Buscar

Resistencia dos Materiais - uni2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 42 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

RESISTÊNCIA DOS MATERIAISRESISTÊNCIA DOS MATERIAIS
CARGA AXIAL, TORÇÃO ECARGA AXIAL, TORÇÃO E
FLEXÃOFLEXÃO
Autor: Me. Cristian Padilha Fontoura
Revisor : Luc iano Gald ino
IN IC IAR
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#section_1
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#section_1
introdução
Introdução
Nesta unidade apresentaremos conceitos de esforços, dentro de um contexto
prático. A Resistência dos Materiais está sempre preocupada em fornecer a base
para que engenheiros possam projetar com cautela os elementos, sistemas e
estruturas que estão sob efeitos de cargas, que podem ser de diversas
naturezas. Nesse sentido, a natureza de alguns esforços começa a ser tratada
como carregamentos axiais, torção e �exão, que são tópicos desta unidade. Com
o conteúdo abordado nesta unidade, você será capaz de atuar com autonomia,
correlacionando diretas com aplicações de engenharia e do dia a dia. Além disso,
esses conceitos servirão de base para estudos mais avançados dentro da
resistência dos materiais.
Caro aluno, existem vários exemplos de elementos carregados axialmente, como
membros de suporte, hastes de conexão em motores, aros em rodas de
bicicleta, colunas em prédios, elementos como molas, cabos e barras
prismáticas.
O grande problema de elementos carregados axialmente é a determinação de
sua deformação, como o alongamento, encurtamento e deslocamento causado
pelos carregamentos axiais.
Nesse sentido, suponha que um elemento carregado axialmente tem o efeito de
diminuir em seções mais afastadas das extremidades, conforme a Figura 2.1.
Carga AxialCarga Axial
Como podemos observar, as deformações se nivelam e tornam-se uniformes em
toda a seção média da barra. A tensão no interior da barra será distribuída
uniformemente por toda a área da seção transversal (afastado do ponto de
aplicação da carga externa). A seção a-a, próxima da extremidade e do
carregamento, possui �echas que indicam vetores de força de intensidade
média que, por sua vez, são distribuídas de forma não uniforme. A seção b-b,
mais afastada da extremidade que a seção a-a, mostra uma diminuição na
intensidade média das �echas e a discrepância na distribuição de intensidades é
menor do que em a-a. Já a seção c-c, mais afastada da extremidade do que  a
seção b-b, tem um per�l de distribuição de intensidades uniforme.
A distância mínima entre a extremidade e dita seção transversal é igual à maior
dimensão da seção transversal carregada, isso não é regra geral.
Princípio de Saint-Venant
Figura 2.1 - Barra submetida a carga axial
Fonte: Adaptada de Hibbeler (2010, p. 91).
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
O Princípio de Saint-Venant a�rma que:
• Efeitos localizados ou causados por cargas que agem no corpo são
dissipados em regiões, su�cientemente, afastadas do ponto de
aplicação;
• A tensão e a deformação produzidas em pontos de um corpo
su�cientemente distantes da região de aplicação de carga e de vínculos
serão iguais às tensões e deformações produzidas por qualquer
carregamento aplicado, que possua a mesma resultante estaticamente
equivalente e sejam aplicados ao corpo dentro da mesma região.
Molas Submetidas a Cargas Axiais
A mola submetida a carregamentos axiais é analisada observando os seguintes
princípios:
• É feita de um material elástico linear;
• O material resiste à tração e compressão;
• A constante de rigidez k , que é de�nida como a força necessária para
produzir uma unidade de alongamento;
• f é a �exibilidade (também chamada de compliância) de�nida como o
alongamento produzido por uma carga unitária.
Dessa forma, temos as seguintes equações, eq. 1.1 de força necessária aplicada
a uma mola para alongá-la a um valor , eq. 1.2 de uma deformação causada
por uma força P e eq. 1.3 que resulta na rigidez de uma mola.
