Buscar

manejo do solo e adubação

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 80 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 80 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 80 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

---------------------- -~ 
MANEJO DO SOLO 
E ADUBAÇÃO 
Equilíbrio Nutricional 
Melhoramento do Solo 
Saúde da Planta 
KUNIO NAGAI 
AKIRA KISHIMOTO 
MARÇO/2008 
Instituto de Pesquisas Técnicas e 
Difusões Agropecuárias da JATAK 
Prefácio 
Nesta oportunidade, através da Divisão de Informação do Instituto de Pesquisas Técnicas e 
Difusões Agropecuárias da JATAK (IPTDA-JATAK), publicamos o livro intitulado Manejo do Solo e 
Adubação, cujos autores são o EngO AgrO Kunio Nagai, chefe da Divisão de Treinamento e Intercâmbio 
deste Centro de Pesquisa e Sr. Akira Kishimoto, seu companheiro de longa data. 
Os avós, matemos do senhor Nagai vieram para o Brasil no navio Ryojun Maru, em 1910, e 
estabeleceram-se em Guatapará, SP, mesmo local onde se encontra atualmente o IPTDA. 
Neste ano de 2008, em que se comemora o Centenário da Imigração Japonesa no Brasil, contribuir 
para a publicação deste livro, deixou-me muitíssimo lisonjeado. 
Quando vim trabalhar no IPTDA, em abril de 2007, o Sr. Nagai, então chefe da Divisão de Pesqui-
sas Técnicas Agrícolas do IPTDA, costumava dizer que "para sanar as dificuldades encontradas pelos 
pequenos e médios produtores, a questão básica é solucionar os problemas contidos no solo". 
A continuidade da atividade agrícola tomar-se-á inviável caso não equacionemos a recuperação 
do solo rapidamente, alterando o uso inadequado de adubos químicos, defensivos agrícolas, preparo do 
solo, entre outros, empregados desde longa data. Desta feita, atualmente, esta é a sua maior preocupação. 
O Sr. Nagai prega, com muita convicção, a viabilidade da agricultura orgânica. Assim, alguns 
experimentos com as culturas orgânicas de banana, café, citrus entre outras estão sendo desenvolvidas no 
IPTDA. 
Embora os resultados dessas pesquisas demandem algum tempo; graças à orientação do Dr. 
Shiro Miyasaka, seu mestre em agricultura orgânica e à convicção adquirida durante os longos anos de 
experiência como ~ngenheiro agrônomo, desejava difundir a prática da agricultura natural e orgânica, com a 
missão de levar novo alento aos agricultores o mais rápido possível. Pensando desta forma, foi transferido 
do cargo de chefe da Divisão de Pesquisas Técnicas Agrícolas para chefe da Divisão de Treinamento e 
Intercâmbio do IPTDA-JATAK. 
Hoje, podemos observar que a luta do Sr. Nagai, e o seu grande entusiasmo, incentivando a 
agricultura natural ou orgânica, não foram em vão. 
Após meio ano, foi feito um levantamento, através de um questionário enviado pelo Ministério da 
Agricultura, Silvicultura e Pesca do Japão, onde se constatou que os agricultores ficaram surpresos com os 
resultados obtidos em culturas de ciclo curto, como o alho, criando muitas expectativas perante a JATAK, 
antes uma instituição pouco conhecida entre os agricultores. 
Obviamente, existem ainda vários entraves visando à implantação de uma agricultura sustentá-
vel, indispensável para a preservação do meio ambiente, do solo, de uma atividade produtiva e administra-
tivamente econômica. 
res. 
Portanto, espero que a publicação deste livro contribua para o desenvolvimento dos agriculto-
EngO AgrO Tetsuhiro Hirose 
Gerente Geral do IPTDA - JATAK 
- I -
INTRODUÇÃO 
A situação da agricultura hoje está cada vez mais dificil. Principalmente, os pequenos e médios 
agricultores estão enfrentando, há muito tempo, uma séria crise em suas atividades. Assim, ocorre a tendên-
cia de deixar o campo e ir para os centros urbanos a fim de dedicar a outras atividades, trazendo como 
conseqüência o grande êxodo rural com o superpovoamento das grandes cidades. 
O produtor rural conduz suas lavouras baseado somente no uso de insumos considerados mo-
dernos, como fertilizantes químicos concentrados e defensivos químicos de alta toxicidade, lutando contra 
as pragas e doenças. 
É necessário entender que a produtividade, a qualidade, as pragas e as doenças na lavoura são 
conseqüências e não causas. Temos que nos rever os conceitos fundamentais da agricultura. 
A base da agricultura está no solo. Todos nós sabemos que uma planta bem nutrida é mais 
tolerante ao ataque de pragas e doenças, permitindo obter boa produtividade e qualidade, com baixo custo 
de produção, proporcionando altos lucros ao produtor. 
Mas para que a planta seja sadia é necessário que o solo seja sadio. 
A saúde do solo depende da vida, ou seja da mesofauna e microrganismos que são destruídos na 
agricultura convencional. Este processo inicia-se com a derrubada das matas. O cultivo da terra com o 
preparo mecânico de aração, gradagem e capinas contribuem para a destruição da vida do solo. Acentuam-
se com as adubações químicas de alta concentração, uso de herbicidas e defensivos químicos. 
Em conseqüência desse processo, ocorre o desequilíbrio químico, fisico e biológico do solo, 
causando todos os problemas da atual agricultura, tratando-se, portanto, de uma agricultura destrutiva, não 
sustentável. 
As propriedades químicas e fisicas do solo são determinadas pelas atividades biológicas, que 
infelizmente já não ocorrem na atual situação. 
Mas sabemos que, graças às pesquisas, experimentos e observações de vários pesquisadores 
preocupados com o destino do mundo, nos trouxeram a luz para a solução dos problemas em questão. 
Precisamos direcionar a agricultura no sentido de fazer voltar a vida ao solo, através de métodos 
relativamente simples e econômicos, permitindo desenvolver um sistema sustentável e lucrativo aos produ-
tores. 
Esta é a razão de se levar as informações o mais urgente e, se possível, com a maior amplitude para 
atingir todos os agricultores do Brasil e do mundo. 
Apresentamos o tema em três partes: a primeira com alguns aspectos básicos a respeito do solo; 
a segunda se refere aos critérios de cálculo para uma adubação química equilibrada, com alguns exemplos; 
e a terceira, o preparo de insumos naturais para o uso na lavoura, visando melhorar o solo e o metabolismo 
da planta. 
Há cerca de vinte anos que vem sendo recomendado esse processo aos produtores, e todos 
aqueles que o colocaram em prática tiveram resultados surpreendentes. 
Registramos os nossos sinceros agradecimentos ao Prof. Edmar José Kiehl, aos colegas do 
IPTDA-JATAK, engenheiros agrônomos, Tetsuhiro Hirose, Francisco Kenyti Hotta e ao estagiário univer-
sitário, Anderson Teidy Fuzita, pelos trabalhos de revisão deste pequeno manual. E em especial, à proi" 
Katumi Ussami pela revisão final. 
Ficaremos muito satisfeitos, se estas informações forem realmente úteis a todos, em beneficio de 
uma agricultura sustentável, saudável e que possa contribuir para a paz, segurança e felicidade do país e da 
humanidade. 
Os autores 
-III-
BREVE HISTÓRICO DOS AUTORES 
KunioNagai 
Engenheiro agrônomo graduado na Escola Superior de Agricultura"Luiz de Queiroz" da Univer-
sidade de São Paulo-Piracicaba, em 1961, e posteriormente fez o Curso de Administração na Universidade 
Mackenzie graduando-se, em 1974. 
Iniciou sua carreira como extensionista na Seção de Fomento Agrícola da Cooperativa Agrícola 
de Cotia-CAC-, transferindo-se posteriormente para a Estação Experimental da CAC, em Atibaia, onde 
ajudou a criar a empresa Agroflora Reflorestamento e Agropecuária S.A.,dedicando-se: a) ao trabalho de 
melhoramento e produção de sementes de hortaliças; b) à produção de mudas frutíferas; c) à criação de 
reprodutores de suínos e coelhos. Hoje essa empresa foi adquirida pela Sakata, grande produtora de semen-
tes do Japão. 
Fundou a empresa Tanebras Sementes Melhoradas Ltda., dedicada ao melhoramento genético e 
produção de sementes de hortaliças de elevada tecnologia. 
Em seguida, dedicou-se à orientação aos lavradores, a partir de 1990, na firma Agro-Sul Comércio 
e Representação Ltda., percorrendo várias regiões de São Paulo, Minas Gerais e Santa Catarina. Nesse 
trabalho, fundamentou-se: no uso de insumos orgânicos (bioestimulantes, corretivos e condicionadores de 
solos), na adubação equilibrada, com base na análise químicacompleta do solo, com macro e microelementos. 
Trabalhou na Technes Agrícola Ltda., com insumos orgânicos, como bioestimulantes e turfa, 
visando à melhoria do metabolismo da planta e do solo, concomitantemente com a nutrição equilibrada. 
A partir de 1998, iniciou suas atividades na Agricultura Natural, sob a orientação do Dr.Shiro 
Miyasaka, primeiro pesquisador de soja e um dos pioneiros da Agricultura Natural no Brasil. 
Dedicou-se a várias atividades para propagação da agricultura sustentável, dando aulas no 
Colégio Cooper Rural (da Organizationfor Industrial, Spiritual and Cultural Advancement-OISCA) em 
Jacareí, colaborou junto ao Instituto de Terras do Estado de São Paulo-ITESP-Secretaria de Justiça do 
Estado de São Paulo, na introdução da agricultura natural nos Assentamentos do Estado. 
Convidado pelo Instituto de Pesquisas Técnicas e Difusões Agropecuárias da JATAK, em junho 
de 2006, dedica-se à difusão de nova tecnologia para agricultura sustentável, atuando junto aos agriculto-
res de várias regiões de São Paulo, Paraná, Minas Gerais, Santa Catarina e outras. 
- IV -
Akira Kishimoto 
Natural de Kobe, Japão, fonnou-se na Faculdade de Agronomia de Hyogo (atual Universidade de 
Kobe) em 1964, com especialização em Fruticultura. 
Ainda universitário, em 1961, esteve no Brasil como estagiário durante 11 meses, quando se 
sentiu fortemente atraído por este belo país. 
Antes de imigrar ao Brasil, em março de 1965, fonnou-se na Escola de Especialização em Horticul-
tura da grande empresa de sementes Takii. 
Chegou ao nosso país em junho de 1965, indo trabalhar na produção e melhoramento de semen-
tes de hortaliças em Pelotas, no Rio Grande do Sul, na propriedade do Sr.Nagatoshi Yamaguchi. 
Transferiu-se para o estado de São Paulo, em 1966, inicialmente na Estação Experimental da 
Cooperativa Agrícola Sul-Brasil, dedicando-se ao trabalho de pesquisa e melhoramento genético de horta-
liças. 
