerning gene polymorphisms investigation and their relation 
with malfunctions, case-control studies are commonly conducted. In a case-control study patients who 
Pharmacogenomics and dental practice: clinical implications and current researches 
 
 REVISTA_CRO_ABR.indd 100 29/08/2012 16:09:00 
have developed a disease are 
identified and their past 
exposure to suspected 
aetiological factors is compared 
with that of controls or referents 
who do not have the disease. 
Wang28 et al. (2010) conducted a 
case-control study among children aged 8 
to 12 years old, exploring the distribution 
of ER RsaI genotype (ER gene 
polymorphism would be 99 associated 
with bone metabolism and bone mineral 
density) in the children who lived in the 
areas with or without high fluoride in 
drinking water, and investigated the 
relationship between ER gene RsaI 
polymorphisms and children’s dental 
fluorosis. They found no correlation between both variables, but suggest that in dental fluorosis perhaps several 
genes are influencing dental malformations. Therefore, further investigation on other polymorphisms of ER gene 
and other candidate genes related to calcium-metabolism may be useful. 
Many areas of Dentistry, especially Periodontics, Cariology, Oral Pathology and Applied 
Pharmacology, represent a vast field of research to be explored in relation to immunology, modulation 
of inflammatory processes and development of specific drugs to combat oral pathogenic microrganisms 
from the decoding of their genomes (Figure 1). However, some matters can hinder this research process, 
mainly as regards the essays of new drugs. 
Until recently, it was difficult to carry out rigorous studies to determine the contribution of 
pharmacokinetic (eg. metabolism and transport) and/or pharmacodynamic (eg. receptors) factors to 
interpatient variability in response and the potentially pivotal role that could be played by 
pharmacogenomics. Since the early part of this century, advances in population pharmacokinetics, 
objective measures of drug effect and the technology to easily, rapidly and cheaply genotype for any 
drug metabolising enzyme, transporter and receptor/target, has allowed for valuable insights into 
explaining why some patients respond poorly, why others experience unacceptable adverse effects 
necessitating drug withdrawal and why dosage requirements vary substantially between patients.30 
Pharmacogenomics and Dental Practice: Clinical Implications and Current Researches 
Freires IA, et al. 
 
Odontol. Clín.-Cient., Recife, 11 (2) 97-101, abr./jun., 2012 
www.cro-pe.org.br 
 REVISTA_CRO_ABR.indd 101 29/08/2012 16:09:00 
100 
Figure 01: Nexus between Pharmacogenomics and Dentistry, focusing on main current clinical implications and research 
perspectives. 2010. 
 
 REVISTA_CRO_ABR.indd 102 29/08/2012 16:09:00 
Odontol. Clín.-Cient., Recife, 11 (2) 97-101, abr./jun., 2012 www.cro-
pe.org.br 
 
