Buscar

TEMA 4 - CIRCUITOS DE SEGUNDA ORDEM

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 53 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 53 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 53 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
Estudo dos circuitos resistivos-indutivos-capacitivos (RLC) ou circuitos de segunda ordem.
Apresentação das estruturas conectadas em série ou em paralelo. Resposta dos circuitos quanto à
inserção de fontes (resposta ao degrau).
PROPÓSITO
Compreender os circuitos de segunda ordem e sua aplicação em diversos equipamentos e áreas,
como: comunicação, controle, filtros e sistema de ignição de automóveis.
PREPARAÇÃO
Antes de iniciar, tenha em mãos caneta, papel e uma calculadora para executar os cálculos e tomar
notas dos exercícios propostos.
OBJETIVOS
MÓDULO 1
Definir o circuito RLC em série e seu modelo matemático
MÓDULO 2
Definir o circuito RLC em paralelo, matematicamente descrito
CIRCUITOS ELÉTRICOS 1, CIRCUITOS DE
SEGUNDA ORDEM
MÓDULO 1
 Definir o circuito RLC em série e seu modelo matemático
CIRCUITOS ELÉTRICOS 1, CIRCUITOS RLC EM
SÉRIE
CONCEITOS INICIAIS
Antes de iniciar o estudo referente aos circuitos RLC, é necessário o conhecimento das
características dos seus componentes, sendo eles:
RESISTOR
Os resistores são componentes do circuito que se opõem à passagem de corrente elétrica, podendo
apresentar valores fixos ou variáveis. Os resistores em que o valor da resistência é variável são
chamados de potenciômetros. Pela primeira Lei de Ohm, a relação entre tensão e corrente em um
resistor possui característica linear, isto é, a tensão varia em proporção com a corrente ( ).
Associação:
Resistores em Série: 
Resistores em paralelo: 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
CAPACITOR
Os capacitores são elementos passivos caracterizados por armazenarem energia no campo elétrico.
A corrente que atravessa o capacitor é definida por:
sendo a corrente, a tensão sobre o capacitor e a capacitância.
Associação:
Capacitores em Série: 
v = Ri
Rtotal = R1 + ⋯ + Rn
= + … +1
Rtotal
1
R1
1
Rn
i = C dv
dt
i v C
= + ⋯ +1
Ctotal
1
C1
1
Cn
Capacitores em paralelo: 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
INDUTOR
Os indutores são elementos passivos caracterizados por armazenarem energia no campo magnético.
A tensão sobre esse elemento é modelada por:
sendo a corrente que atravessa o indutor, a tensão sobre ele e a indutância.
Associação:
Indutores em Série: 
Indutores em paralelo: 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
FUNÇÕES DE SINGULARIDADE
As funções de singularidade, também conhecidas por comutação, servem para exemplificar situações
e fenômenos que ocorrem nos circuitos elétricos.
As características dessas funções se dão pela descontinuidade que apresentam, ou, ainda,
apresentam derivadas descontínuas.
Dentre as funções de singularidade mais comuns, encontram-se:
Degrau unitário, foco deste estudo;
Impulso unitário;
Rampa unitária.
 ATENÇÃO
Ctotal = C1 + ⋯ + Cn
v = L di
dt
i v L
Ltotal = L1 + ⋯ + Ln
= + ⋯ +1
Ltotal
1
L
1
Ln
Nem sempre essa função é unitária, como será aplicado nos exemplos de estudo posteriores.
A modelagem matemática da função degrau unitário pode ser descrita assim:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual nota-se que a mudança ocorre em .
LEIS DE KIRCHHOFF
As Leis de Kirchhoff são utilizadas para analisar os circuitos elétricos de primeira e segunda ordem,
sendo subdivididas em duas:
Lei dos nós
Ou lei das correntes, comumente conhecida por LKC, define que a soma das correntes que entram
em um nó é igual à soma das correntes que saem do nó.
Lei das malhas
Ou lei das tensões, comumente conhecida por LKT, afirma que a soma algébrica das quedas de
tensão em um caminho fechado em um circuito elétrico é nula.
CIRCUITOS DE SEGUNDA ORDEM
Nos circuitos cuja composição construtiva contém mais de um elemento armazenador de energia,
como no exemplo proposto, o indutor e o capacitor são considerados circuitos de segunda ordem.
O modelo matemático que descreve esse circuito é caracterizado por conter uma equação diferencial
de segunda ordem. Apesar da distinção, a análise deste quando comparado aos de primeira ordem
se mantém.
Considerando um modelo descrito por equações diferenciais de ordem dois, é necessário que sejam
determinadas as condições iniciais e finais das variáveis envolvidas no processo, bem como suas
u(t)={  0,  t < 0
1,  t > 0
t = 0
derivadas. Para isso, é importante destacar os seguintes pontos referentes ao circuito:
1. Observar atentamente a polaridade da tensão nos elementos capacitivos e o sentido da corrente
que percorre os elementos indutivos.
2. A tensão no capacitor é contínua, bem como a corrente que percorre o indutor.
Dessa forma, descreve-se a continuidade:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que o instante representa o momento imediatamente anterior à comutação, e , o
momento imediatamente após, considerando determinado evento ocorrido em . Com isso,
pode-se entender que a continuidade representa a característica presente em cada um desses
elementos de resistir à alteração de brusca de corrente e tensão.
 