Em 1968, foi para a Estação Experimental da Cooperativa Agricola de Cotia, onde foi fundada a 
empresa Agroflora Reflorestamento e Agropecuária S.A. continuando a desenvolver pesquisa genética em 
hortaliças. Conseguiu lançar o primeiro híbrido comercial de couve-flor, com a importante orientação dos 
professores Marcílio de Souza Dias e Hiroshi Ikuta, do Departamento de Genética da E.S.A."Luiz de Quei-
roz", utilizando o fator de auto-incompatibilidade. 
Desenvolveu vários cultivares de tomate, pepino, pimentão, berinjela híbrida, cenoura entre 
. outras. Colaborou com o pesquisador Hiroshi Nagai, do Instituto Agronômico de Campinas, no desenvol-
vimento de vários cultivares como o tomate Santa C lara-IAC-5300. Auxiliou na propagação de mudas de 
morango, isentas de vírus, produzidas na Seção de Virologia, do Instituto Agronômico de Campinas-I.A.C, 
da Secretaria da Agricultura do Estado de São Paulo. 
Posterionnente, em 1988, desenvolveu atividades, na empresa Technes Agrícola Ltda., para a 
divulgação de bioestimulantes à base de aminoácidos e condicionador de solo à base de turfa. Mas o 
trabalho importante foi a divulgação dos métodos de cálculo de adubação equilibrada, baseada na análise 
de solo e absorção das culturas. 
Hoje se dedica a fisioterapia, praticando a Medicina Oriental que atua buscando as causas para 
amenizar os sofrimentos dos pacientes, utilizando várias técnicas como a acupuntura, moxaterapia, pulsologia, 
seitai (técnica de correção da postura corporal), ventosa, alimentação saudável e outras. 
- v -
sUMÁRIo 
pág. 
Prefácio ......................................................................................................................................................... I 
Introdução .................................................................................................................................................. III 
Breve histórico dos autores ....................................................................................................................... N 
1.0S0LO ..................................................................................................................................................... 1 
1.1. O solo e os seis fatores essenciais para a cultura ...................................................................... 1 
1.1.1.Quais são os seis fatores ? ................................................................................................ 1 
1.2. Quais são as condições adequadas do solo? ............................................................................. 1 
1.2.1. Profundidade da raiz e produtividade ............................................................................... 1 
1.2.2.Composição do solo e desenvolvimento da lavoura ..................................................... : ... 2 
1.2.3.Fertilidade .......................................................................................................................... 3 
l.2.4.Capacidade de troca catiônica e matéria orgânica ............................................................. 4 
1.2.5.Aeração e agregado do solo .............................................................................................. 5 
1.2.6.Microrganismos do solo e agregação ............................................................................... 5 
1.2.7.Microrganismos do solo e nutrientes ........ , ....................................................................... 5 
1.2.8.Microrganismos e o ciclo do nitrogênio ............................................................................ 6 
1.2.9.Atividade biológica e pH do solo ...................................................................................... 7 
2. ELEMENTOS IMPORTANTES E INDISPENSÁVEIS PARA AS CULTURAS .................................. 8 
2.1. Macroelementos .................................... '" .................................................................................. 8 
2.2. Micronutrientes .......................................................................................................................... 9 
2.2.1.Função dos micronutrientes .............................................................................................. 9 
2.2.2.Relação entre deficiência de micronutrientes e ocorrência de doença ............................ 10 
2.2.3.Fontes de micronutrientes ............................................................................................... 10 
2.2.4.Métodos de uso dos micronutrientes ............................................................................. 11 
2.2.5.Pulverização foliar e tempo de absorção ......................................................................... 11 
2.2.6.Ação recíproca dos elementos ........................................................................................ 12 
3. MEDIDAS PARA MINIMIZAR OS OBSTÁCULOS .............................................................................. 13 
3.1. Melhoramento da acidez ........................................................................................................... 13 
3.1.1. O pH do solo, os elementos e as culturas ...................................................................... 13 
3.1.2. Causas da acidificação e seu controle ............................................................................ 14 
3.1.3. Motivo da calagem ...................................................................................................... '" 14 
3.1.4. Correção de pH do solo e grau de aproveitamento do adubo ........................................ 14 
3.1.5. Acidez do solo e ativação dos microrganismos do solo ................................................ 15 
3.1.6. Capacidade de reação do calcário ................................................................................... 15 
3.1.7. Poder relativo de neutralização total (PRNT) .................................................................. 16 
3.1.8. Equilíbrio da relação Ca/Mgno solo .............................................................................. 16 
- VI -
-----~-------------------------------
3.1.9. Cálculo de calagem ......................................................................................................... 17 
3.1.10. Recomendação técnica de calagem ............................................................................... 17 
3.1.11. Importância da calagem ................................................................................................ 18 
3.1.12. Fatos na calagem ........................................................................................................... 19 
3.1.13. Aplicação antes do plantio ........................................................................................... 19 
3.1.14. Calagem na cultura perene ............................................................................................ 19 
3.2. Gessagem .................................................................................................................................. 20 
3.2.1. Efeito da gessagem agrícola ........................................................................................... 20 
3.2.2. Lixiviação de K e Mg e o uso excessivo de gesso agrícola ............................................ 20 
3.2.3. Método de aplicação do gesso agrícola .......... : .............................................................. 20 
3.2.4. Cálculo da gessagem ...................................................................................................... 21 
4. TÉCNICA DE MELHORAMENTO DE MANEJO E ADUBAÇÃO ......................................................... 22 
4.1. Cálculo de adubação para cultura de hortaliças ....................................................................... 22 
4.1.1. Sistema de absorção de nutrientes em hortaliças ........................................................... 22 
4.1.2. Padrões de produtividade de hortaliças e quantidade de absorção 
de elementos do adubo ....................................... , .................................................................... 23 
4.1.3. Produção almejada e adubação de cada espécie de hortaliça ........................................ 24 
4.2. Interpretação de análise de solo e plano de adubação em olericultura .................................... 25 
4.2.1. Caso de deficiência de elementos na adubação ............................................................. 25 
4.2.2. Caso de excesso de elementos na adubação .................................................................. 25 
4.3. Técnicas para o aumento de produtividade ....................................... : ..................................... 27 
4.3.1. Técnicas agrícolas para aumentar a fotossíntese ........................................................... 27 
4.3 .1.1. Fundamento da produção agrícola .................................................................... 27 
4.3.2. Técnicas de melhoramento do solo de cerrado .............................................................. 27 
4.3.2.1. Solos de cerrado ................................................................................................ 27 
4.3 .2.2. Manej o do solo de cerrado ................................................................................ 28 
4.3.2.3. Exemplo de melhoria de produção no cerrado ................................................... 29 
4.3.2.4. Plantio direto-Sistema mantenedor de fertilidade - bomba biológica ................ 29 
4.4. Cálculo de adubação para cultura de campo ............................................................................ 31 
4.4.1. Diferença na proporção de elementos de adubação na cultura ...................................... 31 
4.4.2. Teor de absorção de elementos na cultura ..................................................................... 31 
4.4.3. Exemplo de adubação para soja ...................................................................................... 32 
4.4.4. Exemplo de adubação para tomate .................................................................................. 33 
4.5. Absorção de nutrientes em fruticultura .................................................................................... 37 
4.5.1. Absorção de nutrientes em pessegueiro ........................................................................ 37 
4.5.2. Absorção de nutrientes em videira ................................................................................. 37 
4.5.3. Teores de macronutrientes primários em fruteiras .......................................................... 38 
4.6. Alelopatia .................................................................................................................................. 39 
4.7. Absorção de nutrientes em floricultura .................................................................................... 41 
4.7.1. Absorção (Características) ............................................................................................. 41 
- VII -
4.7.2. Quantidade de absorção de nutrientes ............................................ ............................... 41 
4.7.2.1. Flores de corte ...................................................... ............................................. 41 
4.7.2.2. Flores em vaso ................................................................................................... 42 
4.8. Relação de absorção de nutrientes ........................................................................................... 43 
4.9. Adubação em banana ................................................................................................................ 43 
4.9.1. Terra cultivada com a variedade Nanicão,em Cajati-SP .................................................. 43 
4.9.2. Um exemplo de adubação de banana .............................................................................. 44 
4.9.3. Critério de análise foliar de banana: excesso e falta de elementos ................................. 45 
5. CRITÉRIOS DE ADUBAÇÃO COM EXEMPLOS ................................................................................... 46 
5.1. Tabela de conversão de unidades ............................................................................................ 46 
5.2. Cultura de alface ....................................................................................................................... 47 
5.3. Cultura de alho .......................................................................................................................... 48 
5.4. Cultura de batata ....................................................................................................................... 49 
5.5. Cultura de berinjela .............................. '" .................................................................................. 50 
5.6. Cultura de cebola ...................................................................................................................... 51 
5.7. Cultura de cenoura .................................................................................................................... 52 
5.8. Cultura de couve flor/repolho/brócolos ................................................................................... 53 
5.9. Cultura de feijão vagem ............................................................................................................ 54 
5.10. Culturadejiló .......................................................................................................................... 54 
5.11. Cultura de mandioquinha ........................................................................................................ 55 
5.12. Cultura de pepino .................................................................................................................... 56 
5.13. Cultura de pimentão ................................................................................................................57 
5.14. Cultura de quiabo .................................................................................................................... 58 
5.15. Cultura de tomate .................................................................................................................... 58 
5.16. Cultura de ameixeira ................................................................................................................ (j) 
5.17. Cultura de atemóia ................................................................................................................... 61 
5.18. Cultura de caquizeiro .............................................................................................................. 62 
5.19. Cultura de macieira ................................................................................................................... 63 
5.20. Cultura de pereira .................................................................................................................... 64-
5.21. Cultura de pessegueiro ........................................................................................................... 65 
6. INSUMOS NATURAIS ........................................................................................................................... 67 
6.1. Coleta de inoculante ................................................................................................................. 67 
6.2. Adubo líquido caseiro .............................................................................................................. 67 
6.3. Bokashi ...................................................................................................................................... 68 
6.3.1. Bokashi simples .............................................................................................................. 68 
6.3.2. Bokashi sem terra ............................................................................................................ (f) 
6.4. Bioestimulante .......................................................................................................................... 70 
7.REFERÊNCIASIBLIOGRÁFICAS .......................................................................................................... 71 
- VIII -
1. O SOLO 
1.1. O solo e os seis fatores essenciais para a cultura. 
1.1.1. Quais são os seis fatores? 
Tecnicamente devemos considerar os seguintes pontos fundamentais para a produção agrícola: 
luz, ar, água, temperatura, nutrientes e ausência de toxinas, que devem ser plenamente satisfeitos. Com 
exceção da luz, os demais estão relacionados com o solo de modo importante. Na Quadro 1, apresentamos 
os seis fatores necessários para a produção. 
Quadro l-Os seis fatores necessários para o desenvolvimento e produção. 