 (eq. 1.1)   (eq. 1.2)     (eq. 1.3)
Cabos Sujeitos a Cargas Axiais
Cabos são utilizados para transmitir cargas de tração e não resistem à
δ
P   =  kδ δ  =  fP k  = 1
f
compressão. Além disso, eles têm pouca resistência à �exão. Um cabo é
composto de um grande número de �os que são entrelaçados, a �m de obter
con�gurações diferentes. A área transversal (ou efetiva) é menor que a área de
um círculo com o mesmo diâmetro que o cabo, portanto, o módulo de Young
também é menor do que o material do qual ele é feito.
Barras Prismáticas Sujeitas a Cargas Axiais
Por sua vez, barras prismáticas são elementos estruturais como eixos
longitudinais retilíneos com uma seção transversal que seja constante ao longo
de seu comprimento e resistem tanto à tração quanto à compressão. As seções
transversais possuem diversos tipos diferentes de geometrias, podendo ser ou
não vazadas, com seções circulares e retangulares em I.
Nas barras prismáticas, uma carga denominada P age no centroide da seção.
Logo, aplicando o conceito da tensão média ( ), temos que a força P age
sobre uma área A , conforme eq. 1.4. Como o material é homogêneo, podemos
aplicar o conceito da deformação média, conforme a eq. 1.5, em que é o
alongamento e é a deformação média. E, como o material é elástico linear,
aplicamos a lei de Hooke, que relaciona a tensão com a deformação e o módulo
de elasticidade, observe na �gura eq. 1.6.
(eq. 1.4)     (eq. 1.5)   (eq. 1.6)
A determinação da deformação elástica de uma barra carregada axialmente é
calculada utilizando o seguinte conceito:
Nesse sentido, existem  4 casos de barras prismáticos carregadas axialmente:
• Variações contínuas de cargas e dimensões;
• Seção transversal e força externas constantes;
σm dé
δ
εm dé
  =  σm dé
P
A
  =  εm dé
δ
L
= Eσm dé εm dé
δ =  
PL
AE
• Carregamento axial em ponto intermediário;
• Segmentos prismáticos.
Convenção de sinais: P e δ são positivos em casos de tração e alongamento, eles
são negativos apenas em casos de compressão e contração.
1.4.1 Procedimento de análise
O deslocamento relativo entre dois pontos, A e B, em um componente sujeito a
uma carga axial pode ser determinado com uso do princípio de Saint-Venant e a
Lei de Hooke, conforme a equação a seguir.
• Determinação da força axial interna: método das seções para
determinar a força interna P(x) em relação a uma extremidade e esboço
do diagrama de força normal.
• Determinar o deslocamento relativo : especi�car a força interna P(x)
e o módulo elástico, em cada segmento; atribuir o sinal para P(x)
conforme a convenção; calcular as deformações, da extremidade A em
relação à B e do ponto A em relação ao ponto �xo B.
Exemplo 1
Uma barra de aço feita de aço A-36 é composta por dois segmentos, AB e BD,
com áreas de seção transversal AB = 600 mm² e BD = 1200 mm². Nesse caso,
precisamos determinar o deslocamento vertical da extremidade A e o
deslocamento de B em relação a C.
δ =  
PL
AE
Este caso, se trata de segmentos prismáticos, com vários segmentos, carga axial
variável e áreas de seção transversal variáveis. O material é homogêneo, com E =
210 GPa.
As cargas internas são calculadas utilizando o método das seções e as equações
de equilíbrio.
Figura 2.2 - Barra submetida a cargas axiais
Fonte: Elaborada pelo autor.
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
1. Deslocamento vertical da extremidade A (deslocamento de A em
relação ao apoio �xo D).
 
2. Deslocamento da extremidade B em relação a C.
= +0,1042 mm
Figura 2.3 - Seções da barra
Fonte: Elaborada pelo autor.
= = = + +δA δA/D ∑
3
i=1 δi δ1 δ2 δ3
= = ( + + )δA ∑3 i=1 PiLiEAi 1E PABLABAAB PBCLBCABC PCDLCDACD
=   + 0, 6101 mmδA
=δB/C δ2
=δB/C
PBCLBCABC
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Deformações Elásticas, Inelásticas e
Térmicas
As Deformações Elásticas
Essas deformações são regidas pela Lei de Hooke, no regime elástico. Um
exemplo de deformação elástica é aquele que ocorre em uma mola, que quando
sujeita à uma força F, ela sofre deformação. Porém, quando a força F é
removida, a mola volta a sua posição inicial.
