Buscar

avaliacao 1 3 trimestre calculo diferencial e integral 3

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 4 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1 Há uma relação para escrever uma integral dupla em coordenadas polares. 
Assinale a alternativa CORRETA que apresenta essa relação (transformação) para cada x e y, utilizando-se novas vaiáveis de coordenadas polares:
A x = r sen (θ); y = r cos (θ)
B x = t sen (θ); y = t cos (θ)
C x = r cos (θ); y = r sen (θ)
D x = r sen (θ); y = t cos (θ)
2 Umas das primeiras aplicações de integrais duplas que é estudada é o cálculo de volume de um sólido de base retangular. Utilizando integral dupla temos que o volume do sólido cuja base retangular no plano xy limitado por:
A 30.
 B 7,5.
 C 0.
D 15.
3 Um dos Teoremas mais utilizados para calcular integrais duplas e triplas é o Teorema de Fubini, ele nos permite inverter a ordem de integração. Essa mudança na ordem de integração pode em certas integrais diminuir a quantidade de cálculos necessários para a resolução. Utilizando o Teorema de Fubini, concluímos que o valor da integral:
A É igual a 0.
B É igual a - 4.
C É igual a - 3,5.
D É igual a cos(3).
4O centro de massa de um objeto é o ponto onde este objeto fica em equilíbrio, caso esse objeto seja homogêneo. Determine a coordenada y do centro de massa de uma lâmina triangular com vértices (0, 0), (1, 0) e (0, 2), sabendo que a função densidade é f (x, y) = 3 - x + 2y e que a massa do objeto é igual a m = 4:
A 19/24
B 19/6
C 24/19
D 6/19
5Assim como acontece com as integrais duplas, quando calculamos uma integral tripla, precisamos utilizar certas regras. Sobre o valor da integral tripla apresentada, analise as opções a seguir e, em seguida, assinale a alternativa CORRETA:
A Somente a opção III está correta.
B Somente a opção II está correta.
C Somente a opção I está correta.
D Somente a opção IV está correta.
 6Utilizando as mesmas técnicas de integração simples podemos calcular integrais múltiplas de funções que dependam de múltiplas variáveis. Determine o valor da integral tripla a seguir, utilizando as técnicas de integrações conhecidas para integral simples:
A O valor da integral tripla é 3.
B O valor da integral tripla é cos(3).
C O valor da integral tripla é 4.
D O valor da integral tripla é - 4.
7Umas das primeiras aplicações de integrais duplas e tripas que é estudada é o cálculo de volume de um sólido. Utilizando as propriedades de integral dupla temos que o volume de um sólido é dado pela integral dupla:
A 45 unidades de volume.
B 103,5 unidades de volume.
C 40,5 unidades de volume.
D 94,5 unidades de volume.
 8 Na análise matemática, o Teorema de Fubini, em homenagem a Guido Fubini, é um resultado que fornece condições sob as quais é possível calcular uma integral dupla por meio de integrais iteradas. Como consequência, ele permite a inversão da ordem de integração em integrais iteradas. 
 
Utilizando-o, calcule a integral dupla a seguir sabendo que R é uma região que consiste em todos os pontos (x,y) para os quais -1 ≤ x ≤ 2 e 1 ≤ y ≤ 3:
A 23.
B 22.
C 24.
D 21.
9O centro de massa de um objeto é o ponto onde este objeto fica em equilíbrio, caso esse objeto seja homogêneo. Para determinar o centro de massa, precisamos também saber a massa do objeto. Determine a massa de uma lâmina triangular com vértices (0, 0), (1, 0) e (0, 2), sabendo que a função densidade é f (x, y) = 3 - x + 2y:
A 5
B 0
C 4
D 10
10 O centro de massa de um objeto é o ponto onde este objeto fica em equilíbrio, caso esse objeto seja homogêneo. Determine a coordenada x do centro de massa de uma lâmina triangular com vértices (0, 0), (1, 0) e (0, 2), sabendo que a função densidade é f (x, y) = 3 - x + 2y e que a massa do objeto é igual a m = 4:
A 6/7
B 24/7
C 7/6
D 7/24

Continue navegando