Imagem: Shutterstock.com
v(0+)= v(0−)
i(0+)= i(0−)
t = 0− t = 0+
t = 0
CURTO-CIRCUITO
Um indutor na condição estável em corrente contínua se comporta como um curto-circuito.
 
Imagem: Shutterstock.com
CIRCUITO ABERTO
O capacitor na condição estável em corrente contínua se comporta como um circuito aberto.
CIRCUITO RLC EM SÉRIE
Incialmente, definimos as seguintes nomenclaturas referentes aos componentes do circuito, sendo:
R: a resistência
C: a capacitância
L: a indutância
Para analisar um circuito de segunda ordem, pode-se considerar o comportamento sob duas
condições:
 
Imagem: Shutterstock.com
Utilizando as condições de carregamento dos elementos armazenadores de energia (indutor e
capacitor).
 
Imagem: Shutterstock.com
Utilizando a excitação vinda da fonte do circuito.
Sendo assim, explora-se as duas formas de avaliação de forma isolada, que fornecem respostas
distintas para o problema.
CIRCUITO RLC EM SÉRIE SEM FONTE
Primeiramente, avalia-se a resposta natural do circuito. Neste contexto, o circuito é excitado pela
energia armazenada em seus componentes, que, por sua vez, é representada pela tensão inicial no
capacitor e pela corrente inicial no indutor .
A tensão em um capacitor em um instante ‘ ’ qualquer é descrita pela seguinte equação 1:
(1)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual se refere à capacitância do componente.
Ao se tratar da energia inicial armazenada, considera-se o instante inicial em , assim:
(2)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Da mesma forma:
(3)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para melhor entendimento e exemplificação, considera-se o circuito da Figura 1, a seguir, onde é
possível observar a representação de um circuito RLC sem fonte:
V0 I0
t
v(t)= ∫ 0−∞ idt
1
C
C
t = 0
v(0)= ∫ 0−∞ idt = V0
1
C
i(0)= I0
 
Imagem: Isabela Oliveira Guimarães
 Figura 1: Circuito RLC sem fonte
Sendo “R” o resistor, “L” o indutor e “C” o capacitor.
Do mesmo modo como é feito em circuitos de primeira ordem, para avaliar os resultados promovidos
por estes, aplica-se a Lei de Kirchhoff para Tensões (LKT), que define:
“A SOMA DAS QUEDAS DE TENSÃO CALCULADAS EM
CADA ELEMENTO DO CIRCUITO RESULTA EM ZERO.”
Lei de Kirchhoff para Tensões (LKT)
Assim, aplicando a LKT, tem-se:
(4)
VR + VL + VC = 0
(5)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para eliminar a integral, aplica-se a derivada em todos os componentes:
(6)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em seguida, todos os termos são divididos por “ ” e, após isso, são reorganizados. Com isso, obtém-
se a equação de segunda ordem do problema, Equação 7, ao qual deseja-se solucionar:
(7) Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para tal equação, é necessário encontrar as soluções iniciais, sendo elas:
Valor inicial ‘ ’ e sua derivada, ou valores iniciais de “ ” e “ ”.
Sabe-se que pela Equação 3:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo a condição inicial na Equação 5 do circuito:
Ri + L + ∫ t−∞ i(t)dt = 0
di
dt
1
C
R + L + = 0di
dt
d2i
dt2
i
C
L
+ + = 0d
2i
dt2
R
L
di
dt
i
LC
i i v
i(0)= I0
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
(8)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
De posse das duas condições iniciais, a Equação 7 pode ser solucionada.
Como este é um circuito oscilante, a solução pode ser dada sob a forma exponencial, ou seja:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Utilizando a Transformada de Laplace para a transformação no domínio da frequência, tem-se:
 
 
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, após a reescrita no domínio da frequência:
Ri(0)+L + V0 = 0
di ( 0 )
dt
= − (RI0 + V0)
di ( 0 )
dt
1
L
i = Aest
= s²d
2i
dt2
= sdi
dt
i = 1
s²+ s + = 0R
L
1
LC
(9)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Solucionando a Equação 9:
(10)
(11)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Por simplificação, pode-se reescrever como segue:
(12)
(13)
(14)
s1 = − + √( )
2
−R2L
R
2L
1
LC
s2 = − − √( )
2
−R2L
R
2L
1
LC
α = R2L
ω0 =
1
√LC
s1 = −α + √α2 − ω0²
(15)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
As raízes e são as frequências naturais do sistema, representada em nepers por segundo
(Np/s), enquanto é a frequência de ressonância ou frequência não amortecida, dada em radianos
por segundo (rad/s). Por fim, representa o fator de amortecimento (ou fator de carga). Com isso, a
equação que descreve o circuito pode ser reescrita, como mostra a Equação 16:
(16)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 DICA
Pode-se substituir na equação do circuito e a mesma solução é obtida;
A existência de e indica que há duas possíveis soluções para o circuito, sendo a resposta
do circuito dada pela combinação linear delas:
 
 
 