As Deformações Inelásticas ou Plásticas
São aquelas em que não há capacidade de recuperação ao estado geométrico
inicial. Suponha que um cilindro é sujeito a uma força compressiva axial F . O
cilindro sofre deformações que vão além da deformação na direção da força de
compressão. Nesses casos, a lei de Hooke não se aplica.
As Deformações Térmicas
Elas ocorrem quando uma mudança na temperatura provoca alterações nas
dimensões do material. O aumento de temperatura tende a gerar uma expansão
do material e uma diminuição tende a gerar uma contração no corpo.
Considerando um material homogêneo e isotrópico, podemos calcular a
deformação de um elemento com comprimento L por meio da fórmula a seguir.
Em que, α é o coe�ciente linear de expansão térmica, intrínseco ao material, ∆T
é a variação de temperatura do elemento e L é o comprimento inicial do
elemento.
reflita
= αΔTLδT
Re�ita
Por exemplo, se um eixo for submetido a um tratamento
térmico a altas temperaturas (> 1000 °C), ele sofrerá
deformações térmicas expansivas. Se um eixo precisa de um
dimensionamento especí�co e tem uma tolerância de
, que cuidados o projetista, o técnico e o executor
da tarefa devem ter? Pense no projeto como um todo, desde
seu desenho até as condições de resfriamento da peça, após ser
retirada do forno.
Fonte: Elaborado pelo autor.
praticarVamos Praticar
Há uma barra sob carga axial compressiva de P = - 150 kN e uma área transversal A =
700 mm². Considere que o módulo elástico do material é E = 210 GPa, e seu
comprimento inicial L=70 mm. Calcule, utilizando o princípio de Saint-Venant e a lei de
Hooke, a deformação que o corpo sofrerá. Assinale a alternativa correta.
a) +0,0902 mm.
b) -1,0421 mm.
c) -0,0714 mm.
d) -0,0695 mm.
±0, 02 mm
=δ
=δ
=δ
=δ
e) -0,0847 mm.=δ
A Torção é o efeito de rotação que o eixo longitudinal de uma peça sofre
quando ela é solicitada por momentos/torques.
Torque ( T ) é o momento de rotação de um determinado corpo em torno de seu
eixo longitudinal. O sentido do momento de torção é indicado pela regra da
mão direita .
TorçãoTorção
Figura 2.4 – Regra da mão direita mostrando sentido do Torque
Fonte: Adaptada de Udaix / 123RF.
A torção pura é o tipo de torção que ocorre em peças que apresentam seção
transversal idêntica ao longo de todo o seu eixo longitudinal, que são sujeitas ao
mesmo torque interno. Nesse material, abordaremos casos de torção pura.
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Considerando um elemento longo com seção transversal circular, como um eixo,
é importante o estudo do efeito do torque nesse tipo de componente, pois ele
tem aplicação em muitos mecanismos dentro da engenharia.
Figura 2.5 - Deformação de um eixo gerada por Torque
Fonte: Elaborada pelo autor.
saiba mais
Saiba mais
Caro aluno, o artigo a seguir mostra como a
torção é aplicada em estudo da aplicação
biomédica, comparando diversos tipos de
implantes odontológicos submetidos a torção
e subsequente avaliação de suas propriedades.
Acesso o artigo e saiba mais sobre o torque.
ACESSAR
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
http://revodonto.bvsalud.org/pdf/rfo/v19n1/a10v19n1.pdf
http://revodonto.bvsalud.org/pdf/rfo/v19n1/a10v19n1.pdf
Se aplicarmos um torque na extremidade de um eixo que esteja preso na sua
outra extremidade, como mostrado na �gura a seguir, obteremos um ângulo
formado entre uma linha radial localizada em uma seção transversal do eixo,
antes e depois da deformação gerada pelo torque. Esse ângulo é denominado
ângulo de torção ϕ, veja na Figura 2.6, ele variará ao longo do comprimento x
do eixo.
