Buscar

AV1 - AULA DA MONITORIA - MACROMOLÉCULAS MICROMOLÉCULAS, ÁGUA, PROTEÍNAS, LIPÍDEOS, ENZIMAS

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 122 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 122 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 122 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

BIOQUÍMICA
REVISÃO:
MICROMOLÉCULAS & MACROMOLÉCULAS
Monitor: Raí Pereira de Paula
Curso: Biomedicina
AV1
Conteúdo
Fundamentos Celulares
Átomos
O que são moléculas?
Substâncias Inorgânicas (Micromoléculas)
Substâncias Orgânicas (Macromoléculas)
Fundamentos Celulares - Bioquímica
A bioquímica questiona como as extraordinárias propriedades dos organismos vivos se originaram a partir de milhares de biomoléculas diferentes.
O estudo da bioquímica mostra como o conjunto de moléculas inanimadas que constituem os organismos vivos interage para manter e permanecer a vida obedecendo unicamente às leis físicas e químicas que regem o universo inanimado.
Bioquímica é o estudo das reações químicas que ocorrem em organismos biológicos.
3
Figura 1-1: Algumas características da matéria viva. (a) A complexidade microscópica e a organização são visíveis nesse corte fino de tecido muscular de vertebrado, produzido por microscópio eletrônico e colorido artificialmente. (b) O falcão do campo capta nutrientes e energia comendo aves menores. (c) A reprodução biológica ocorre com uma fidelidade quase perfeita. [Fontes: (A) SPL/Science Source. (B) W. Perry Conway/Corbis. (C) F1 online digitale Bildagentur GmbH/Alamy.]
FIGURA 1-2: Diferentes organismos vivos compartilham características químicas comuns. Aves, animais selvagens, plantas e microrganismos do solo compartilham com os humanos as mesmas unidades estruturais básicas (células) e os mesmos tipos de macromoléculas (DNA, RNA, proteínas) feitas dos mesmos tipos de subunidades monoméricas (nucleotídeos, aminoácidos). Eles utilizam as mesmas vias para a síntese dos componentes celulares, compartilham o mesmo código genético e provêm dos mesmos ancestrais evolutivos. Na figura é mostrado um detalhe de O jardim do Éden, por Jan van Kessel – o Jovem (1626-1679).
Fundamentos Celulares 
A membrana plasmática define o contorno da célula, separando o seu conteúdo do ambiente externo. Ela é composta por (moléculas de lipídeos e proteínas) que formam uma barreira fina, resistente, flexível e hidrofóbica ao redor da célula.
O volume interno envolto pela membrana plasmática, chama-se citoplasma, é considerado um composto por uma solução aquosa, o citosol, e uma grande variedade de partículas em suspensão com funções específicas.
Hidrofóbica: As moléculas hidrofóbicas são aquelas que possuem aversão à água. Elas não se dissolvem em água. São moléculas apolares. Exemplo: moléculas de gordura (lipídios).
FIGURA 1-3 As caracteristicas universais das celulas vivas. Todas as células têm núcleo ou nucleoide, membrana plasmática e citoplasma. O citosol é definido como a porção do citoplasma que permanece no sobrenadante após rompimento suave da membrana plasmática e centrifugação do extrato resultante a 150.000 g por 1 hora. As células eucarióticas têm uma variedade de organelas contidas por membranas (mitocôndrias e cloroplastos) e partículas maiores (ribossomos, p. ex.), que são sedimentadas por esta centrifugação e podem ser recuperadas do precipitado.
6
Fundamentos Celulares - Bioquímica
Dentro dos domínios Archaea e Bacteria existem subgrupos distinguíveis por seus hábitats. Nos hábitats aeróbios com suprimento abundante de oxigênio, alguns organismos residentes obtêm energia pela transferência de elétrons das moléculas de combustível para o oxigênio dentro da célula. Outros ambientes são anaeróbios, praticamente desprovidos de oxigênio, e os microrganismos adaptados a esses ambientes obtêm energia pela transferência de elétrons para nitrato (formando N2), sulfato (formando H2S) ou CO2 (formando CH4). Muitos organismos que evoluíram em ambientes anaeróbios são anaeróbios obrigatórios: morrem quando expostos ao oxigênio. Outros são anaeróbios facultativos, capazes de viver com ou sem oxigênio.