 
Os valores de A são definidos partindo dos valores iniciais e de suas derivadas;
Os fatores fundamentais que descrevem o comportamento do circuito RLC são e ;
Se o circuito não possui resistor, , ;
s2 = −α − √α2 − ω0²
s1 s2
ω0
α
s2 + 2αs + ω20
i = Aest
s1 s2
i1 = A1e
s1t
i2 = A2es2t
i(t) = A1es1t + A2es2t
α ω0
R = 0 α = 0
Transformada de Laplace: A transformada de Laplace gera uma função no domínio da
frequência, , a partir de uma função escrita no domínio do tempo, . É uma ferramenta útil para
a solução de equações diferenciais como as descritas neste tema.
ANÁLISE DAS SOLUÇÕES
Em um circuito ressonante, existem três tipos de solução, que podem ser analisadas de acordo com o
perfil do amortecimento ( ) calculado. Por amortecimento, entende-se a perda gradual da energia
armazenada nos componentes. Esse efeito ocorre devido à presença do resistor, por onde há
dissipação da energia. Com isso, tem-se os seguintes casos:
AMORTECIMENTO SUPERCRÍTICO OU
SUPERAMORTECIDO
 ou seja, ;
O resultado contém duas raízes reais, negativas e distintas. Logo, a resposta natural do circuito sem
excitação é dada pela equação a seguir:
AMORTECIMENTO CRÍTICO
 ou seja, ;
Neste caso, as raízes são iguais e a resposta natural do circuito é representada desta forma:
s t
α
α > ω0 Δ  > 0
i(t) = A1es1t + A2es2t
α = ω0 Δ = 0
i(t)= (A1 + A2)te
αt
 
Imagem: Isabela Oliveira Guimarães
 Figura 2: Amortecimento Crítico
A figura mostra um esboço da resposta referente ao amortecimento crítico. Note que, com o passar
do tempo (eixo x), a corrente tende ao decaimento.
SUBAMORTECIDO
 ou seja, ;
As raízes são imaginárias (raízes complexas), podendo ser representadas da seguinte forma:
 
 
Na qual a frequência de amortecimento das oscilações, , é dada por:
Cada um dos casos leva a uma análise distinta das raízes do problema quanto à resposta (solução),
como será apresentado a seguir.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
RESPOSTA AO DEGRAU
α < ω0 Δ < 0
s1 = −α + √α2 − ω20 = −α + jωd
s2 = −α − √α2 − ω20 = −α − jωd
ωd
ωd = √ω20 − α2
O conceito de análise ao degrau trata-se da avaliação de uma mudança abrupta no estado do
sistema.
 EXEMPLO
Uma mudança com essa característica pode ocorrer em caso de fechamento de chaves em que o
sistema transitará de um estado para o outro.
Essa análise tem como intuito a verificação do comportamento do circuito sob condições transitórias.
Assim, este tema aborda a resposta ao degrau do ponto de vista da aplicação de uma fonte CC em
determinado período “ ” da análise, como pode ser visto na representação descrita a seguir:
 
Imagem: Isabela Oliveira Guimarães
 Figura 3: Circuito RLC com excitação
Como já mencionado, para avaliar o circuito, é necessário aplicar a LKT:
(17)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
À diferença do circuito sem excitação por fonte, observa-se agora que a variável referente à corrente
pode ser calculada pela equação 18. Com isso, obtém-se a equação do circuito descrita a seguir:
t
VR + VL + VC = V
(18)
(19)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A solução da Equação 19 possui agora duas componentes:
Componente transiente
É a parcela que se extingue com o tempo, sendo a mesma apresentada para um circuito sem fonte,
isto é, à medida que o tempo passa, há decaimento da energia armazenada.

Componente estável
Se trata do valor final, ou seja, considerando e analisando o circuito do exemplo, à medida
que , o capacitor é carregado e a tensão sobre ele passa a ser .
Como a resposta possui duas componentes, para obter a resposta completa ao degrau, basta somar
a componente estável à resposta já encontrada para o circuito sem fonte.
1º EXEMPLO COMENTADO
Para melhor compreensão do conteúdo, considere o circuito a seguir, onde serão pontuados os
passos essenciais para calcular as variáveis necessárias para a análise. Aqui, deseja-se encontrar a
tensão sobre o capacitor.
i = C dv
dt
+ + =d
2v
dt²
R
L
dv
dt
v
LC
V
L
t → ∞
t > 0 V
v
 
Imagem: Isabela Oliveira Guimarães
 Figura 4a: Circuito RLC com excitação
PASSO 1:
 DICA
Para solucionar este problema, é necessário avaliar inicialmente a condição do circuito em que a
chave se encontra fechada, .
Nesta situação, o indutor comporta-se como um curto-circuito, e o capacitor como um circuito aberto,
devido à alimentação, cc. O circuito pode ser redesenhado da seguinte forma:
 
Imagem: Isabela Oliveira Guimarães
 Figura 4b: Circuito RLC com excitação, redesenhado
t < 0
A corrente inicial que passa no indutor é calculada aplicando a Lei de Ohm:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A tensão no capacitor é a mesma que está sob o resistor de , segundo a lei dos nós:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
PASSO 2:
Avaliando o instante em que a chave é aberta, o resistor deixa de compor o circuito, restando o
RLC série. Determina-se:
 
 
 