Nesse sentido, é importante ressaltar que quando o ângulo de rotação entre as
extremidades da barra é pequeno, o comprimento da barra e o raio da seção
transversal permanecem inalterados, mesmo depois da deformação.
Se analisarmos somente um elemento isolado da barra da Figura 2.7 sendo
torcido, veremos que devido a diferença de deformações entre a face anterior e
posterior do elemento, ele �cará em cisalhamento puro.
Figura 2.6 - Deformação de uma barra presa em uma extremidade
Fonte: Elaborada pelo autor.
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
A deformação por cisalhamento ( γ ) no interior do eixo varia de forma linear
ao longo de qualquer linha radial, de zero na linha central do eixo até um valor
máximo ( γ máx) em seu contorno externo . A deformação por cisalhamento
em qualquer ponto da linha radial (ρ) pode ser obtida por meio da equação:
Obs.: essa fórmula só pode ser utilizada em tubos circulares.
Fórmula de Torção
Quando um torque externo é aplicado a um eixo, ele cria um torque interno
correspondente no interior do eixo.
Se o material for linear elástico, homogêneo, então a lei de Hooke será aplicada.
Figura 2.7 - Elemento sendo deformado por torção
Fonte: Hibbeler (2010, p. 139).
γ = ( )ρ
c
γm xá
τ = Gγ
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Por consequência, podemos a�rmar que a variação linear na deformação por
cisalhamento resulta em uma variação linear na tensão de cisalhamento
correspondente ao longo de qualquer linha radial na seção transversal.
Assim, conforme mencionado anteriormente para a deformação por
cisalhamento ( γ) , a tensão de cisalhamento (τ) variará de zero na linha central
do eixo até um valor máximo (τmáx) na superfície externa. Para obtermos o
valor da tensão de cisalhamento em qualquer ponto da linha radial (ρ),
precisamos calcular:
Cada elemento de área (dA), localizado em ρ, está sujeito a uma força de
cisalhamento:
γ = ( )ρ
c
γm xá
Figura 2.8 - Tensão de cisalhamento na seção transversal da barra
Fonte: Elaborada pelo autor.
= τdAFτ
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Podemos obter o momento de cisalhamento calculando a seguir equação:
Já o torque interno resultante ( T ) agindo na seção transversal é obtido por:
Logo, a integral destacada e identi�cada de J é conhecida como momento polar
de inércia da seção transversal do eixo e depende somente da geometria do
eixo. Com isso, a fórmula da tensão máxima de cisalhamento pode ser
representada como a fórmula de torção.
A tensão de cisalhamento para um ponto intermediário da linha radial (ρ) pode
ser calculada por:
Assim, a tensão de cisalhamento para um ponto intermediário da linha radial (ρ),
por sua vez,  pode ser calculada por:
= ρ = ρτdA = ρ ( ) dA = ( ) ρ dAMτ Fτ ρ
c
τm xá
τm xá
c
2
T = = ρ dA∫
A
Mτ ( )τm xá
c
∫
A
2
=τm xá
Tc
J
=τm xá
Tc
J
τ =
Tρ
J
• Nesse sentido, a Tensão máxima de cisalhamento do eixo, na superfície
externa é obtida em Pa (N/m²);
• A Tensão de cisalhamento em um ponto intermediário da linha radial é
obtida em (N/m²);
• O Torque interno resultante na seção transversal é obtidoem N.m;
• O Raio externo do eixo é dado é obtido em m;
• O Raio intermediário do eixo é obtido em m ;
• O Momento polar de inércia é obtido em m⁴.
Para um eixo circular sólido, J é calculado por meio da igualdade a seguir.
Já para um eixo circular tubular J é obtido pelo cálculo de:
Sendo “ c ext ” o raio externo do tubo e “ c int ” o raio interno do tubo.
Ressaltamos que,  estas fórmulas de torção só devem ser utilizadas se o eixo for
circular e o material se comportar conforme a lei de Hooke.