7
Átomos
Átomo é uma unidade básica de matéria que consiste num núcleo central de carga elétrica positiva (prótons) envolto por uma nuvem de elétrons de carga negativa. 
Carbono (C)
Hidrogênio (H)
Oxigênio (O)
Nitrogênio (N)
8
O que são moléculas?
Molécula é um grupo de átomos, iguais ou diferentes, que se mantêm unidos e que não podem ser separados sem afetar ou destruir as propriedades das substâncias. 
Água (H2O)
Gás carbônico (CO2)
Gás oxigênio (O2)
Cloreto de sódio (NaCl)
Aminoácido:
Valina
Ácido graxo: Ômega 3
Monossacarídeo: Glicose
Nucleotídeo
9
Os compostos orgânicos a partir dos quais é formado a maior parte dos materiais celulares: o ABC da bioquímica
FIGURA 1- 10 Os compostos organicos a partir dos quais e formada a maior parte dos materiais celulares: o ABC da bioquímica. Estão mostrados aqui (a) seis dos 20 aminoácidos que formam todas as proteínas (as cadeias laterais estão sombreadas em vermelho); (b) as cinco bases nitrogenadas, os dois açúcares de cinco carbonos e os íons fosfato que formam os ácidos nucleicos; (c) os cinco componentes dos lipídeos de membrana; e (d) D-glicose, o açúcar simples que forma a maioria dos carboidratos. Observe que o fosfato é um componente dos ácidos nucleicos e dos lipídeos de membrana.
10
Hierarquia estrutural na organização molecular das células
FIGURA 1-11 Hierarquia estrutural na organização molecular das células. As organelas e outras estruturas relativamente grandes das células são feitas de complexos supramoleculares, que por sua vez são feitos de moléculas menores e de subunidades moleculares menores. Por exemplo, o núcleo desta célula de planta contém cromatina, complexo supramolecular que consiste em DNA e proteínas (histonas). O DNA é feito de subunidades monoméricas simples (nucleotídeos), assim como as proteínas (aminoácidos).
11
Substâncias Inorgânicas
As substâncias inorgânicas são de procedência mineral.
ÁGUA
SAIS MINERAIS
12
Substâncias inorgânicas
ÁGUA
É a substância mais abundante nos sistemas vivos, constituindo mais de 70% do peso da maioria dos organismos.
Principais Funções: Solvente universal; Participa das reações químicas de hidrólise; Regulação térmica; Transporte de substâncias; Lubrificante.
A molécula de água e seus produtos de ionização, H+ e OH-, influenciam profundamente a estrutura, a organização e as propriedades de todos os componentes celulares.
13
Substâncias inorgânicas
SAIS MINEIRAIS
 Substâncias inorgânicas formadas por íons.
São componentes reguladores do metabolismo celular.
 Obtenção: Água mineral e alimentos: frutos, verduras, cereais, leite, etc.
14
	Elementos	Funções no organismo
	Cálcio	Composição dos ossos e dos dentes
Coagulação sanguínea
Funcionamento de nervos e músculos
	Cloro	Composição do ácido clorídrico
Auxilia a digestão
	Cobalto	Componente da vitamina B12 (cobalamina) – Produção de hemácias
	Cobre	Formação da hemoglobina
	Enxofre	Controle da atividade metabólica
Presente na estrutura de certos aminoácidos
15
	Elementos	Funções no organismo
	Ferro	Componente da hemoglobina
Respiração celular
	Flúor	Componente dos ossos e dos dentes
	Fósforo	Componente dos ossos e dos dentes
	Iodo	Componente dos hormônios da tireóide
Estimulam o metabolismo
	Potássio	Condução dos impulsos nervosos
Equilíbrio osmótico
	Sódio	Condução dos impulsos nervosos
Equilíbrio osmótico
	Zinco	Componente de várias enzimas
Metabolismo
16
Substâncias Orgânicas
PROTEÍNAS
CARBOIDRATOS
LIPÍDIOS
ÁCIDOS NUCLÉICOS
VITAMINAS
 As substâncias orgânicas são formadas a partir dos arranjos do elemento químico carbono.