Fator Ação 
l.Luz Energia de assimilação de gás carbônico 
(fotossíntese) 
Fotoperiodismo (controle da floração). 
2.Ar Oz Respiração 
COz Fotossíntese 
Nz Fixação de nitrogênio (aproveitamento do nitrogênio 
do ar) 
3.Água Componente da planta 
Matéria-prima de matéria orgânica 
Transportadora de material(substãncia) 
4.Temperatura Relacionada com várias reações 
5.Nutrientes N, P, K e outros 
6.Ausência de toxinas AI (alumínio), acidez 
Fonte: YAMANE,Ichiro. Fundamentos e Aplicação da Pedologia. 1960,p.16 
A maior característica na agricultura é a produção de matéria orgânica (carboidrato), que somente 
as plantas verdes conseguem através da fotossíntese, utilizando a energia do sol, assimilando o gás carbônico 
atmosférico (CO) e a água (HP) pelas raízes. 
Assim, podemos considerar as três funções do solo em relação à planta. A primeira é proporcionar 
a sustentação da planta, com a função de possibilitar o recebimento de luz, ar e nutrientes. A segunda é 
oferecer local com condição para a manutenção da saúde da raiz da planta. A terceira é ter a função de 
armazenar e oferecer nutrientes e água. A seguir vamos explicar os itens relacionados ao solo e planta. 
1.2. Quais são as condições adequadas do solo? 
1.2. 1. Profundidade da raiz e produtividade. 
Na lavoura, o solo sustenta a planta e há necessidade de sua profundidade para possibilitar a 
absorção de nutrientes e água pelas raízes. As raízes atingirão 1 a 2 m, o quanto permitir o solo. A profundi-
- 1-
dade das raízes pode ser limitada por barreiras físicas e químicas, assim como pelo lençol freático elevado. 
Camadas compactadas, leitos de folhelhos, camadas de cascalhos e níveis tóxicos de materiais são difíceis 
de corrigir, mas um lençol freático elevado, geralmente, pode ser corrigido com drenagem adequada. No 
Quadro 2, são mostradas as relações entre a produtividade e profundidade efetiva do solo. 
Quadro 2- Relação entre a profundidade efetiva do solo e a produtividade. 
Profundidade do solo utilizável pela cultura (em) Produtividade relativa(%) 
30 35 
60 60 
90 75 
120 85 
150 95 
180 100 
Fonte: MALAVOLTA,E. Manual de Fertilidade do Solo. São Paulo, 1989,p.31. 
1.2. 2. Composição do solo e desenvolvimento da lavoura. 
No Gráfíco 1, apresentamos a composição ideal do solo para o desenvolvimento da 
lavoura. 
Gráfico 1. Composição ideal do solo para o desenvolvimento da lavoura. 
M.O. 
Fonte: GUERRINI. Encontro sobre Matéria Orgânica do Solo-Guerrini- UNESP. 1992,p.8 
A composição ideal do solo para odes envolvimento da lavoura é: 45% de minerais, 25% de ar, 
25% de água e 5% de matéria orgânica. 
-2-
1.2.3. Fertilidade 
A fertilidade do solo é o conjunto das atividades química, fisica e biológica (Gráfico 2). 
Gráfic02. Três fatores da fertilidade. 
o solo onde se desenvolve a raíz deve apre-
sentar condições para permitir um cresci-
mento suficiente e atividades intensas, com 
fornecimento contínuo de nutrientes neces-
sários para produção agrícola, contendo 
elementos eficazes e abundantes. O solo 
que apresenta estas condições é conside-
rado de alta fertilidade. 
PROPRIEDADE 
FÍSICA 
PROPRIEDADE 
BIOLÓGICA 
Decomposição da 
Matéria Orgânica 
PROPRIEDADE 
QUÍMICA 
Fonte: MIYOSHI,Hiroshi. (Dojo shindan-ho)- Método de Avaliação do So10.1991 ,p.33. 
Consegue-se a fertilidade do solo através do fornecimento de compostos, rotação de cultura, 
adubação verde, aumento de matéria orgânica e adubação química. Aqui está a importante razão do forne-
cimento de matéria orgânica para o melhoramento do solo. 
No solo de alta fertilidade, os microrganismos entram em intensa atividade e, através da respira-
ção, haverá uma grande liberação de gás carbônico (C02), que sevirá como matéria-prima da fotossíntese 
das plantas. Além disso, através das atividades dos microrganismos, o calor resultante da sua respiração irá 
aumentar a temperatura do solo, proporcionando o aumento da atividade do sistema radicular, mesmo em 
condições de baixa temperatura. 
Esta é a razão pela qual, ultimamente, está aumentando o cultivo em estufa, no sul do Brasil, 
especialmente, porque o trabalho do microrganismo no solo está servindo para o aumento da produtivida-
de. Além disso, o aumento equilibrado de espécies de microrganismos, impedindo o aumento de pragas e 
doenças do solo, constitui-se na causa do crescimento sadio da lavoura. Por negligenciar a manutenção e 
melhoramento do solo, realizando cultivo de lavoura com adubo químico e defensivos agrícolas, acarretará 
numa grande queda na produção agrícola, em conseqüência dos pequenos erros nos tratos culturais. 
E, também, mesmo com a alta fertilidade do solo, se o lençol freático é elevado, haverá queda na 
produtividade pelo excesso de umidade, por isso é necessário que o agricultor faça uma avaliação global. 
Apesar da produtividade do solo depender da adubação, mesmo que a lavoura esteja suficiente-
mente adubada, caso a propriedade fisica (permeabilidade, aeração, retenção de água) seja ruim, com pouca 
porosidade, baixa velocidade de renovação do ar do solo, sem o suficiente fornecimento de oxigênio (0
2
) 
paraa raiz, resulta no impedimento de sua respiração, não ocorrendo a absorção de água e nutriente. 
Portanto, em relação à adubação, não devemos pensar somente no fornecimento dos elementos do adubo 
-3-
químico, mas, ao mesmo tempo, considerar a importância das propriedades fisica e biológica (atividade do 
microrganismo) do solo. 
1.2.4.Capacidade de troca catiônica (CEC=CTC) e matéria orgânica. 
A capacidade de troca catiônica representa a retenção de elementos do solo, quanto maior o seu 
valor indica a importante capacidade de armazenar os nutrientes. O conjunto de argila (mineral), óxidos e 
matéria orgânica influencia na capacidade de troca catiônica. O Quadro 3 mostra que a matéria orgânica 
comparada ao teor de argila, mesmo com baixo teor, possui a capacidade de aumentar 10 vezes a capacidade 
de troca catiônica. Assim, pode-se compreender a importância de aumentar a matéria orgânica do solo. 
Quadro 3. Capacidade de troca de cátions total e da matéria orgânica, de amostras superficiais 
de solos do Estado de São Paulo - Raij (1966). 
Legenda Profundidade Argila Matéria orgânica CTC CTCda 
do (M.O.) M.O. Total M.O. 
solo cm % meq/l00g 
PVls 0- 6 5 0,78 2,2 3,2 69 
Prnl 0-15 6 0,60 2,1 3,3 64 
Pln 0-14 12 2,52 8,2 10,0 82 
Pc 0-16 19 2,40 6,0 7,4 81 
PV 0-12 13 1,40 2,7 3,7 73 
TE 0-15 64 4,51 15,0 24,4 61 
LR 0-18 59 4,51 16,1 28,9 56 
Lea 0-17 24 1,21 2,9 3,9 74 
Fonte: RAIJ,B. von. Fertilidade do Solo. 1991 pagA0 
O Quadro 4 mostra o efeito da argila e matéria orgânica sobre a CTC. 
Quadro 4. Influência da argila e da matéria orgânica sobre a CTC. 
pH M.O Argila CTC (pH7,O) 
% % meq% 
Solo 1 4,9 0,3 5 1,9 
Solo 2 6,6 3,2 5 10,4 
Solo 3 4,5 3,1 25 17,7 
Fonte: PRIMAVESI,Ana. Manejo Ecológico do Solo. 1981 ,p 125 
O Quadro 5 mostra a relação entre o tipo de argila e o pH do solo com a CTC. Outrossim, de acordo 
com a variação do pH do solo, ocorrerá alteração da CTC. Na caolinita, com pH 2,5- 6,0, a CTC é 4, mas com 
pH 7,0, eleva-a para 10. A montmorilonita aumenta de 95 para 100. 
Quadro 5. Capacidade de troca catiônica (CTC) da caolinita e montmorilonita:Russel (meq/lOOg) 
Argila pH2,5 -6,0 pH7,0 
Caolinita 4 10 
Montmorilonita 95 100 
Fonte: YAMANE,Ichiro. (Dojogaku no kiso to oyou)-Fundamentos e Aplicação da 
Pedologia.1960,p.59 
-4-
1.2.5. Aeração e agregado do solo. 
As raízes das culturas utilizam o oxigênio do ar e do solo e, aproveitando a energia do carboidra-
to, desenvolvem consideravelmente o sistema radicular que irá absorver a água e os nutrientes do solo, 
proporcionando o crescimento da parte aérea. Libera o gás carbônico (CO) pela raiz. Então, o oxigênio (0
2
), 
que foi absorvido pela raiz da cultura, será liberado através da troca de gases do ar com o gás carbônico do 
solo. Esta velocidade de troca de gases será maior, quanto maior for a porosidade do solo. Para o aumento 
da porosidade, o solo com estrutura agregada é mais eficiente do que o solo com estrutura granular simples. 
Na estrutura do solo agregado, as partículas do solo são aglutinados pelo húmus e cálcio, 
proporcionando porosidade com diâmetro de 1 a 10 mm, ao mesmo tempo que melhora a aeração e a 
permeabilidade de água, atuando na retenção da água. 
Quando a porosidade é pequena, promove a retenção da água e, se for grande, permite a circula-
ção de ar e água. Portanto, para o bom desenvolvimento da cultura, é importante a conservação do solo com 
estrutura de agregação. 
1.2.6. Microrganismos do solo e agregação. 
Com relação à cultura, o fornecimento de matéria orgânica é um método eficiente para a formação 
de agregados. Este efeito é conseqüência da decomposição da matéria orgânica e também da formação de 
mucilagem; pode-se considerar que, através do fornecimento de matéria orgânica, haverá aumento de fungo 
e suas hifas irão servir diretamente para agregar as partículas do solo. Os fungos, quando comparados com 
as bactérias, são consideravelmente mais eficientes na capacidade de formação de agregados .. No Quadro 
6, pode-se verificar esse fato. 
Quadro 6. Microrganismo e agregação. 