Diagrama de Torque
Nessa seção, encontraremos aplicações em que diferentes torques serão
aplicados ao longo do comprimento de um eixo. A tensão de cisalhamento
máxima neste eixo ocorrerá na região onde o maior torque agir. Para
determinar essa região de maior torque, devemos montar o diagrama de
torque .
Para se conseguir somar diferentes torques aplicados ao longo de um eixo, é
necessário que haja uma convenção em seus sinais. Para isso, usamos a regra
da mão direita, pela qual o torque e o ângulo serão positivos se a direção
indicada pelo polegar for no sentido para fora ou se afastando da seção do eixo
J =
π
2
c4
J = ( − )
π
2
c4ext c
4
int
considerada, conforme mostrado anteriormente.
Exemplo 2
Observe o caso a seguir, em que quatro torques estão agindo sobre o eixo.
Para de�nir o torque de cada um dos trechos (LAB, LBC e LCD), usaremos o
método das seções .
Figura 2.9 - Eixo sob efeito do torque
Fonte: Elaborada pelo autor.
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Logo,
Obs.: O sentido de giro de TAB, TBC e TCD são atribuídos durante o cálculo, se o
resultado for negativo isso indica que foi atribuído o sentido oposto ao real.
Figura 2.10 - Análise de cada uma das seções do eixo
Fonte: Elaborada pelo autor.
− = 0TA TAB
= = 80 N . mTAB TA
− + = 0TA TB TBC
80 − 150 + = 0TBC
= 70 N . mTBC
− = 0TD TCD
= = 10 N . mTCD TD
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Outra forma de calcularmos os valores dos torques em cada região do eixo é
montando o diagrama de torque , conforme �gura a seguir.
Podemos notar que a região com maior torque está entre A e B, com T=80 N.m,
logo, é nessa região onde teremos a tensão máxima de cisalhamento. Supondo
que, o eixo seja maciço e tenha diâmetro de 30 mm, ou seja, raio de 15 mm, o
momento polar de inércia pode ser obtido através do cálculo a seguir.
E, a tensão máxima de cisalhamento no eixo será:
Transmissão de Potência
Figura 2.11 - Diagrama de força cortante
Fonte: Elaborada pelo autor.
J = = = 79, 52 ×π2 c
4 π
2 0, 015
4 10−9m4
= = = 15 × Pa =  15 MPaτm x,ABá
cTAB
J
80×0,015
79,52×10−9
106
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Na maioria das vezes, em uma transmissão de potência gerada por uma
máquina, os eixos circulares serão aplicados. Dessa forma, o torque
desenvolvido no eixo pela máquina depende diretamente da potência do motor.
A relação entre potência e torque é dada pela equação:
• ω representa a velocidade angular do eixo, dada em rad/s;
• P é a potência do motor dada em W (watts).
Outra importante relação é a de frequência de rotação do eixo (f), que pode ser
expressada por meio da igualdade:
• em que, f é a frequência de rotação do eixo, dada em ciclos/s ou Hz
(Hertz);
• Lembrando que: 1 ciclo equivale a 2π rad;
Com isso, durante o projeto de um eixo, em caso de obtermos apenas algumas
informações disponíveis como a potência do motor, a frequência de rotação e a
tensão de cisalhamento admissível do material, podemos utilizar as fórmulas
apresentadas para se obter o torque T desenvolvido, e assim determinar a
dimensão do eixo conforme a necessidade.
Por exemplo, no caso de um eixo maciço, o raio do eixo pode ser determinado
variando “c” até o valor da tensão de cisalhamento obtido seja menor que a
tensão admissível do material. Para isso, utilize a seguir fórmula.
Ângulo de Torção
Em algumas aplicações, é necessário calcular o ângulo de torção ϕ,
P = Tω
P = 2πfT
= =τm xá
Tc
J
Tc
( )π2 c
4
mencionado anteriormente, que é o ângulo formado entre uma extremidade de
um eixo em relação a outra após a torção.
Considerando um eixo de material homogêneo, como módulo de elasticidade de
cisalhamento (G) constante e área da seção transversal constante ao longo seu
comprimento, a relação entre o torque aplicado e o ângulo de torção poder ser
obtida por meio da igualdade a seguir.