 O carbono é, por esse motivo, a base de todas as formas de vida.
 Proteínas são macromoléculas biológicas constituídas por uma ou mais cadeias de aminoácidos.
Carboidratos são: Poliidroxialdeídos ou poliidroxicetonas.
Lipídios são biomoléculas de estruturas diversas, insolúveis em água e solúveis em compostos orgânicos (álcool, clorofórmio, acetona, etc.). 
As vitaminas são substâncias químicas que o organismo necessita em pequenas quantidades, atuando como reguladoras do metabolismo. Vitaminas Hidrossolúveis e Lipossolúveis.
Ácidos nucléicos são polímeros de nucleotídeos. São eles: DNA (ácido desoxirribonucléico) e RNA (ácido ribonucléico).17
Questionário de Aprendizagem
01 - (Alfredo Nassar/2014) As células vivas são constituídas de macromoléculas e sua correta organização é indispensável para o funcionamento celular. Sobre este tema avalie as questões abaixo:
I. Os carboidratos são divididos em três grupos: trioses, pentoses e hexoses.
II. Os lipídios são derivados dos ácidos graxos, são insolúveis em água, um dos principais componentes das membranas celulares e precursores dos hormônios sexuais femininos e masculinos.
III. Proteínas são constituídas somente por 20 diferentes tipos de aminoácidos.
IV. O código para síntese das proteínas nos organismos eucarióticos está contido no RNA transportador.
II e III
II e IV
I, II e III
I, III e IV
Todas estão corretas.
GABARITO 
01 – A
I – FALSA, TRIOSE E PENTOSES SÃO GRUPOS DE MONOSSACARÍDEOS DE ACORDO COM A SUA QUANTIDADE DE ÁTOMOS DE CARBONO NA MOLÉCULA. OS CARBOIDRATOS SÃO DIVIDIDOS EM MOSSACARÍDEOS, DISSACARÍDEOS (OU ATÉ MESMO EM OLIGOSSACARÍDEOS) E POLISSACARÍDEOS.
II – VERDADEIRA
III – VERDADEIRA
IV – O CÓDIGO PARA SÍNTESE DE UMA PROTEÍNA NO DNA E É TRANSCRITO PARA RNA MENSAGEIRO, QUE SOFRERÁ A TRADUÇÃO NO RIBOSSOMO.
18
Questionário de Aprendizagem
02. (UDESC 2008)Os organismos vivos são constituídos de várias macromoléculas orgânicas, conhecidas como polímeros biológicos. Sobre essas macromoléculas, é incorreto afirmar:
Ácidos nucléicos são polímeros de monossacarídeos unidos por ligações glicosídicas, com funções estruturais.
Os lipídeos são compostos formados por ácidos graxos, que podem constituir membranas celulares e exercer papéis importantes como hormônios.
Proteínas são polímeros de aminoácidos unidos por ligações peptídicas e que podem exercer funções enzimáticas, estruturais e energéticas.
Carboidratos são conhecidos como açúcares, constituídos por carbono, hidrogênio e oxigênio, sendo as principais fontes de energia da célula.
Alguns tipos de polissacarídeos podem ser encontrados na estrutura da parede celular dos vegetais e também ser estocados como reservas energéticas em vegetais.