Espécies de microrganismos Porcentagem de agregados maiores 
f-= __ ----= ___ .::.In::.o::..:c:.:u::.la::.:d=0:.::s _______ f-__ --=d=o--'q"-'u:..::e-=2::..:mm==-a ós a inoculação 
Testemunha 0,0 
Fungos: Penicillium 68,1 
Fusarium 69,7 
Rhizopus 43,4 
Cunninghamella 53,1 
Bactérias: Bacteria megatherium 7,3 
Bacteria radiobacter 19,3 
Rhizobium alluni 4,9 ~ ____ ~ ____________ L-_______ _ 
Fonte: OKUDA,A. (Hiryogaku gairon)-Conceito de adubação. 1960-p.94 
1.2.7. Microrganismos do solo e nutrientes. 
De acordo com Nishio (Michinori Nishio-Japão-1992), nas lavouras em geral, em 1 ha existem 7 
t de organismos vivos no solo (em peso seco equivale a 1,4 t), além disso, em seus organismos concentram 
nutrientes na ordem de 100 kg/ha de N (nitrogênio). Entre as 7 t de organismos vivos no solo, encontram-
se ácaros, minhocas e outros, constituindo menos de 5%; cerca de 20 a 25% são bactérias, e 70 a 75% de 
fungos. No Quadro 7, apresentam-se os teores de nutrientes, em média, dos microrganismos do solo. 
-5-
Quadro 7 -Teores médios de nutrientes dos microrganismos do solo. 
Nutrientes % em peso 
N (nitrogênio) 10,0 
P205 (fósforo) 2,5 
K20 (potássio) 0,6 
CaO (cálcio) 0,6 
Fonte:/d, ibid. 1960-p.146 
1.2.8 Microrganismos e o ciclo do nitrogênio. 
O N (nitrogênio) compõe cerca de 80% do ar, sendo que ele é gasoso e quase não é aproveitado 
pela cultura. Este (N) nitrogênio é gasoso e estável , não reagindo com outros elementos. Conforme a 
atividade de determinados microrganismos ou diante de condições de alta carga elétrica ou temperatura (o 
trovão, por exemplo), ocorre alteração química e através de combinações ocorre a sua produção. O Gráfico 
3 apresenta a transformação da fórmula de nitrogênio que ocorre na natureza. Além disso, representa a 
síntese artificial na produção de adubo, através dessa transformação, entre as quatro formas. Dentre as 
fórmulas químicas de nitrogênio, as reações h e i favorecem o aproveitamento pela planta, na forma de 
nitrogênio amoniacal e nitrato. Essas transformações de formas de nitrogênio ocorrem devido à atividade do 
microrganismo no solo. 
Gráfico 3. Ciclo de transformação do N (nitrogênio). 
a. 
b.c. 
d,e. 
d,f. 
g. 
h,i. 
N-Orgânico 
(plantas, animais) 
Ig 
Nitrogênio-gasoso 
Atmosférico 
N-NO, 
Nitroso 
Transformação em amônia (decomposição) Maioria dos microrganismos que se alimentam 
Proteína (planta/animal)~aminoácidos~NH4-N de matéria orgânica 
Transformação em nitratos Nitrosomonas 
NH4-N~NO,-N~NO,-N Nitrobacter 
Redução do nitrato Microrganismos que se alimentam 
NO,-N~NO,-N~NH,-N de matéria orgânica 
Desnitrificação Bactéria desnitrificadora 
N03-N~NO,-N~N, (Pseudornonas sp. 
Tiobaci/lus sp.) 
Fixação de nitrogênio Bactéria fixadora de N independente(Azotobacter) 
N,~proteína (plantas/animais) Bactéria simbiótica fixadora 
de N (Bactéria noduladora 
de raiz). 
Transformação orgânica Maioria dos seres vivos que se alimentam de mat.org. 
NO,-N, NH,-N ~proteína(plantaslanimais) (absorção pelas plantas, alimentos) 
Fonte:MIYOSHI,Hiroshi.(Dojo shindan ho)- Método de avaliação do solo. 1991,p.205 
-6-
1.2.9 Atividade biológica e pH do solo. 
Os microrganismos constituem-se no tesouro do solo, exercendo atividades que mantem o equi-
líbrio dinâmico. É grande a relação entre os microrganismos e o pH do solo, por exemplo, as bactérias 
decompositoras de celulose, os Actinomicetos preferem pH neutro, os Aspergillus preferem pH ácido. O 
Quadro 8 mostra a relação entre o pH do solo e os microrganismos decompositores de celulose. 
Quadro 8- pH do solo e microrganismos decompositores de celulose 
Solo-microrganismo em 19 (x103) 
Solo Tratamento 
Bactéria Actinomicetos Aspergillus 
Sem calcário Testemunha 3.900 1.260 116 
pH5,1 N 3.900 1.260 116 
Solo ácido Celulose 3.600 600 160 
N+celulose 2.480 400 4.800 
Calcário Testemunha 7.700 2.760 25 
pH6,5 N 7.700 2.760 25 
Celulose17.400 2.200 47 
Solo neutro N+celulose 47.000 3.200 290 
Fonte: WAKSMANN Solo ácido e desenvolvimento da planta. In HASHIMOTO,Takeshi. 
Sansei dojo to sakumotsu sei iku. 1992,p.39. 
Em relação ao solo neutro, a decomposição é realizada principalmente pela bactéria. O tamanho 
da bactéria comparado ao Aspergillus é extremamente pequeno, e por isso a quantidade de N inorgânico 
resultante da decomposição da matéria orgânica retido pela bactéria é pequena em solos neutros. Como 
resultado, em solos neutros, aumenta teor inorgânico, acelerando a nutrição de N. Em contrapartida, nos 
solos ácidos onde a decomposição da matéria orgânica é realizada principalmente pelos fungos maiores que 
são os Aspergillus, aumenta a transformação orgânica do N inorgânico, retardando o efeito da nutrição. 
O Quadro 9 mostra a relação da transformação de composto com as principais bactérias e o pH. A 
maioria destas bactérias prefere solos neutros a levemente alcalino. Por isso é importante neutralizar os 
solos ácidos para aumentar a atividade dos microrganismos do solo. 
Quadro 9- Bactéria e pH relacionado a transformação de compostos nitrogenados 
Bactéria PH 
Otimo limite mínimo limite máximo 
Nitrobacter 7,1 5,0 10,0 
Nitrosomonas 7,8 
Azotobacter 7,5 -7,7 
Redutor de nitrato 7,0 - 8,2 5,2 9,8 
Fonte: WAKSMANN.Solo ácido e desenvolvimento da planta. In: HASHIMOTO, Takeshi. 
Sanseidojo to sakumotsu seiku. 1992,p.39. 
-7-
2. Elementos importantes e indispensáveis para as culturas. 
2.1. Macroelementos 
Na química, chamamos de elementos as substâncias que não podem ser divididas em mais do que 
duas substâncias. Os nutrientes são elementos necessários para o desenvolvimento do vegetal e da cultu-
ra. Existem mais de 50 elementos componentes do vegetal, mas, dentre eles, atualmente 16 são considerados 
elementos essenciais e que não podem faltar no desenvolvimento das plantas. Pode-se pensar que isso 
poderá aumentar no futuro. Os elementos essenciais absorvidos pelas culturas, constituídos de macro e 
microelementos, estão apresentados no Quadro 10, com as formulações e quantidades necessárias. 
Carbonizando a planta, 10% da matéria seca é constituída de cinza. Os principais componentes 
da cinza são: C, O, H, N, K, Ca, Mg, P, S, além disso contem: Fe, Mn, Zn, Cu, Mo, Co, B, Si. Estes são os 
nutrientes necessários para o desenvolvimento das plantas, por isso são chamados de elementos essenci-
ais. Atualmente, os elementos essenciais das plantas superiores apresentados no quadro abaixo, reconhe-
cidos e aceitos são 9 macroelementos e 7 microelementos. Dentre eles, C, H e O vem do ar e da água, e os 
restantes 13 elementos são fornecidos pelo solo. 
Quadro 10- Comparação das quantidades necessárias e formulações dos elementos 
necessários para as plantas. 
Símbolo químico- Fórmula absorvida pela Peso seco % 
(elemento) planta 
M I. C (carbono) CO2 45 
a 2. O (oxigênio) O2 45 
c 3. H (hidrogênio) H20 6 
r 4. N (nitrogênio) NH/ , N03- 1,5 
o 5. K (potássio) K+ 1,0 
s 6. Ca (cálcio) Ca2+ 0,5 
7. Mg (magnésio) Mg2+ 0,2 
8. P (fósforo) H2P04- , H2PO/ 0,2 
9. S (enxofre) S042- 0,1 
M 10. Cl (Cloro) cr 0,01 
i 11. Fe (Ferro) Fe 2+, Fe 3+ 0,01 
c 12. Mn (Manganês) Mn 2+ 0.005 
r 13. B (Boro) H3B03 0,002 
o 14. Zn (Zinco) Zn2+ 0,002 
s 15. Cu (Cobre) Cu+, Cu2+ 0,0006 
16. Mo (Molibdênio) Mooi+ 0,00001 
Peso seco 
ppm 
450.000 
450.000 
60.000 
15.000 
10.000 
5.000 
2.000 
2.000 
1.000 
100 
100 
50 
20 
20 
6 
0,1 
Fonte: STAUT.Conhecimento Básico de Nutrição de Planta.In:TAKAHASHI,E.Sakumotsu 
no kissô-chishiki.1982,p.183. 
No Quadro 11, exemplificamos as quantidades de elementos absorvidos pela soja. 
-8-
Quadro 11- Soja (3,0 t de grãos + 5,0 t outras partes da planta = 8,0 t total) (Peso seco). 
Elemento kglha (%) Elem ento k a (%) Elemento a (%) 
C (Carbono) 3.500 43,7 N 320 B 100 
H (Hidrogênio) 450 5,6 P 30 Cl 10.000 
O (Oxigênio) 3.300 41,3 K 110 Cu 100 
Ca 80 Fe 1.700 
7.250 90,6(%) Mg 35 Mn 600 
S 25 Mo 10 
Outro s (*) 138 Zn 200 
Co 5 
738 9,2% 12.715 0,2% 
(*)Al (alumínio), Si (silício), Na (sódio) 
Fonte:MALAVOLTA,E. Elementos de Nutrição Mineral de Plantas. São Paulo, 1980,p.ll 
Com relação aos macronutrientes (N, P, K, Ca, Mg, S) para a soja, as quantidades necessárias por ha 
variam de 25~ 30 kg a algumas centenas de kg, além disso, necessitam de 5 g a 10 kg de micronutrientes por ha. 
Nos solos do Brasil, em geral, ocorrem deficiências de B, Cu, Fe, Mn. Mo e Zn. Sobretudo, na soja, os 
elementos necessários são o Co e Cl. O Co é nutriente indispensável para as bactérias noduladoras das 
leguminosas que fixam o N (nitrogênio) do ar. O CI é importante para as culturas, sendo a maior parte fornecida 
pelas chuvas e como componente de adubo, por isso não há necessidade de fornecer na adubação. 