Em que:
• ϕ é o Ângulo de torção em radianos ( rad );
• T é o Torque interno determinado pelo método das seções, dado em
N.m;
• L é o Comprimento do trecho do eixo analisado em m ;
• J é o Momento polar de inércia mm4.
• G é o Módulo de elasticidade ao cisalhamento do material em Pa.
praticarVamos Praticar
Um motor acoplado transmite 150 kW de potência ao eixo. Desses 150 kW, 70 % é
recebido pela engrenagem C e 30 % pela engrenagem D. A rotação do eixo é ω= 800
rev/min. O material do eixo é o aço A-36, com módulo de elasticidade ao cisalhamento
de G = 75 GPa e seu diâmetro é de 100 mm.
Φ =
TL
JG
Considerando as informações e �gura apresentada, calcule o torque em B, C  e
D. Assinale a alternativa correta.
a) 1790 N.m, 1720 N.m e 1690 N.m.
b) 1500 N.m, 1050 N.m e 450 N.m
c) 1700 N.m, 1650 N.m e 1200 N.m
d) 1790 N.m, 1080 N.m e 540 N.m.
e) 1790 N.m, 1250 N.m e 540 N.m
Eixo sob torção
Fonte: Elaborada pelo autor.
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Uma haste de roupeiro segura diversos cabides e cada cabide carrega consigo
casacos, camisas, etc. A haste está sujeita um tipo de carregamento, ou seja, a
haste pode ser considerada um elemento estrutural do roupeiro, pois tem a
função de manter as roupas no seu devido lugar.
Nesse sentido, podemos transpor esse conceito para nosso contexto, quando
uma viga é sujeita a um sistema de carregamentos ou força que age
perpendicularmente ao eixo de simetria longitudinal, ela deformará. Em termos
simples, a deformação que ocorre nesse sentido é chamada de �exão de uma
viga. Devido à força de cisalhamento e ao momento �etor, a viga sofre
deformação.
Flexão SimplesFlexão Simples
Para calcular a tensão de �exão de uma viga, considere os pontos listados a
seguir.
• Inicialmente, a viga é reta e tem seção transversal constante;
• A viga é feita de um material homogêneo e tem um plano longitudinal
de simetria;
• A resultante de cargas aplicadas �ca no plano de simetria;
• A geometria do membro como um todo, em que a causa de falha é
�exão e não �ambagem;
• O limite elástico não é excedido e E é o mesmo em tensão e
compressão;
• O plano da seção transversal permanece plano antes e depois da
�exão.
A �exão é pura quando ocorre apenas por causa dos vínculos nas extremidades.
Neste caso, não existe chances de tensão de cisalhamento na viga. A tensão que
Figura 2.12 - Viga sob �exão
Fonte: Avenafatua / Wikimedia Commons.
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
se propaga na viga é uma tensão normal, não ocasionando danos à viga.
Por outro lado, a �exão será simples quando ela acontecer por causa do próprio
peso da viga e/ou um carregamento externo. Nesse caso, ela resulta em tensão
de cisalhamento e tensão normal na viga.
Em que M é o momento �etor, I é o momento de inércia da seção do eixo de
�exão, R é o raio de curvatura da viga �etidae y é a distância perpendicular ao
eixo neutro.
Diagramas de Força Cortante e Momento
Fletor
Os diagramas de força cortante e momento �etor são ferramentas analíticas
usadas na análise estrutural, com o objetivo de obter a noção dos pontos críticos
em um elemento estrutural, como uma viga. Eles fornecem informações que
determinam o tipo, o tamanho e o material que um membro estrutural deve
possuir para suportar os carregamentos sem falhas.
Se a variação da força cortante V e do momento �etor M são escritos como
funções de posição ( x ), e plotados, obtemos os diagramas de força cortante e
momento �etor.
A inclinação do diagrama de força cortante corresponde a negativa do
carregamento distribuído. A inclinação do diagrama de momento é o
cisalhamento. A área negativa sob o diagrama de carregamento representa a
mudança da força cortante e a área sob o diagrama de força cortante representa
a mudança no momento �etor.