 
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 o sistema é superamortecido.
i(0)= = 4A205
1Ω
v(0)= 1 × 4 = 4V
1Ω
α = = = 2R2L
4
2×1
ω0 = = = 1,83
1
√LC
1
√1×0,3
s1 = −α + √α2 − ω20 = −1,18
s2 = −α − √α2 − ω20 = −2,83
α = ω0
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Sendo a resposta estável, ou seja, o valor final da tensão no capacitor.
 Atenção! Para visualização completada equação utilize a rolagem horizontal
Fazendo , ou seja, usando as condições iniciais:
 
 
 
 
 
 
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Fazendo :
 
 
 
 
v(t)= vss +(A1es1t + A2es2t)
vss
v(t)= 20 +(A1e−1,18t + A2e−2,83t)
t = 0
v(0)= 20 +(A1 + A2)= 4
(A1 + A2)= −16
i(0)= C = 4A
dv ( 0 )
dt
= = 13.33
dv ( 0 )
dt
4A
C
= −1.18A1e−1.18t − 2.83A2e−2.83t = 13,33
dv
dt
t = 0
−1.18A1 − 2.83A2 = 13.33
(A1 + A2)= −16
 
 
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Considerando agora o mesmo circuito com os seguintes dados, determine as condições
iniciais:
 
 
 
 
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A corrente inicial que passa no indutor é calculada aplicando a Lei de Ohm:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A tensão no capacitor é a mesma que está sob o resistor de , segundo a lei dos nós:
A1 = −19.36
A2 = 3.36
v(t)= 20 +(−19.36e−1.18t + 3.36e−2.83t)V
R1 = 4Ω
R2 = 2Ω
L = 0,25H
C = 0,1
i(0−)= = 2A126
2Ω
v(0−)= 2 × 2 = 4V
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Pela regra da continuidade, a corrente no indutor não muda abruptamente, assim como a tensão no
capacitor:
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
PASSO 3:
Avaliando o instante em que a chave é aberta, o resistor deixa de compor o circuito, restando o
RLC série. A corrente que passa pelo indutor é dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Sabe-se que:
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O que pode ser feito para o indutor.
Assim, aplicando a LKT no circuito RLC, tem-se:
i(0+)= = 2A126
v(0+)= 2 × 2 = 4V
2Ω
i(0+)= = 2A126
ic = Cdvdt
= = = 20V/sicC
dv
dt
2
0,1
 
 
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2º EXEMPLO COMENTADO
Para esse circuito, pretende-se analisar o comportamento teórico ocorrido ao transitar com a chave
da posição aberta para a posição fechada. Considerando, neste caso, que há um resistor de baixo
valor.
 
Imagem: Isabela Oliveira Guimarães
Ao avaliar o circuito, é possível verificar os seguintes pontos quanto ao seu comportamento:
Para a chave aberta:
Considerando um resistor de valor baixo e como mostrado no circuito acima, o valor inicial do
capacitor é igual a ;
−12 + 4i(0+)+ vl(0+)+v(0+)= 0
−12 − 8 − 4 = vl(0+)
= = = 0 A/s
di ( 0+ )
dt
dv ( 0+ )
dt
0
0,25
V0
A chave desse circuito é caracterizada para fechar em , ou seja, inicialmente, a chave está
aberta (para todo ), havendo uma tensão no capacitor, conforme descrito;
A chave estando em condições abertas, não há corrente circulando no indutor, de modo que a
corrente inicial do circuito é nula.

Para a chave fechada:
O fechamento da chave produz o que chamamos de resposta natural do circuito;
O indutor inicialmente tem corrente e tensão iguais a zero. O mesmo ocorre com o resistor, o
fechamento da chave permite circulação da carga armazenada no capacitor;
A carga armazenada produz uma corrente no circuito, de forma que passa a haver queda de tensão e
no resistor, que, por sua vez, é baixa, dado seu valor predefinido. O indutor, que agora passa a ser
circulado por uma corrente, armazena energia;
A tensão no capacitor decai até zero;
O capacitor e o indutor passam a trocar energia armazenada.
3º EXEMPLO COMENTADO
Considerando um circuito RLC série com , e , calcule as raízes
características do circuito.
A resposta natural é com amortecimento supercrítico, com subamortecimento ou com amortecimento
crítico?
Primeiro, aplicam-se as seguintes equações:
 