2.2. Micronutrientes. 
A descoberta de que os micronutrientes compõem a maioria das enzimas das plantas provocou na 
biologia uma grande mudança, ampliando a grande função dos micronutrientes, com a compreensão da sua 
importância fisiológica. Ficou claro que os micronutrientes constituem-se no princípio básico da vida, 
porque a síntese, das substâncias em geral, é realizada com a ajuda das enzimas, e, na sua composição, estão 
os micronutrientes. São conhecidos, atualmente, cerca de 1.000 enzimas, dos quais aproximadamente 1/3 
são ativadas por micronutrientes. 
2.2.1. Função dos micronutrientes. 
No Quadro 12, estão apresentados as funções dos micronutrientes na planta. 
Quadro 12- Funções dos micronutrientes na planta. 
Elemento 
B 
Cl 
Co 
Cu 
Fe 
Função 
Formação da membrana celular 
Absorção e transporte de água e cálcio 
Translocação de carboidratos 
Síntese de lignina e celulose 
Síntese de ácido nucléico e proteína 
Associação com o cálcio; germinação do pólen e crescimento do tubo polínico; maior pegarnento 
da florada; aumenta a germinação; diminui a esterilidade masculina e chocharnento de grãos. 
Participa na fotossíntese e abertura dos estômatos 
Controle hormonal(ácido abcissico, etileno), fixação de N2 
Metabolismo de fenóis e lignificação 
Formação de grão de pólen e fertilização 
Nodulação e fixação de N2 
Aumenta a resistência a doenças 
Fotossíntese 
Síntese da clorofila 
Fixação de N2 
-9-
Mn 
Mo 
Zn 
Síntese de proteína 
Respiração 
Aumenta a resistência a doenças 
Biossíntese de clorofila, glicolipídeos 
Metabolismo do nitrogênio 
Síntese de proteína 
Controle hormonal (ácido indolacético) 
Formação de grão de pólen 
Metabolismo do ácido nucléico e proteína 
Absorção e transporte de Fe 
Enzima redutor de nitrato (N03) 
Fixação de N2 do ar 
Síntese de vitamina C 
Reduz o excesso de toxidez de metais pesados como Zn, Cu e Ni 
Transformação orgânica de P na planta 
Aumento no tamanho e multiplicação celular 
Fertilidade do grão de pólen 
Síntese do triptofano 
Formação de amido 
Síntese de proteína 
Res iração 
Fonte: MALAVOLTA,E. Fertilizantes e seu Impacto Ambiental.São Paulo,1994,p.6-7. 
2.2.2. Relação entre a deficiência de micronutriente e ocorrência de doença. 
A deficiência de alguns micronutrientes tem grande relação com doenças, esta relação é apresen-
tada no Quadro 13. 
Quadro 13- Relação entre deficiência de micronutriente e doenças. 
Elemento Cultura Doença Elemento Cultura Doença 
B Cevada Erysiphae graminis Mn Cana de açúcar Helminthosporium sacchari 
Trigo Puccinia triticum Aveia Bactéria 
P.glumarum Tomate TMV 
Girassol Erysiphae cicharacearum Batata Phytophtora infestans 
Beterraba Phoma betae Mo Alfafa Doenças em geral 
Crucíferas Plasmodiophora brassicae Zn Seringueira Oidium heveae 
Couve-flor Botrytis sp. Phytophtora sp. 
Tomate PVX Citrus Tylenchylus semipenetrans 
Ervilha Alternaria colhioides Batata Phytophtora infestans 
Cu Trigo P.triticina Arroz Pyricularia oryzae 
Mn Leguminosas Rhizoctonia solani Sorgo Sphacelotheca sorghi 
Fonte: MALAVOLTA,E.Avaliação do Estado Nutricional das Plantas. São Paulo, 1997,p.l35; 
MALAVOLTA,E.Apud. "Informações Agronômicas".POTAFOS.Piracicaba,no75,p.2,set.1996.A freqüência de aparecimento de deficiência de micronutrientes nos solos do Brasil é, em primeiro 
lugar B, Zn, seguidos na seguinte ordem: Cu, Mn, Fe, Mo. 
2.2.3. Fontes de micronutrientes. 
As principais fontes de micronutrientes estão apresentados no Quadro 14. 
- 10 -
Quadro 14- Principais fontes de micronutrientes. 
Elemento Nome do produto Composição química Teor aproximado Solubilidade 
(% ) em água(gIlitro) 
B Bórax -Na2B40 7 IOH2O 11 20 
Ácido bórico -H3B03 17 63 
Ulexita -NaCaBs0 9 8H2O 8-10 insolúvel 
Cl Cloreto de sódio -NaCl 59 -
Cloreto de potássio -KCl 52 -
Co Cloreto de cobalto -CoCI2 . 2H2O 35 -
Sulfato de cobalto -CoS04 . 7H2O 22 600 
Cu Sulfato de cobre -CUS04 . 5H2O 25 316 
Óxido de cobre -CuO 75 insolúvel 
Oxicloreto de cobre -3Cu(OH)2CuCI2 56-68 -
Fe Sulfato ferroso -FeS04 . 7H2O 19 156 
Férrico -Fe2(S04)3 . 4H2O 23 -
Mn Sulfato de manganes -MnSO.3H2O 26-28 742 
Óxido de manganes -MnO 41-68 insolúvel 
Mo Molibdato de sódio -Na2MoO . 2H20 2 39 562 
Molibdato de amonio -(N~)6Mo7024 . 4H2O 54 430 
Trióxido de molibdênio -Mo03 66 -
Na Cloreto de sódio -NaCl 39 -
Salitre do chile -NaN03 26 -
Salitre potássico -NaN03 . KN03 18 -
Zn Sulfato de zinco monohidratado-ZnS04 . H20 35 -
Sulfato de zinco heptahidratado-ZnS04 . 7H2O 23 965 
Óxido de zinco -ZnO 20-78 insolúvel 
Fonte: MALAVOLTA,E. Fertilizantes e seu Impacto Ambiental. São Paulo, 1994, 
p.1 O l-I 02;Id.Micronutrientes na Agricultura. São Paulo, 199 f,p.394 
2.2.4. Métodos de uso dos micronutrientes. 
Os principais métodos de uso dos micronutrientes estão descritos no Quadro 15. 
Quadro 15-Contro1e de deficiência de micronutrientes, características dos produtos químicos e 
dose de aplicação. 
Elemento Produto químico Fórmula quillÚca Teor de Pulverização foliar Uso no solo 
elemento 
% (%) (ÁguaUha) -
(kg/ha) 
B Bórax Na2B.Ú7 . lOH2O 11 0,3 500 10-15 
Ácido bórico H3B03 17 0,3 500 3 -lO 
Cu Sulfato de cobre CuSO •. 5H2O 25 0,2-0,4 1.000 10-20 
Fe Sulfato Ferroso Fe2(SO.)3 . 7H2O 20 2,0 500 50-60 
Mn Sulfato de manganês MnSO •. 4H2O 23-28 0,3 500 50 
(adicionar 0,3% de cal virgem) 
0.05 500 
Mo Molibdato de amôuio (NH.)6Mo,o, •. 2H2O 54 0,05 500 -
Molibdato de sódio Na2Mo.2H20 39 0,3 1.000 -
Zn Sulfato de zinco ZnSO •. 7H2O 22 (adicionar 0,3% de cal virgem) 20- 30 
Fonte:CAMARGO,P.N.Manual de Adubação Foliar.São Paulo, 1975. 
2.2.5. Pulverização foliar e tempo de absorção 
O tempo de absorção dos elementos aplicados em pulverização foliar está apresentado no quadro 16. 
- 11 -
Quadro 16-Velocidade de absorção de nutrientes aplicados nas folhas. 
Nutriente Tempo para absorção de 50% 
N 1/2 - 2 horas 
P 5 -10 dias 
K 10 - 24 horas 
Ca 10 - 94 horas 
Mg 10 - 24 horas 
S 5 -10 dias 
Cl 1 - 4 dias 
Fe 10 - 20 dias 
Mn 1 - 2 dias 
Mo 10 - 20 dias 
Zn 1 - 2 dias 
Fonte: MALAVOLTA,E. ABC da Adubação. São Paulo, 1988,p. 162 
2.2.6. Ação recíproca dos elementos. 
No solo oCa, Mg e K apresentam a propriedade de impedir mutuamente a absorção. A isto, 
chamamos de antagonismo. 
Aumento de Mg e K ~ inibe a absorção de Ca. 
Aumento K ~ inibe absorção de Mg. 
Aumento de Ca e Mg ~ inibe a absorção de K. 
Por este motivo, ocorre o desequilíbrio dos nutrientes no solo, tomando-se causa de vários 
distúrbios fisiológicos. 
Por outro lado, a ação de certos nutrientes irá aumentar o efeito de outros nutrientes. A isto, 
chamamos de sinergismo, como é mostrado no Gráfico 4. 
Gráfico 4. Ação mútua dos elementos. 
Mn 
p 
--- Antagonismo 
- - - - Sinergismo 
Mo 
Fonte: NAKASHIMA,Todomu.Tsuchi o shiru.1991,p.62 
- 12 -
3. Medidas para minimizar os obstáculos. 
3.1. Melhoramento da acidez. 
3.1.1. o pH do solo, os elementos e as culturas. 
O Gráfico 5 mostra a relação entre o nível de aproveitamento dos elementos e o pH do solo. 
Gráfico 5- Relação entre o pH e o aproveitamento dos elementos do solo. 
5,0 6,0 6,5 7,0 8,0 
Fonte: MALAVOLTA,E. Manual de Fertilidade do Solo.São Paulo, 1989,p.42 
Quadro 17-Grau de pH adequado para aproveitamento dos elementos. 
H ara o a roveitamento máximo Microelemento 
5,0 -7,0 B 
5,0 -7,0 CU 
W-~ ~ 
5,0 - 6,5 Mn 
~-~ ~ 
5,0 -7,0 Zn 
Fonte: Id.,ibid.,São Paulo, I 989,p.1 O I 
Quadro 18-Valor de pH ideal para cada cultura. 
5,0 - 6,0 
Batatinha 
Batata-doce 
Melancia 
Arroz 
6,0- 6,5 
Grama Bermuda 
Milho 
Algodão 
Sorgo 
Amendoim 
Soja 
Trigo 
Feijão 
Café 
Fonte:Id.,ibid.,São Paulo, 1989,p.43. 
Alfafa 
Trevo 
-13-
6,5 -7,0 
3.1.2 . . Causas da acidificação e seu controle. 
Tanto em clima tropical, subtropical como temperado, com precipitação alta, os cátions (K, Ca, 
Mg) têm acentuada lixiviação, e os solos ficam ácidos. Os solos das culturas são calcareadas, mas por que 
eles se tomam ácidos? 
As seguintes razões podem ser consideradas: 
1) Acidificação pela água de chuva. 
Através da água de chuva e de irrigação, o W (íon de hidrogênio) contido provoca a lixiviação 
dos cátions (K, Ca, Mg, Na) do solo em troca pela infiltração de H+ (íon de hidrogênio). 
2) Acidificação pela absorção de cátions pela cultura. 