Odontol. Clín.-Cient., Recife, 11 (2) 97-101, abr./jun., 2012 www.cro-
pe.org.br 
 REVISTA_CRO_ABR.indd 103 
Pharmacogenomics and Dental Practice: Clinical Implications and Current 
Researches 
CONCLUSIONS 
Although individualized therapy remains as a challenge for 
the future, pharmacogenomics will bring many benefits to public 
health and to dentistry in particular. 
Several areas, including Periodontics, Oral Pathology, 
Cariology, Orthodontics, among many others, begin to show an 
increasingly close relationship with pharmacogenomics, which 
may result (in a not too distant future) in the development and 
improvement of treatment modalities more individualized and 
potentially more effective. 
Thus, the intersection of biotechnology and genetic 
information applied to dentistry is the harbinger of the future 
oral health care. 
REFERENCES 
1. Shastry BS. Pharmacogenetics and the concept of 
individualized medicine. Pharmacogenomics J. 2006 ; 6(1):16-
21. 
2. Relling MV, Hoffman JM. Should Pharmacogenomic 
studies be required for new drug approval? Clin Pharmacol Ther. 
2007; 81:425-8. 
3. Kukreti R, Grover S, Gupta M, Sharma A, Sharma S, 
Bala K et al. Pharmacogenomics and predictive therapy for 
complex diseases. Genomic Med. 2008 ; 2:341–50. 
4. Bumol T, Watanabe A. Genetic information, genomic 
technologies, and the future of drug discovery. JAMA 2001; 285: 
551-5. 
5. Rothstein MA, Epps PG. Science and society: ethical 
and legal implications of pharmacogenomics. Nat Rev Genet. 
2001; 2:228-31. 
6. Issa AM. Ethical perspectives on pharmacogenomic 
profiling in the drug development process. Nature Rev Drug 
Discov. 
2002; 1:300-8. 
7. Shomron N. MicroRNAs and pharmacogenomics. 
Pharmacogenomics 2010 11(5):629–32. 
8. Slavkin HC. The future of oral health professions: 
molecular dentistry (an essay). Saudi Dental Journal 2004; 
16(1):1-2 [Editorial]. 
9. Ai J, Smith B, Wong DT. Saliva Ontology: An ontology-
based framework for a salivaomics knowledge base. BMC 
bioinformatics 2010; 11:302. 
10. Scott DA, Renaud DE, Krishnasamy S, Meriç P, 
Buduneli N, Çetinkalp S et al. Diabetes-related molecular 
signatures in infrared spectra of human saliva. Diabetology & 
Metabolic Syndrome 2010; 2:48-57. 
11. Slavkin HC. Implications of pharmacogenomics in oral 
health. Pharmacogenomics J. 2002; 2:148-51. 
12. Otero LM. La farmacogenómica en la odontología. 
Pontificia Universidad Javeriana, Bogotá, 2003. Available at: 
http:// recursostic.javeriana.edu.co/doc/farmacoge.pdf 
13. Slavkin HC. Applications of pharmacogenomics in 
general dental practice. Pharmacogenomics 2003; 4(2):163-70. 
14. Chambers D. DNA, the double helix: perspective and 
prospective at forty years. New York: New York Academy of 
Sciences, 1995. 
15. McCarthy JJ, Hilfiker R. The use of single-nucleotide 
polymorphism maps in pharmacogenomics. Nat Bio. 2000 
18:505-08. 
16. Gibbons RJ. Bacterial adhesion to oral tissues: a model for infectious 
diseases. J Dent Res. 1989; 68(5):750-60. 17. Jeon J-G, Klein MI, Xiao J, Gregoire S, 
Rosalen PL, Koo H. Influences of naturally occurring agents in combination with 
fluoride on gene expression and structural organization of Streptococcus mutans in 
biofilms. BMC Microbiology 2009; Freires IA, et al. 
9:228-38. 
18. Wolff MS, Larson C. The cariogenic dental biofilm: 
good, bad or just something to control? Braz Oral Res. 2009; 
23(supl.1): 31-8. 
19. Salazar LA, Vasquez C, Almuna A, Oporto G, Santana 
R, Herrera CL et AL. Detección Molecular de Estreptococos 
Cariogénicos en Saliva. Int. J. Morphol. 2008; 26(4):951-58. 
20. Dasanayake AP. Poor periodontal health of the 
pregnant woman as a risk for low birth weight. Ann Periodontol. 
1998; 13:206-12. 
21. Cohen DW, Slavkin HC. Periodontal disease and 
systemic disease. In: Rose LF, Genco RJ,Cohen DW, Mealey BL 
(eds). Periodontal medicine. BC Decker: Hamilton, Canada; p.1-
10, 2000. 22.Soory M. Targets for steroid hormone mediated 
actions of periodontal pathogens, Cytokines and therapeutic 
agents:some implications on tissue turnover in the 
periodontium. Curr Drug Targets. 2000; 1:309-25. 
23. Karimbux NY, Ramamurthy NS, Golub LM, Nishimura 
I. Semi-synthetic tetracycline doxycycline and a chemicallymodified tetracycline CMT-1 enhanced collagen expression in 
induced periodontal lesions of Sprawley Dawley rats. J 
Periodontol. 
1998; 69(1):34-40. 
24. IHGSC, International human genome sequencing 
consortium. Initial sequencing and analysis of the human 
genome. Nature. 2001; 409:860-921. 
25. Peltonen L, McKusick VA (2001). Dissecting human 
diseases in the post genomic era. Science. 2001; 291:1224-29. 
26. Shioma Y, Sasaki T, Shibasaki Y. Histological and 
inmunohistochemical study of endothelin-1 localization in 
periodontal ligament during experimental tooth movement. 
Dent Jap. 1995; 32:75-8. 
27. Peres RCR, Camargo G, Mofatto LS, Cortellazzi KL, 
Santos MCLG, Santos MN et al. Association of polymorphisms in 
the carbonic anhydrase 6 gene with salivary buffer capacity, 
dental plaque pH, and caries index in children aged 7–9 years. 
Pharmacogenomics J. 2010; 10:114-9. 101 
28. Wang G, Ba Y, Yang Y, Ren L, Zhu J, Yin G, et al. ERβ 
gene RsaI polymorphism and children’s dental fluorosis. Life Sci 
J. 2010; 7(1):51-5. 
29. Aydin S. A comparison of ghrelin, glucose, alpha-
amylase and protein levels in saliva from diabetics. J Biochem 
Mol Biol. 2007; 40(1):29-35. 
30. Somogyi AA, Hardy J. Role of pharmacogenomics in 
pain therapy: focus on opioids. Cancer Forum. 2010; 34(2):74-
6. 
 
Odontol. Clín.-Cient., Recife, 11 (2) 97-101, abr./jun., 2012 www.cro-pe.org.br 
 REVISTA_CRO_ABR.indd 104 
Recebido para publicação: 26/01/11 
Aceito para publicação: 30/03/11 
29/08/2012 16:09:01 
	INTRODUCTION
	METHODS
	LITERATURE REVIEW
	100
	CONCLUSIONS
	REFERENCES

Continue navegando