 
t = 0
t < 0
R = 40Ω L = 4H C = 1F
α = = = 5R2L
40
2x4
ω0 = = = 0,5
1
√LC
1
√4
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Pode-se observar que e se conclui que o sistema é superamortecido, o que resulta em
duas raízes reais distintas;
Calculando as raízes, tem-se o seguinte resultado:
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
VERIFICANDO O APRENDIZADO
1. (SERCOMTEL-PR ‒ 2015) UM CIRCUITO RLC (TAMBÉM CONHECIDO COMO
CIRCUITO RESSONANTE OU CIRCUITO ACEITADOR) É UM CIRCUITO
ELÉTRICO CONSISTINDO EM UM RESISTOR (R), UM INDUTOR (L) E UM
CAPACITOR (C), CONECTADOS EM SÉRIE OU EM PARALELO. O CIRCUITO
RLC É CHAMADO DE CIRCUITO DE SEGUNDA ORDEM, VISTO QUE
QUALQUER TENSÃO OU CORRENTE PODEM SER DESCRITAS POR UMA
EQUAÇÃO DIFERENCIAL DE SEGUNDA ORDEM. EXISTEM DOIS
PARÂMETROS FUNDAMENTAIS QUE DESCREVEM O COMPORTAMENTO DOS
CIRCUITOS RLC. ASSINALE A ALTERNATIVA QUE MOSTRA QUAIS SÃO
ESSES DOIS PARÂMETROS:
A) Frequência de ressonância e Fator de carga
B) Largura de banda e Qualidade Q.
C) Frequência de ressonância e Ressonância com carga.
α > ω0
s1 = −α + √α2 − ω20 = −0,025
s2 = −α − √α2 − ω20 = −9,97
D) Frequência de ressonância e Qualidade Q.
E) Qualidade e Fator de carga.
2. CONSIDERANDO O CIRCUITO ABAIXO, DETERMINE E , A
CHAVE É ABERTA EM .
A) 2A e 12V
B) 2A e -12V
C) 3A e 12V
D) -3A e 12V
E) 3A e -12V
GABARITO
1. (Sercomtel-PR ‒ 2015) Um circuito RLC (também conhecido como circuito ressonante ou
circuito aceitador) é um circuito elétrico consistindo em um resistor (R), um indutor (L) e um
capacitor (C), conectados em série ou em paralelo. O circuito RLC é chamado de circuito de
segunda ordem, visto que qualquer tensão ou corrente podem ser descritas por uma equação
diferencial de segunda ordem. Existem dois parâmetros fundamentais que descrevem o
comportamento dos circuitos RLC. Assinale a alternativa que mostra quais são esses dois
parâmetros:
A alternativa "A " está correta.
i(0+) v(0+)
t = 0
 
Os fatores fundamentas que descrevem o comportamento do circuito RLC são e . Em que: 
 e , sendo a frequência de ressonância ou frequência não amortecida, que é
dada em radianos por segundo (rad/s), enquanto α representa o fator de amortecimento (ou fator de
carga).
2. Considerando o circuito abaixo, determine e , a chave é aberta em .
A alternativa "C " está correta.
 
Em , o indutor comporta como curto-circuito e o capacitor como um circuito aberto, de modo que
a corrente circula apenas em .
 
Como por definição:
 
MÓDULO 2
 Definir o circuito RLC em paralelo, matematicamente descrito
α ω0
α = R
2L
ω0 =
1
√LC
ω0
i(0+) v(0+) t = 0
t < 0
4Ω
i(0−)= = 3A12
4
v(0−)= 12V
i(0−)= i(0+)= 3A
v(0−)= v(0+)= 12V
CIRCUITOS ELÉTRICOS 1, CIRCUITOS RLC EM
PARALELO
CIRCUITO RLC EM PARALELO SEM FONTE
Assim como no Módulo 1, a análise do circuito RLC paralelo é avaliada sob duas perspectivas,
sendo a primeira sem fonte, fazendo uso da excitação dos próprios elementos armazenadores de
energia, capacitor e indutor, e, em seguida, a análise do circuito sob excitação, ou seja, a resposta
ao degrau.
Para ilustrar o circuito paralelo e proporcionar melhor entendimento dele, considera-se a figura a
seguir:
 
Imagem: Isabela Oliveira Guimarães
 Figura 5: Circuito RLC Paralelo sem excitação
Neste caso, é desejável saber a corrente que percorre o indutor e a tensão sobre o capacitor,
definindo assim que as condições iniciais destas são dadas pelas seguintes equações:
(20)
(21)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 DICA
Para avaliar o circuito em paralelo, aplica-se a Lei de Kirchhoff para as correntes, que implica que a
soma das correntes que entram em um nó é igual àquelas que saem do nó.
i(0)= I0 =
1
L
di
dt
v(0)= V0
Assim definido, o circuito pode ser modelado pela equação a seguir:
(22)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Tomando a Equação 22, aplica-se a derivada para extrair a integral e dividem-se todos os membros
por . Após isso, aplica-se as regras de transformação do domínio do tempo para frequência( ),
reescrevendo, então, a equação:
(23)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A solução da Equação 23 resulta nas raízes abaixo, dadas por e , em que:
(24)
(25)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Sendo:
+ ∫ t−∞ v(t)dt + C = 0
v
R
1
L
dv
dt
C s
s2 +   s + = 01
RC
1
LC
s1 s2
s1,2 = −   ±√( )
2
−  12RC
1
2RC
1
LC
s1,2 = −α  ± √α2 − ω20
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, como no sistema série tem-se três respostas diante da avaliação dos valores de e , são
elas:
AMORTECIMENTO SUPERCRÍTICO OU
SUPERAMORTECIDO, 
Contém duas raízes reais distintas.
AMORTECIMENTO CRÍTICO
Contém duas raízes iguais.
SUBAMORTECIDO
Contém duas raízes complexas.
 