As raízes das plantas absorvem como nutriente K (potássio), Ca (cálcio), Mg (magnésio), e 
devolve o H+ (íon de hidrogênio) ao solo. 
3) Acidificação pelo adubo. 
Pela utilização de fertilizantes ácidos, como: sulfato de amônio, uréia, nitratos, MAP (NH4H2P04) 
e DAP [(NH4)2H2P04]. 
4) Acidificação pela erosão. 
Pela erosão, ocorre perda da camada de solo arável, diminuindo os cátions deixando o subsolo 
que contém bastante H+. 
3.1.3. Motivo da calagem. 
Abaixo os objetivos da calagem e conseqüentemente o melhoramento do solo: 
1) correção da acidez do solo, neutralização do AI (alumínio) e insolubilizar o excesso de Mn e F e. 
2) fornecimento de Ca e Mg necessários à cultura. 
3) aumento do nível de aproveitamento dos elementos da adubação. 
4) neutralização da acidez pelos adubos ácidos. 
5) ativação dos microrganismos do solo: 
(a )mineralização da matéria orgânica do solo pelos microrganismos (decomposição). 
(b )plantas leguminosas (feijão, soja, amendoim e outros), através das bactérias noduladoras 
que fixam N (nitrogênio) do ar. 
Para a produção das culturas, são necessários os seis macroelementos N, P, K, Ca, Mg, S e, dentre 
eles o Ca é o terceiro, o Mg é o quarto em importância. ° calcário é o material mais barato para fornecimento 
de CaeMg. 
3.1.4.Correção de pH do solo e grau de aproveitamento do adubo. 
Conforme será apresentado no Quadro 19, o nível de absorção eficiente dos elementos do adubo 
pela cultura varia de acordo com o pH do solo. A relação entre o pH e o grau de absorção efetivo é 
apresentado a seguir: 
1 )em solo fortemente ácido (pH 4,5 ~5,0), são aproveitados apenas 20 ~50% de N, P, K do adubo. 
2)ao contrário, em solos corrigidos (pH 6,0 ~6,5) o aproveitamento dos elementos do adubo 
aplicado varia entre 50 - 100%. 
Estes fatos mostram a grande importância do manejo de adubação no melhoramento do solo 
através da cal agem. 
- 14-
Quadro 19-Variação do grau (%) de aproveitamento dos principais elementos nas culturas de 
acordo com o pH. 
Elemento pH 
4,5 5,0 5,5 6,0 6,5 7.0 
N 20 50 75 100 100 100 
P 30 32 40 50 100 100 
K 30 35 70 90 100 100 
S 40 80 100 100 100 100 
Ca 20 40 50 67 83 100 
Mg 20 40 50 70 80 100 
Média 27 46 64 79 93 100 
Fonte: GUILHERME,M.R. Calagem.1993,PA. 
3.1.5. A relação entre a acidez do solo e ativação dos microrganismos do solo. 
I)A matéria orgânica é uma fonte importante no fornecimento de N, Se B. Para estes elementos 
serem absorvidos pelas raízes das plantas é necessária a mineralização pelos microrganismos. 
2) A fixação do N do ar nas culturas de leguminosas depende das bactérias noduladoras que 
vivem no solo. Um exemplo apresentado mostra que são necessários 300 kg de N para 1,0 ha de soja. Se 
fornecer uréia, é preciso aplicar 667 kg. Com a correção de acidez do solo, ocorrerá a fixação de N do ar, 
dispensando a adubação nitrogenada. 
3.1.6. Capacidade de reação do calcário. 
De acordo com a resolução do Ministérioda Agricultura em 12/06/1986, foi determinado o poder 
de neutralização do calcário conforme o seu grau de moagem (Quadro 20). 
Através do Quadro 20, podemos entender o seguinte: 
(1) peneira 10 (2 mm) - não reage no solo. 
(2) o que passa na peneira 20 (0,84 mm) e 10 (2 mm) de 1.000 kg, 200 kg reagem no solo. 
(3) o que passa na peneira 50 (0,3 mm) e 20 (0,84 mm) de 1.000 kg- 600 kg reagem no solo. 
(4) o que passa na peneira 50 (0,3 mm) de 1.000 kg reagem 1.000 kg. 
Quadro 20-Capacidade de reação do calcário conforme o grau de moagem 
Grau de finura Ca acidade de reação (%) 
Peneira não passa na peneira 10 o 
Peneira 10 - 20 20 
Peneira 20 - 50 60 
Peneira passa na peneira 50 100 
- 15 -
3.1. 7. Poder relativo de neutralização total (PRNT) 
O poder relativo de neutralização total determina a reação do poder de neutralização do calcário. 
PN X RE 
PRNT = ------
100 
PN é igual a rocha calcária e é determinado de acordo com a composição química de CaO e MgO, 
no produto final moído. 
RE está diretamente ligado ao grau de moagem da rocha calcária. 
Em conclusão, o PRNT elevado indica o calcário que apresenta reação mais rápida. 
3.1.8. Equilíbrio da relação CalMg no solo. 
O calcário, conforme o teor (%) de Mg, pode ser classificado em calcário calcítico, magnesiano e 
dolomítico (Quadro 21). Há necessidade de escolher qual o tipo de calcário a ser aplicado dentre os três 
tipos. 
Quadro 21- Classificação do calcário, conforme o teor de MgO. 
Tipo de calcário 
Calcítico 
Magnesiano 
Dolomítico 
MgO(%) 
0-5 
6 -12 
> 12 
Segundo Küpper (1981) e Vitti (1984), para a maioria das culturas, a relação de absorção de Ca e 
Mg é de Ca 3~5:Mg 1. 
Entretanto, conforme as estatísticas de 81.000 amostras de solo analisadas no Estado de São 
Paulo, 50% dos solos apresentaram a relação abaixo de Ca 2: Mg 1. Este fato se deve a utilização de calcário 
dolomítico por longo tempo, sem levar em conta o equilíbrio, conforme mostra o Quadro 22. No Estado de 
São Paulo, os agricultores vieram aplicando o calcário dolomítico, desequilibrando a relação de Ca:Mg. 
Quadro 22- Análise de solo e o uso de calcário dolomítico no Estado de São Paulo. 
CaO*:MgO** Relação 
CaO : MgO 
24 17 1,4 1 
25 20 1,4 1 
30 20 1,5 1 
35 20 1,7 1 
37 13 2,8 1 
* CaO 560 Kg = 1 meq/Ca no solo 
** MgO 402 Kg = 1 meq/Mg no solo 
Fonte:GUILHERME,M.R. Calagem.1993, p. 7 
- 16 -
meq/solo Relação no solo 
Ca : Mg Ca Mg 
0,42 0,42 1,0 1 
0,50 0,50 1,0 1 
0,53 0,50 1,1 1 
0,62 0,50 1,2 1 
0,66 0,32 2,1 1 
Este desequilíbrio de Ca:Mg no solo provoca influência na produtividade da cultura. No Estado 
de São Paulo faz-se a correção da acidez das lavouras, mas ocorre que não está sendo alcançada a produti-
vidade objetivada. Para solucionar este problema, há necessidade de calcular a aplicação de calcário para 
manter a relação Ca/Mg em 3 a 5. 
3.1.9. Çálculo de calagem. 
Para se calcular e decidir a quantidade de calcário a ser aplicado, há necessidade da análise de 
solo. Esta deve ser representativa da área a ser corrigida. Antes do plantio das culturas anuais ou perenes, 
as amostras devem ser de O ~ 20 cm, que é a profundidade da maioria das culturas. 
N.e.( quantidade necessária de calcário) é calculada da seguinte forma: 
CTC (V2- V1) 
N.C.= x p 
PRNT 
N.C. = Quantidade de calcário necessário para 1 ha (t/ha). 
C. T.e. = Ca + Mg + (H + AI) (obtido pela análise). 
VI = Saturação de bases do solo (K + Ca + Mg) 
V2 = Saturação de bases a ser atingida através da calagem (varia de acordo com a cultura, em 
geral é de 60 ~80%). 
PRNT = Poder relativo de neutralização total. 
P = profundidade 
= 0,5 ... aplicação de calcário em camada de O - 10 cm 
= 1,0 ... aplicação de calcário em camada de 0- 20 cm 
= 1,5 ... aplicação de calcário em camada de O - 30 cm 
= 2,0 ... aplicação de calcário em camada de O -40 cm 
Exemplo de cálculo. 8,13 X (70 - 36) 
Resultado de análise: N.C. = ----------
C.T.C=8,13 
V1=36% 
V2=70% 
85 
xl = 3,25 
(1) caso de aplicação de calcário com PRNT=85%: N.e. = 3,25 t/ha 
(2) caso de aplicação de calcário com PRNT=45%: N.e. = 6,14 t/ha 
Na prática, o caso 1, em virtude da moagem fina (PRNT elevado), a quantidade de aplicação é 
menor. No caso 2, aumenta o custo pela quantidade, frete e armazenagem. 
3.1.10. Recomendação técnica de calagem 
Para a recomendação técnica de cal agem, há necessidade de considerar o PRNT do calcário, a 
relação Ca:Mg do solo e os teores de CaO e MgO do calcário. Para isso, divide-se o Ca meq/l 00 mL pelo Mg 
- 17 -
meq/lOO mL do solo para saber a relação Ca/Mg. Então, faz-se o cálculo da calagem através da fórmula 
estudada. 
Ao final, para atingir a relação Ca/Mg desejada, observando o teor de CaO e MgO do calcário, 
escolhe-se o tipo de calcário a ser utilizado. 
No Quadro 23, apresentamos um exemplo de recomendação. 
Quadro 23- Exemplo de cálculo de calagem. 
Cultura Relação Ca!Mg 
no solo 
1. soja 2,3:1 
2. soja 3,6:1 
*calcítico CaO 48% MgO 4% 
**dolomítico CaO 37% MgO 13% 
Quantidade de 
calcário(tlha) 
3,0 
1,5 
Fonte: GUILHERME,M.R. Calagem.1993, p. 9 
3.1.11. Importância da calagem 
Tipo de calcário 
calcítico* 
dolomítico** 
Com relação à calagem os seguintes itens devem ser considerados: 
Relação 
Ca!Mg do solo 
esperado 
3,5;1 
3,1:1 
1) para o bom aproveitamento do adubo aplicado, há necessidade de corrigir o pH do solo para 
6,0~6,5. 
2) para melhorar o efeito da calcário, há necessidade de umidade e tempo. 
a) Água: se o solo estiver seco, o calcário não age. 
b) Tempo: o efeito de calcário depende muito do seu grau de finura. 
Na prática, é importante observar os dois itens seguintes: 
1) calcário "grosso", com PRNT (45 ~ 70%), deve ser aplicado com 4 a 6 meses de antecedência. 
2) calcário "fino", com PRNT acima de 80%, pode ser aplicado 1 a 2 meses antes do plantio ou 
semeadura. 