A seguir, veja um exemplo do procedimento de análise adotado para os
= =
M
I
σ
y
E
R
diagramas de força cortante e momento �etor, considerando a viga.
• 1º passo: encontrar as reações de apoio. Para esse passo, utilize as
seguintes igualdades:
• 2º passo: estabelecer os eixos V e x e plotar os valores de força cortante
Figura 2.13 - Eixo carregado
Fonte: Shear... (2020, on-line).
= 0 = −P (L + 2L) + (3L)∑ MA By
= 0 = + − 2P∑ FY Ay By
= = PAy By
= 0 =∑ Fx Ax
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
em cada extremidade. (x=0;V=P) e (X=3L;V=-P)
• No intervalo de 0 < x < L, a inclinação do diagrama é igual ao
carregamento, que é w(x)=0. Portanto, obtemos uma linha reta.
• No ponto x = L, uma carga concentrada P de sinal negativo é aplicada.
Há uma descontinuidade no diagrama e a cortante é 0.
• De L < x < 2L, w(x)=0 portanto a inclinação é nula também.
• Em 2L, há outra descontinuidade no diagrama, devido a aplicação da
outra força P, também negativa. De 2L a 3L w(x)=0, portanto, a
inclinação é nula.
• Em 3L, com a reação em B, o diagrama termina em 0.
Para o diagrama de momento �etor, considere os pontos listados a seguir.
• Estabeleça os eixos de M e x e as extremidades (x=0; M=0) e (x=3L; M=0);
• A inclinação de 0 < x < L é igual ao valor da cortante, nesse caso, V = P ,
indicando a inclinação positiva.
Figura 2.14 - Diagrama de força cortante
Fonte: Shear… (2020, on-line).
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
• A inclinação do momento de L < x < 2L é igual ao valor da cortante,
nesse caso V = 0.
• A inclinação do momento de 2L < x < 3L é igual a V = - P.
Nesse sentido, podemos a�rmar que, se um carregamento é dado por , a
inclinação de seu diagrama de força cortante será e a inclinação de seu
diagrama de momento �etor poderá ser obtida por .
Flexão Assimétrica
Em determinados casos, podemos encontrar carregamentos em que o momento
interno não atue diretamente em torno dos eixos principais da seção
transversal, mas em uma posição oblíqua em relação aos eixos. Na �gura a
seguir, um momento M é aplicado, formando um ângulo θ com o eixo principal
z.
Figura 2.15 - Diagrama de momento �etor
Fonte: Shear… (2020, on-line).
w (x)
= wdV
dx
= VdM
dx
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Neste caso, uma decomposição do momento oblíquo deve ser realizada para os
eixos principais, de forma que a tensão gerada em um ponto (A, por exemplo)
pela componente decomposta poderá ser calculada pela fórmula da �exão a
seguir.
Figura 2.16 - Representação de um momento em posição oblíqua
Fonte: Elaborada pelo autor.
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
Logo, Iz e Iy correspondem aos momentos de inércia de área da seção
transversal, dados em m⁴, mm⁴, etc.
Obs .: O sinal de negativo em σAz ocorre devido ao ponto A que é comprimido
pelo Mz , ou seja, a sua tensão está no sentido negativo do eixo x estabelecido.
Nesse sentido, podemos conferir, aplicando a regra da mão direita com o
polegar apontando para a direção de Mz, notando que o restante dos dedos
Figura 2.17 -  Decomposição nos eixos y e z do momento
Fonte: Elaborada pelo autor.
= McosθMz
= MsenθMy
σ = −Az
Mzcy
Iz
σ =Ay
Mycz
Iy
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
comprimem A. Se o ponto A estivesse abaixo do eixo z, ele seria tracionado por
Mz , dessa forma, a tensão teria sinal positivo, como em σAz .
Por �m, utilizando a equação para determinação de tensões em uma �exão
assimétrica, obtemos a tensão resultante para o ponto escolhido.
A seguir, apresentamos uma representação grá�ca da distribuição de tensões do
caso analisado.