 
 
 
 
α = 12RC
ω0 =
1
√LC
α ω0
α > ω0
v(t)= A1es1t + A2es2t
v(t)= (A1 + A2t)e
−αt
s1 = −α + √α2 − ω20 = −α + jωd
s2 = −α − √α2 − ω20 = −α − jωd
ωd = √ω20 − α2
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A determinação das constantes e são obtidas das condições iniciais, fazendo o tempo ser
igual a zero.
RESPOSTA AO DEGRAU
Para analisar a resposta ao degrau, considere o circuito abaixo, onde aplica-se a LKC para
determinação da corrente gerada pela aplicação da fonte de contínua inserida:
 
Imagem: Isabela Oliveira Guimarães
 Figura 6: Circuito RLC Paralelo com excitação
Avaliando o instante de tempo , em que a chave do circuito é fechada, a modelagem
matemática que o descreve é dada pela equação a seguir:
(26)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em um circuito em paralelo, sabe-se que as tensões são iguais para um mesmo nó e podem ser
descritas pela equação de tensão do indutor:
v(t)= e−αt(A1coswdt + A2senwdt)
A1 A2
t > 0
+ i + C = Iv
R
dv
dv
(27)
(28)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A solução da equação é composta de duas parcelas:
Resposta transiente;
Resposta de estado estável.
Dito isso, basta somar a resposta de estado estável àquela já encontrada para o circuito sem a
presença da fonte.
RESPOSTA NATURAL
Calculada com as fontes do circuito desligadas.
RESPOSTA FORÇADA
Calculada com as fontes ligadas.
RESPOSTA TOTAL OU COMPLETA
É a resposta ao degrau, composta da resposta natural e da resposta forçada.
Um degrau pode ser descrito das seguintes formas, cada representação indica quando o degrau
atuará no sistema.
v = L di
dt
+ + =d
2i
dt2
1
RC
di
dt
i
LC
I
LC
O degrau será aplicado em todo ; nos valores inferiores, a fonte de tensão ou corrente é igual a
zero.

Define que o degrau será aplicado para todo , enquanto para valores superiores a , a
fonte será nula.
CIRCUITOS DE SEGUNDA ORDEM GERAIS
Os circuitos de segunda ordem não são somente compostos por RLC.
 ATENÇÃO
Existem diversas configurações, como somente indutores ou capacitores, desde que sejam
caracterizados por uma equação diferencial de ordem dois.
Os RLC, contudo, são de maior interesse, pois consistem em uma fonte de alimentação e um
conjunto que pode ser conhecido como ressonador (LC). As fontes de alimentação podem ser
equivalentes de Thévenin ou Norton, resultando em quatro possíveis combinações para estes:
Circuito RLC em série, com fonte Thévenin;
Circuito RLC em série, com fonte Norton;
Circuito RLC em paralelo, com fonte Thévenin;
Circuito RLC em paralelo, com fonte Norton.
u(t)
t > 0
u(−t)
t < 0 t > 0
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
Assim, para determinar a resposta de qualquer um dos circuitos citados, ou qualquer outro de ordem
dois, basta seguir as etapas abaixo:
1. Determinar as condições iniciais e o valor final.
2. Obter a resposta transiente sem a conexão das fontes. Para isso, é necessário aplicar a LKT e
LKC. Neste passo, define-se a equação característica, na qual é possível analisar o circuito quanto à
sua frequência, bem como determinar suas raízes.
3. Obter a resposta do estado estável, considerando o tempo infinito.
4. Fornecer a resposta completa por meio da soma das respostas transiente e de estado estável.
1º EXEMPLO COMENTADO
Para melhor compreensão do conteúdo, considere o circuito a seguir, onde serão pontuados os
passos essenciais para calcular as variáveis necessárias para a análise. Aqui, iremos encontrar as
variáveis básicas para caracterizar o sistema.
 
Imagem: Isabela Oliveira Guimarães
 Figura 7: Circuito RLC Paralelo com excitação
PASSO 1
Chave aberta, , pode-se observar dois circuitos, um com a fonte de corrente e outro com a fonte
de tensão. Assim, a corrente que passa pelo indutor é dada por:
Analisando a fonte de tensão, quando e 0 para . Assim, o capacitor
opera como circuito aberto com a tensão do resistor sobre ele.
t < 0
i(0)= 6A
30u(−t)  =  30V t < 0 t > 0
v(0)= (30)= 15V20
20+20
PASSO 2
Ao fechar a chave, , observa-se o circuito RLC em paralelo com uma fonte de corrente;
Os dois resistores podem ser associados em paralelo;
Assim, define-se:
 
 
Como é , a resposta é superamortecida. Assim, têm-se duas raízes reais negativas, bastando
aplicar na equação a seguir:
2º EXEMPLO COMENTADO
Considerando o circuito abaixo, toma-se que os valores dos componentes são os seguintes:
Tensão inicial no capacitor, ;
Corrente inicial no indutor, ;
;
.
Para os valores de resistência: , e , deseja-se saber o valor da
tensão quanto .
t > 0
α = = = 8.331
2RC
1
2×10×6×10−3
ω0 = = 2.89
1
√LC
α > ω0
s1,2 = −α  ± √α2 − ω20
v(0) = 5V
i(0) = 0
L = 1H
C = 10mF
R = 1, 923Ω R = 5Ω R = 6, 25Ω
v(t) t > 0
 