Diz-se que o calcário não age no mesmo ano e funciona na safra seguinte, isto ocorre quando se 
utiliza calcário de qualidade inferior. 
Então, na prática, podemos considerar os seguintes: 
1) calcário grosso, com PRNT (45 ~ 70%), exige vários anos para produzir efeito, causando pre-
juízo ao lavrador. 
2) calcário fino, com PRNT acima de 80%, apresenta resultado no mesmo ano e obviamente na 
safra seguinte, relacionado ao manejo do solo, continua o efeito por 2 a 3 anos. 
Mas, pergunta-se sobre a necessidade de repetir a calagem, uma vez quue ocorre efeito 
residual do calcário; mas isso não é perene, e o solo se acidifica, por isso faz-se a análise do 
solo, procedendo a calagem conforme a necessidade. 
3) correção do subsolo: na maioria das culturas, o sistema radicular não se desenvolve bem em solo 
ácido. Isto se deve ao excesso de AI (alumínio) ou deficiência de Ca (cálcio). Geralmente, ocorrem 
ambos. Com relação à correção do solo na profundidade, conforme o relato de Quaggio e outros 
(1985), em solo de cerrado de latossolo vermelho, a calagem de 6 t/ha, após 30 meses, na profundi-
dade de 50 cm (Ca + Mg), aumentou 0,5 meq/lOO em3, e o pH (H20) passou de 4,6 para 5,0. 
- 18 -
3.1.12. Fatos na calagem 
Os pontos importantes são os seguintes: 
1) o calcário não é solúvel em água, é importante o contato das partículas do calcário com os 
grânulos do solo, por isso é preciso incorporar bem o calcário no solo. 
2) a Iixiviação do Ca no solo é bastante lenta. 
3) onde há AI e não há Ca, a raiz da planta não se desenvolve; sem crescimento da raiz das 
culturas não há aproveitamento do adubo e a produtividade é baixa. 
3.1.13. Aplicação antes do plantio 
O calcário deve ser espalhado por toda área. Para uma boa incorporação, aplica-se a metade antes 
da aração, e a metade antes da gradeação. 
A planta absorve o nutriente pela raiz, por isso considera-se a raiz como a boca da planta. Quanto 
mais profundo se corrige, aumenta a eficiência da calagem, desenvolve melhor o sistema radicular, aumen-
tando o aproveitamento da adubação, resiste mais à seca, alcançando maior produtividade.No Quadro 24, segundo o resultado obtido em pesquisa realizada em Campinas, Estado de São 
Paulo, fazendo a calagem no milho na profundidade de 30 cm, houve aumento de 26 sc/ha em relação à 
aplicação na profundidade de 12 cm. 
Quadro 24- Efeito da profundidade de incorporação de calcário(4 tlha) na produtividade de 
milho em solo-LE. 
Profundidade Produtividade Índice 
de incorporação sc/ha 
0-12 57 100 
0-15 66 116 
0-30 83 146 
1 saco = 60 kg LE: Latossolo Roxo Escuro 
Fonte:GUILHERME,M.R. Calagem.l993,p.ll. 
3.1.14. Calagem na cultura perene. 
Aumento 
sc/ha 
o 
9 
26 
No caso de cultura perene (café, citrus e outras) procede-se da seguinte forma: 
1) lavoura de café-aplicam-se 2/3 da quantidade sob a copa, atingindo até 30 - 40 cm além da 
ponta dos ramos, e 1/3 no meio da rua. É melhor fazer a aplicação antes da esparramação. 
F ora dessa época, pode-se realizar a calagem na capinação, misturando com a terra. Em lavou-
ra mecanizada, espalha-se por toda área, inclusive embaixo da copa, e faz-se uma leve gradagem 
sem prejudicar a raiz do cafeeiro. 
2) fruticultura e outras perenes-esparramação por toda área, inclusive sob a copa, e fazer uma 
grade ação leve ou na capinação, misturando com a terra. 
3) segundo corte de cana de açúcar-aplicação por toda área e fazer uma gradeação leve sobre a 
terra. 
4) pastagem-no início das chuvas 1 a 2 meses antes da adubação com fósforo ou nitrogênio, 
roçar o capim, espalhar o calcário fino por toda área em cobertura e fazer uma leve gradeação 
para incorporar com a terra. Para obter bom resultado em curto prazo, recomenda-se aplicar o 
calcário junto com o gesso agrícola. Esta mistura é de 70% de calcário e 30% de gesso 
agrícola. A quantidade de aplicação deve ser calculada conforme o PRNT. 
- 19 -
3.2. Gessagem 
3.2.1. Efeito da gessagem agrícola. 
Malavolta afirma os seguintes efeitos da gessagem agrícola: 
1) fonte de Ca e S; 
2) melhora o sistema radicular; 
3) correção do excesso de Na no solo; 
4) diminui a salinização do solo; 
5) Diminui a perda de N (nitrogênio) durante a fermentação. 
Abaixo os padrões do gesso agrícola: 
Umidade 
CaO 
S 
P20S 
Si02 (insolúvel) 
Fluoretos (F) 
R203(Ah03+ Fe03) 
17% 
26% 
15% 
0,75% 
1,26% 
0,63% 
0,37% 
A composição do gesso agrícola é de 96,5% de CaS0
4
.2Hp. Em outra análise, segundo MAY e 
SWEENE (1982), apresenta micronutrientes (B, Co, Cu, Fe, Mn, Ni, Na e Zn) e também elementos tóxicos 
como (AI, As, Cd e outros) em pequenas quantidades. 
Como fonte de S (enxofre), em solos com baixo teor para fornecer 30 a 40 kg/ha de S, é necessário 
aplicar 200 - 270 kg/ha de gesso agrícola. 
3.2.2. Lixiviação de K e Mg e o uso excessivo de gesso agrícola 
° uso excessivo de gesso agrícola provoca a lixiviação de Mg e K. A aplicação do gesso agrícola 
deve ser recomendada quando a saturação de Ca no subsolo a 20 ~40 em for menor do que 60%, e a 
saturação por AI for acima de 20%. Deve-se evitar a aplicação do gesso agrícola acima de 1,5 tlha. 
3.2.3. Método de aplicação do gesso agrícola. 
Malavolta e Klemann recomendam o uso do gesso agrícola, quando o cálcio no solo for baixo, e 
o AI no subsolo, elevado. Como, atualmente, não está estabelecido um padrão ideal de aplicação, surgere-
se o seguinte: 
AI 3+ 1 meq/l00 cm3 no solo - aplicar 2 t/ha de gesso agrícola. 
Para aumentar 1 meq/l00 cm3 de Ca no solo aplicar 2 tlha de gesso agrícola. 
A Comissão de Fertilidade do Solo do Estado de Minas Gerais-CFSEMG (1989) de acordo com a 
composição do solo, apresenta a quantidade de aplicação: 
Solo arenoso « de 15% de argila) = 0,5 tlha 
Solo areno-argiloso (15 ~ 35% de argila) = 1,0 tlha 
Solo argilo-arenoso (36 ~ 60% de argila) = 1,5 tlha 
Solo argiloso (> 60% de argila) = 2,0 tlha. 
- 20-
A quantidade de aplicação do gesso agrícola, para correção de acidez, é recomendada usar 25 -
30% da quantidade de calcário. Ambos se complementam mutuamente. Quando a cultura está instalada, 
aplica-se o calcário e o gesso sob a planta, na entrelinha e também na área total ou em linha. 
Periodicamente, deve-se fazer a análise de solo e examinar o seu efeito. Como o gesso agrícola é 
solúvel, pode-se espalhar sobre a terra, sem necessidade de incorporação. ° calcário deve ser aplicado com 
antecedência e depois incorporar no solo e, na ocasião do plantio, pode-se aplicar o gesso agrícola. 
3.2.4. Cálculo da gessagem 
A calagem, em geral, não corrige a acidez em profundidade, no caso de cafezais já formados, onde 
é inviável a incorporação do corretivo, a menos quando se procede à subsolagem. 
Ou se usam doses relativamente pesadas em solos leves, empregando-se calcário de boa qualida-
de, ou se esperam alguns anos. Isto se deve ao fato de que o ânion, acompanhante do cálcio, cot, dissipa-
se na atmosfera da superfície do solo e acima dela. Em conseqüência, o cafeeiro (ou outra cultura qualquer) 
tem o seu sistema radicular concentrado na superfície e, por isso, aproveita menos os nutrientes qUl 
perco Iam, absorvem menos água e sentem mais o efeito da estiagem. 
° gesso, gesso agrícola ou fosfogesso, é o CaS0
4
.2Hp (sulfato de cálcio), subproduto da 
indústria do ácido fosfórico. ° ânion acompanhante do Ca2+ é sot, que, ao contrário do cot, não se perde 
por volatilização, sendo capaz de descer no perfil, processo que é acompanhado pelo cálcio. Disso resulta 
que, em profundidade, aumenta a saturação em cálcio do complexo de troca, e o AI tóxico é "neutralizado". 
A gessagem usualmente não modifíca o pH e não é substituta da calagem. Ambas se complementam. 
A pesquisa agrícola ainda não encontrou uma fórmula, para calcular a dose de gesso a usar em 
função dos dados de análise do solo, que tenha tido comprovação prática. Enquanto isso, pode-
se, provisoriamente, usar a seguinte: 
NG (0,6 CTCe - meqCall 00 cm3) x 2,5 ou 
NG (meq AI/l 00 cm3 - 0,2 CTCe) x 2,5 onde 
NG necessidade de gesso. 
toneladas de gesso/ha 
CTCe capacidade de troca catiônica efetiva. 
meq (AI + K + Ca + Mg)/l 00 cm3 
Deve-se pensar no uso do gesso quando: 
a) a análise do solo na profundidade de 21- 40 em (e não a correspondente O - 20 em) revelar uma 
participação do Ca na CTCe menor que 60%; 
b ) A análise do solo a 21 - 40 cm (e não a O - 20 em) mostrar que a saturação em AI é maior que 
20%. 
Quando o solo, antes do plantio, necessitar de calcário e de gesso, primeiro se faz a calagem na 
forma recomendada e depois se distribui o gesso a lanço, sendo dispensada a sua incorporação. Pode-se 
também usar produtos comerciais que contêm uma mistura de calcário e gesso. Nos cafezais em formação ou 
produção, o gesso é aplicado a lanço e, nesse caso, pode-se usá-lo previamente misturado com o calcário 
(se o solo necessitar de cal agem) ou separadamente. 
~ 21 ~ 
4.Técnica de melhoramento de manejo e adubação. 
4.1. Cálculo de adubação para cultura de hortaliças. 
4.1.1. Sistema de absorção de nutrientes em hortaliças. 
O pesquisador japonês Koya Yamazaki, que esteve no Brasil em 1969, para proferir um curso 
sobre adubação de hortaliças na Estação Experimental da Cooperativa Agrícola Sul Brasil, em Atibaia, 
dividiu as culturas em dois grupos, de acordo com a época de absorção de nutrientes pelas hortaliças: 
a) as do tipo A, compreendendo as hortaliças de frutos - como tomate e berinjela -, e hortaliças 
de ciclo longo - como o repolho, couve-chinesa, leguminosas e morango - que absorvem 
nutrientes na fase posterior, dando ênfase na adubação de cobertura; 
b) as do tipo B, compreendendo as culturas que absorvem mais nutrientes na fase intermediária 
- como nabo, cenoura e batata -, dando ênfase na adubação básica. 