No exemplo, notamos que a linha neutra N do carregamento, ou seja, a linha em
que as tensões são nulas. Nesse sentido, podemos ressaltar que o ângulo α não
é o mesmo ângulo θ que o momento inicial M faz com o eixo z. O ângulo α pode
ser determinado pela igualdade:
= − +σA
Mzcy
Iz
Mycz
Iy
Figura 2.18 - Distribuição de tensões superpostas e isoladas
Fonte: Elaborada pelo autor.
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
praticar
tgα = tgθ
Iz
Iy
FLEXÃO
P
A �exão é resultante da aplicação de uma força
perpendicular ao eixo longitudinal de um corpo
e tende a dobrá-lo ou arquea-lo. Colunas de
uma ponte estão sujeitas a esforços de �exão.
praticarVamos Praticar
As alternativas a seguir apresentam alguns exemplos de carregamentos aplicados no
dia a dia. Com base nos seus conhecimentos adquiridos nessa unidade, analise as
alternativas e assinale aquela que corresponde a situações de elementos sob �exão.
a) Mola de amortecedor, carrinho de mão com tijolos e grua carregando
container.
b) Eixo girando com engrenagens, corpo de prova comprimido e panela sendo
conformada em prensa.
c) Paleteira levando caixas, uma pessoa no trampolim de piscina e a haste de
um roupeiro com cabides.
d) Colunas sob uma ponte, pano sendo torcido e prego sendo martelado.
e) Régua  sendo dobrada, papel sendo cortado e guincho puxando um
automóvel.
indicações
Material
Complementar
LIVRO
Resistência dos Materiais
Russell Hibbeler
Editora: Pearson
ISBN: 978-85-760-5373-6
Comentário: Recomenda-se uma leitura aprofundada
dos capítulos 4, 5 e 6, que abordam a Resistência dos
Materiais. Nele você verá muitos exemplos sobre
carregamentos, bem como exercícios de �xação que
podem te ajudar a compreender os conceitos e formular
soluções.
FILME
Como fazer um aeromodelo de controle
remoto
Ano: 2019
 Comentário: O canal Manual do Mundo, no YouTube,
possui diversos vídeos didáticos e interessantes que
relacionam conteúdos de física, química e engenharia
com práticas adotadas no dia a dia. No vídeo indicado a
seguir, podemos aprender como fazer um aeromodelo
controlado por controle remoto. Esse material é
interessante, pois nos dá uma noção sobre um
equipamento em que a resistência dos materiais se aplica
diretamente.
TRA ILER
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
https://catalogcdns3.ulife.com.br/content-cli/ENG_RESMAT_20/unidade_2/ebook/index.html#
conclusão
Conclusão
Nessa unidade, aprendemos a calcular tensões e deformaçõesde diversas
naturezas, sejam elas ocasionadas por cargas axiais, torção ou �exão. Além
disso, aprendemos sobre a transmissão de potência em eixos, discernindo sobre
materiais simétricos e assimétricos, entre diversos outros conhecimentos que
encontram aplicações reais na engenharia. Os esforços axiais, momentos
�etores, forças cortantes e momentos torçores serão estudados em conteúdos
mais avançados. Com o conteúdo que aprendemos nessa unidade, você terá
base para resolver problemas de maior complexidade, como aqueles que
exigem a combinação de mais de um tipo de carregamento em uma estrutura.
referências
Referências
Bibliográ�cas
HIBBELER, R. Resistência dos Materiais . São Paulo: Pearson, 2010.
CALLISTER, W. D. Ciência e engenharia de materiais : uma introdução. Rio de
Janeiro: LTC, 2008.
GERE, J. B. Mechanics of Materials : brief edition. Stamford: Cengage Learning,
2012.
SHEAR Force and Bending Moment Diagrams. Memphis [on-line]. Disponível em:
http://www.ce.memphis.edu/3121/notes/notes_04c.pdf . Acesso em: 15 jan.
2020.
http://www.ce.memphis.edu/3121/notes/notes_04c.pdf
http://www.ce.memphis.edu/3121/notes/notes_04c.pdf

Outros materiais