Imagem: Isabela Oliveira Guimarães
PARA :
Primeiro, calcula-se o valor do amortecimento dado pela equação a seguir:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em seguida, calcula-se:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Avaliando os dois parâmetros da equação característica, vemos que , o que indica uma
resposta cujo amortecimento é supercrítico. Assim, calcula-se as raízes da equação, descritas por:
R = 1, 923Ω
α = =   = 2612RC
1
2×1,93×10×10−3
ω0 = = = 10
1
√LC
1
√1×10×10−3
α = ω0
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A resposta referente é dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em seguida, faz-se necessário o cálculo dos coeficientes e , que são obtidos por meio das
condições iniciais do circuito. Para isso, aplicam-se essas condições, sendo elas:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
E ainda:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Aplicando a derivada na equação a seguir:
s1,2 = −α  ± √α2 − ω20 = −2, −50
v(t)= A1e
s1t + A2e
s2t
v(t)= A1e
−2t + A2e
−50t
A1 A2
v(0)= 5 = A1 + A2
= − = = −260
dv ( 0 )
dt
v ( 0 ) −Ri ( 0 )
RC
5+0
1,923×10×10−3
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Obtém-se o seguinte resultado:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Avaliando a condição inicial, em que , tem-se:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Considerando a equação já encontrada:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
É possível obter os valores dos coeficientes, como apresentados a seguir:
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo na equação, resulta na resposta natural do sistema:
v(t)= A1e−2t + A2e−50t
= −2A1e
−2t − 50A2e
−50tdv
dt
t = 0
−2A1 − 50A2 = −260
5 = A1 + A2
A1 = 0,2083
A2 = 5,208
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
CONSIDERANDO AGORA :Primeiro, calcula-se o valor do amortecimento dado pela seguinte equação:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Depois, calcula-se:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Que permanece o mesmo, uma vez que houve mudança apenas em .
Avaliando os dois parâmetros da equação característica, vemos que , o que indica uma
resposta cujo amortecimento é crítico, isto é, duas raízes iguais. Assim, calcula-se as raízes da
equação, descritas por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A resposta referente é dada por:
v(t)= 0.2083e−2t + 5,208e−50t
R = 5
α = =   = 1012RC
1
2×5×10×10−3
ω0 = = = 10
1
√LC
1
√1×10×10−3
R
α = ω0
s1 = s1 = −10
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em seguida, faz-se necessário o cálculo dos coeficientes e , que são obtidos por meio das
condições iniciais do circuito. Para isso, aplicam-se essas condições, sendo elas:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
E ainda:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Aplicando a derivada na equação a seguir:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Obtém-se o seguinte resultado:
v(t)= (A1 + A2)te
−αt
v(t)= (A1 + A2t)e
−10t
A1 A2
v(0)= 5 = A1
= − = = −100
dv ( 0 )
dt
v ( 0 ) −Ri ( 0 )
RC
5+0
5×10×10−3
v(t)= (A1 + A2t)e
−10t
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Avaliando a condição inicial, em que , tem-se:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Considerando a equação já encontrada:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
É possível obter os valores dos coeficientes, conforme apresentados a seguir:
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo na equação, resulta na resposta natural do sistema:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
= (−10A1 − 10A2 + A2)e
−10tdv
dt
t = 0
−10A1 + A2 = −100
5 = A1
A1 = 5
A2 = −50
v(t)= (5 − 50t)e−10t
PARA O ÚLTIMO CASO, SENDO :
Primeiro, calcula-se o valor do amortecimento dado pela equação seguinte:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em seguida, calcula-se:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Que permanece o mesmo, uma vez que houve mudança apenas em .
Avaliando os dois parâmetros da equação característica, vemos que , o que indica que uma
resposta é subamortecida, isto é, duas raízes complexas. Assim, o cálculo das raízes da equação é
descrito como:
 
 
 