Gráfico 6. Dois tipos de hortaliças, conforme o sistema de absorção de nutrientes (kg/O, lha) 
40 
30 
QUANTIDADE 
DE ABSORÇÃO 20 
(Kg / 01 ha) 
10 
QUANTIDADE 
DE ABSORÇÃO 
(Kg / 01 ha) 
20 
10 
TIPO A 
(Proporção 
de Absorção) 
K,O (lO) 
CaO (8) 
N (6) 
P,o, (2) 
MgO (1,5) 
2 3 4 5 6 MESES 
'----:--l~ 
Legummosas I Hortaliçase folhosas : de frutos 
Repolho 
Couve Chinesa 
TIPOB 
Período de 
máxima 
"absorção~ 
(Proporção 
de Absorção) 
_---K,O (10) 
~--CaO(8) 
~---N(6) 
_~~~==~=~:E=~=~P205 (2) MgO (1,5) 
2 3 4 5 MESES 
'--_---', L--...J 
Hortaliças Hortaliças 
de raiz para produção 
Cebolinha de sementes 
Fonte: YAMAZAKI,Koya. Sosai no hibai. 1960,p.160. 
- 22-
A absorção de nutrientes nas hortaliças do tipo A, é crescente, principalmente nos últimos 30 dias 
do ciclo, quando chega a 60~80%. 
Nas hortaliças do tipo B, a absorção atinge a 60~80% a partir de 60 dias antes da colheita, 
principalmente nos 30 a 40 dias, quando atinge a fase de aumento no crescimento vegetativo. Depois disso, 
os nutrientes são acumulados nas raízes, tubérculos e bulbos. diminuindo a absorção pelas raízes. 
4.1.2. Padrões de produtividade de hortaliças e quantidade de absorção de elementos do adubo. 
Considerando os padrões de produção de hortaliças e as quantidades de nutrientes absorvidos 
em cada cultura, tomando-se como base geral KP igual a 10, serão absorvidos dentro dos seguintes limites 
N 6~8, CaO 8~ 15, pps 2~4, MgO 1~3. No Quadro 25, estão calculadas as quantidades de nutrientes neces-
sárias para cada tipo de hortaliças. Estes valores estimados, para cada cultura, ainda devem ser melhorados 
em alguns pontos, mas foram baseados na proporção de cada nutriente para fazer a adubação. E, também, 
esses números indicam as quantidades de nutrientes que deverão ser absorvidos, por isso é diferente da 
quantidade de adubo. Como o adubo é aplicado no solo, lixívia com a água de chuva e irrigação. O índice de 
lixiviação varia com o tipo de solo. Então considerando o tipo de solo, é melhor calcular a quantidade de 
adubo baseado no fator de multiplicação, conforme o Quadro 26. 
Quadro 25-Padrões de produtividade de hortaliças e quantidade de absorção de elementos do 
adubo. 
Fator Produção e espécie de hortaliças (t./0,1 ha) Quantidade absorção de elementos (kg./O,1 ha) 
N 
4 Pepino (8),Tomate (8), Pimentão (3) 24 
Melancia (8), Melão (5), Abóbora (8) 
3 Batata-doce (6), Rabano (6) 18 
2 Repolho (4),Couve-chinesa (6), Salsão (4) 12 
Nabo (6), Cenoura (2), batata (4) 
1,5 Morango (2), Feijão Fava (2) 9 
I Cebola (6), Espinafre Horenso (2), 6 
Alface (2) Ervilha (1), Feijão-vagem (I) 
Fonte:HASEGA WA,M. Sehi no Kiso to oyo .1982, p, 119. 
Quadro 26- Fator de multiplicação de adubação. 
Tipo de solo 
Arenoso 
Areno-argiloso 
N 
1,3 - 2,0 
1,2 - 1,8 
1,0 - 2,0 
0,5 - 2,0 
P20 S K 20 
8 40 
6 30 
4 20 
3 15 
2 10 
3,0 - 6,0 (solo cf alta adsorção de P) 
0,5 - 2,0 
Argiloso 1,0 - 1,5 3,0 - 6,0 (solo cf alta adsorção de P) 
Arenoso: teor de argila < 12,5%, Areno-argiloso: teor de argila 12,5 ~ 25,0% 
Argiloso: teor de argila 25,0 ~ 37,5%, Muito argiloso: teor de argila> 50,0% 
Fonte: MAEDA,Masao. Yasai no eiyo shindan to sehi. 1966, p.118. 
- 23 -
CaO 
32 
24 
16 
12 
8 
1,0 - 1,5 
0,5 - 1,0 
0,5 - 0,8 
MgO 
6 
5 
3 
2 
1,5 
4.1.3. Produção almejada e adubação de cada espécie de hortaliça. 
Com base no Quadro 25, com os padrões de produção de hortaliças, quantidade de absorção dos 
elementos na nutrição e no Quadro 26, com o fator de multiplicação de adubação para o cálculo de adubação 
de cada cultura, o Quadro 27 apresenta as diferentes espécies de hortaliças, produção almejada e quantida-
de de adubação. 
Quadro 27- Produção almejada e adubação para cada espécie de hortaliça. 
Produção almejada 
(UO,I ha) 
16 
12 
8 
6 
4 
2 
Espécie de hortaliças 
Tomate, Abóbora, Pepino, Melancia, Melão 
Batata-doce, Rábano 
Batata, Nabo, Couve-chinesa, Cenoura, Beterraba, Salsão. 
Feijão-fava, Morango 
Ervilha, Feijão-vagem, Espinafre horenso, Alface 
Fonte: HASEGAWA,M. Sehi no kiso to oyOU. 1982, p.118 
N 
54,0 
45,0 
36,0 
27,0 
18,0 
13,0 
9,0 
Adubação (kglO,1 ha) 
p,Os K,O 
18,0 48,0 
15,0 40,0 
12,0 32,0 
9,0 24,0 
6,0 16,0 
4,5 12,0 
3,0 8,0 
Em hortaliças folhosas, existe a idéia de que basta fornecer bastante nitrogênio para a sua produ-
ção, mas isto favorecerá o ataque de doenças, e, no repolho, o excesso de adubo irá desenvolver demasia-
damente as folhas externas e não haverá formação da cabeça. O excesso do adubo em tomate provoca 
desenvolvimento excessivo das folhas e caule, prejudicando a formação e maturação dos frutos, aumentan-
do a ocorrência de podridão apical, relacionado também com a deficiência de cálcio. Na berinjela também 
aumenta o desenvolvimento das folhas e caule, prejudicando a frutificação. Por isso, é necessário conhecer 
os fundamentos da adubação adequada. 
Quando o Dr.Koya Yamazaki esteve em 1969, ministrando curso para os agrônomos da colônia 
japonesa sobre os fundamentos da adubação de hortaliças, os autores tiveram a oportunidade de participar. 
Assim, baseado no método de adubação do Dr.Yamazaki, em solos do Brasil, com a repetição de fracassos 
e sucessos, elaboraram-se planos de adubação de hortaliças, aplicando na atividade de produção de tomate 
e outras hortaliças, e, assim, os autores adquiriram a convicção de que essa idéia pode ser aplicada no Brasil. 
O Quadro 28, apresenta a produtividade média de cada espécie hortícola cultivada no Brasil. 
- 24-
Quadro 28- Espécies hortícolas cultivadas no Brasil e sua produção média (tlha) 
Horaliças tJha Hortaliças tJha 
Abobrinha 10-20 Jiló 16-20 
Abóbora rasteira 10 -15 Melancia 30-50 
Alcachofra 4-6 Melão 20-40 
Alface 20-30 Moranga 10 - 15 
Alho 4- 8 Morango 30-35 
Aspargo 4-7 Nabo 6-8* 
Berinjela 30-60 Pepino 20-50 
Beterraba 15 - 30 Pimenta 4-16 
Brócolos 10-30 Pimentão 30-40 
Cebola 20-40 Quiabo 15 - 22 
Cenoura 25 - 45 Rabanete 15 - 30 
Couve-flor 8 - 16 Repolho 30-60 
Ervilha 1,5 - 2,0 Tomate estaqueado 50-100 
Feijão-vagem 20-25 Tomate rasteiro 30-50 
* A baixa produtividade do nabo é devida a variedade antiga, conforme justificou o 
responsável pelo quadro, Dr.Paulo Trani-IAC,em 26/03/1997. 
Fonte: RAIJ ,B.na et a!. Apud "Romendações de Adubação e Calagem para o Estado 
de São Paulo" Boletim Técnico lOO-IAC. 2.ed.Campinas: 1996, p.16l. 
4.2. Interpretação de análise de solo e plano de adubação em olericultura. 
Na produção de olerícolas, inicialmente procedemos a análise de solo para obter o maior número 
de informações possíveis, para que sejam úteis no melhoramento da adubação. Para a interpretação da 
análise de solo, podemos ordenar da seguinte forma: 
Ocorrem dois casos de deficiência no desenvolvimento: 
4.2.1. Caso de deficiência de elementos na adubação. 
Nos solos que apresentam: podridão apical no tomate por deficiência de cálcio; deficiência de 
magnésio; ocorrência de pragas e doenças por deficiência de micronutrientes, ocorrem condições de mau 
desenvolvimento das culturas por deficiência de elementos. 
4.2.2. Caso de excesso de elementos na adubação. 
Ao contrário do primeiro caso, o excesso de elementos na adubação de N, K, P, Ca, Mg, inc1uindo-
se a inibição de elemento devido ao antagonismo, ocorrem condições de mau desenvolvimento devido ao 
prejuízo por excesso de adubo. Isto ocorre por causa do vício de adubação adotado até então, por isso 
deve-se questionar o histórico de adubação dessa área. 
Examinando a análise de solo da cultura com desenvolvimento normal e sadio, não há falta ou 
excesso de cada elemento, com bom equilíbrio entre os elementos nutricionais (composição de cátions), 
pode-se pensar que há alto teor de matéria orgânico e micronutrientes. 
- 25 -
Assim, essas condições de desenvolvimento das olerícolas, basenado-se na análise de solo e 
nos dados bibliográficos, em relação a cada elemento, considerou-se o seguinte: 
I) análise de solo que apresenta deficiência; 
lI) análise de solo sadio; 
I1I) análise de solo que produz hortaliças sem adubo; 
IV) análise de solo que apresenta danos por excesso. 
No Quadro 29, estão resumidos a interpretação de análise e a recomendação baseada no caso da 
região do cinturão verde de São Paulo para cultura olerícola

Continue navegando