 
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
R = 6, 25
α = = = 812RC
1
2×6,25×10×10−3
ω0 = = = 10
1
√LC
1
√1×10×10−3
R
α < ω0
s1 = −α  + √α2 − ω20 = −α + jωd
s2 = −α  − √α2 − ω20 = −α − jωd
ωd = √ω20 − α2
s1,2 = −8 ± j6
A resposta referente é dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Na qual:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em seguida, faz-se necessário o cálculo dos coeficientes e , que são obtidos por meio das
condições iniciais do circuito. Para isso, aplicam-se essas condições, sendo elas:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
E ainda:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Aplicando a derivada na equação a seguir:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Obtém-se o seguinte resultado:
v(t)= e−αt(A1coswdt + A2senwdt)
v(t)= e−8t(A1cos6t + A2sen6t)
A1 A2
v(0)= 5 = A1
= − = = −80
dv ( 0 )
dt
v ( 0 ) −Ri ( 0 )
RC
5+0
6,25×10×10−3
v(t)= e−8t(A1cos6t + A2sen6t)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Avaliando a condição inicial, em que , tem-se:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Considerando a equação já encontrada:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
É possível obter os valores dos coeficientes, conforme apresentados a seguir:
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo na equação, resulta na resposta natural do sistema:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
= (−8A1cos6t1 − 8A2sen6t − 6A1sen6t1 + 6A2cos6t)e
−8tdv
dt
t = 0
−8A1 + 6A2 = −80
5 = A1
A1 = 5
A2 = −6,667
vv(t)= e−8t(5cos6t − 6.667sen6t)
VERIFICANDO O APRENDIZADO
1. CONSIDERANDO O CIRCUITO DA FIGURA A1, DETERMINE E 
, OU SEJA, A TENSÃO NO INDUTOR E CAPACITOR DESSE CIRCUITO:
A) e 
B) e 
C) e 
D) e 
E) e 
2. PARA O CIRCUITO ABAIXO, DETERMINE E . CONSIDERE QUE 
 E .
vl(0+) vc(0+)
vl(0+)= 50V vc(0+)= 50V
vl(0+)= 60V vc(0+)= 50V
vl(0+)= 60V vc(0+)= 33.33V
vl(0+)= 33.33V vc(0+)= 33.33V
vl(0+)= 33.33V vc(0+)= 50V
v(t) i(t)
v(0) = 0V i(0) = 1A
 ATENÇÃO! PARA VISUALIZAR AS RESPOSTAS COMPLETAS, ARRASTE-
AS HORIZONTALMENTE.
A) 
B) 
C) 
D) 
E) 
GABARITO
1. Considerando o circuito da Figura A1, determine e , ou seja, a tensão no
indutor e capacitor desse circuito:
A alternativa "C " está correta.
I(t)= 4 + e−0,35t(−3 cos 1,36t − 0,77 sen 1.36t)
I(t)= −4 + e−0,35t(−3cos1 ,36 t − 0 ,77  sen1 .36 t)
I(t)= −4 + e−0,35t(−3cos1 ,36 t − 0 ,77  sen1 .36 t)
I(t)= 4 + e−0,35t(−3cos1,36t + 0,77 sen1.36t)
I(t)= 4 + e−0,35t(3cos1,36t + 0,77 sen1,36t)
vl(0+) vc(0+)
 
Em , a fonte de corrente é nula, o indutor se comporta como curto-circuito e o capacitor, como
um circuito aberto, assim:
 
 
Em , aplicando a LKC, a corrente que entra no nó é igual à soma das correntes que saem do
nó:
 
 
 
 
Sabe-se que:
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Para o circuito abaixo, determine e . Considere que e .
 Atenção! Para visualizar as respostas completas, arraste-as horizontalmente.
A alternativa "A " está correta.
 
 
 
t < 0
i(0−)= i(0+)= = 1,67A50
30
v(0−)= v(0+)= 20*1,67 = 33,33V
t > 0
3 = 1,67 + i1
i1 = 1,33A
−vl(0+)+20x1,33 + vc(0+)= 0
vc(0+)= 33,33V
vl(0+)= 20x1,33 + 33,33 = 59,996~60V
v(t) i(t) v(0) = 0V i(0) = 1A
α = = 0,351
2RC
 
 
 
 
 
 
 
 
 
 
 
 
Como o circuito está em paralelo, as tensões são iguais.
Derivando a equação de :
 
 
 
 
 
 
 
CONCLUSÃO
CONSIDERAÇÕES FINAIS
ω0 = = √2
1
√LC
s1 = −α + jωd = −0,35 + j1,36
s2 = −α − jωd = −0,35 − j1,36
ωd = √ω20 − α2
I(t)= Iss + e−0,35t(A1cos1,36t + A2sen1,36t)
I(0)= 1 = 4 + A1
A1 = −3
v = = 0
Ldi ( 0 )
dt
I(t)
= 1.36e−0,35t(−A1sen1,36t + A2cos1,36t)+[−0,35e−0,35t*(A1cos1,36t + A2sen1,36t)]
dI ( t )
dt
= −0,35A1 + 1,36A2 = 0
dI ( 0 )
dt
−0,35x3 + 1,36A2 = 0
A2 = −0,77
I(t)= 4 + e−0,35t(−3cos1,36t − 0,77sen1,36t)
Este tema teve por objetivo a apresentação dos circuitos RLC em série e em paralelo, conhecidos
como circuitos de segunda ordem. Neste âmbito, foram apresentadas técnicas de solução para eles.
Assim, foram detalhados os aspectos básicos, bem como a modelagem matemática do circuito em
série. Depois, os mesmos tópicos se repetem, contudo, com uma abordagem descritiva, enfatizando
o circuito paralelo.
Dito isso, é possível correlacionar os tópicos, sendo necessário o bom entendimento de cada um
deles para melhor absorção do conteúdo seguinte.
AVALIAÇÃO DO TEMA:
REFERÊNCIAS
ALEXANDER, C. K; SADIKU, M. N. O. Fundamentos de circuitos elétricos. 5. ed. Porto Alegre:
Amgh, 2013.
BOYLESTAD, R. L. Introdução à análise de circuitos elétricos. 10. ed. São Paulo: Pearson, 2004.
JOHNSON, D. E. Fundamentos de análise de circuitos elétricos. 4. ed.Rio de Janeiro, LTC, 1994.
EXPLORE+
Para saber mais sobre os assuntos tratados neste tema, leia: 
 
Circuitos elétricos: corrente contínua e corrente alternada ‒ teoria e exercícios, de Otávio
Markus.
CONTEUDISTA
Isabela Oliveira Guimarães
 CURRÍCULO LATTES
javascript:void(0);

Continue navegando

Outros materiais