GABARITO 
02. A
19
BIOQUÍMICA
REVISÃO:
ÁGUA & SAIS MINERAIS
Monitor: Raí Pereira de Paula
Curso: Biomedicina
Conteúdo
Interações químicas
Água
Estrutura da água
Estados da água
Pontes de Hidrogênio
Classificação das moléculas em solubilidade em água
Escala de pH
pH
Sistema Tampão
Minerais
Interações químicas
Ligação covalente
Todo tipo de ligação química podem ser caracterizada pelo compartilhamento de uma ou mais pares de elétrons entre átomos, causando uma atração mútua entre eles, que mantêm a molécula resultante unida.
Atenção!!!
Monômero X Polímero 
Monômero – pequena molécula que pode se ligar a outros monômeros semelhantes formando moléculas maiores, os polímeros.
Polímeros – macromolécula formada por unidades de monômeros. Ex: Proteínas são polímeros de aminoácidos.
22
O que é a água?
É uma substância líquida que parece incolor a olho nu em pequenas quantidades, inodora e insípida, essencial a todas as formas da vida.
Sua composição:
Hidrogênio (H) e Oxigênio (O).
70% ou mais da massa dos organismos vivos é agua!!
Atenção!!! 
Insípida – sem sabor.
Todos os aspectos de estrutura da célula e das suas funções são adaptadas às propriedades físico-químicas da água.
Essencial para formação de macromoléculas.
Solvente no qual ocorre a maioria das reações bioquímicas. É muito provável que as primeiras moléculas “evoluíram” em soluções aquosas, ou seja, é bem certo que os primeiros organismos celulares apareceram em ambientes aquáticos
IMPORTÂNCIA - A água é essencial que favorece na qualidade e na sobrevivência da vida, beneficia na variação de protocolos que apontam na nossa temperatura corpórea. 
23
Estrutura da água
Os átomos de hidrogênio apresentam cargas elétricas parciais positivas, e o átomo de oxigênio, carga elétrica parcial negativa.
Estrutura eletricamente polar: “A ÁGUA É UM DIPOLO”.
Dipolo - Devido a questão da eletricidade das ligações entre os átomos de hidrogênio e oxigênio que estão com os seus polos negativos e positivos. 
24
Estados físicos da água
Água em estado líquido: moléculas mais livres, formando e quebrando ligações o tempo todo; 
Água em estado sólido: a estrutura é mais estável, a mobilidade da molécula diminui com as baixas temperaturas;
Água em estado gasoso: mobilidade maior e não estabelece pontes de hidrogênio.
25
Pontes de hidrogênio
A água tem a capacidade de formar ligações de hidrogênio com moléculas de água ou com moléculas com características polares.
A ponte de hidrogênio é uma interação eletrostática entre o polo positivo de uma molécula e o polo negativo de outra molécula.
A água pode formar ligações de hidrogênio com outras moléculas polares:
Ex: Cetonas, nitrogênio, carboxilas e aldeídos.
Importante: O átomo mais eletronegativo vai ser o aceptor de hidrogênio e o hidrogênio do outro átomo pode ser o doador de hidrogênio.
26
Classificação das moléculas quanto a solubilidade em água
Moléculas polares;
Moléculas apolares;
Moléculas anfipáticas.
Moléculas polares (hidrofílicas) – dissolvem-se facilmente na água;
Moléculas apolares (hidrofóbicas) – são incapazes de formar interações com a água, sendo assim insolúveis, e com tendência de se agregar;
Moléculas anfipáticas – possuem porções polares e apolares.
27
Á água é um solvente!!
A água pode ainda, solubilizar íons. Ex. NaCl – cloreto de sódio, fazendo interações eletrostáticas.
O sal é cristalino é dissolvido em água.
28
Escala de pH
Potencial hidrogênio ou potencial de hidrogênio (pH).
Obs: Para uma solução exatamente neutra, pH = 7.
A escala de pH é um meio conveniente para designar a concentração de H+.
E para medir o pH é usado um aparelho que chama-se (pHmetro);
Adição de indicador de pH na solução em análise – Ex: Fenolftaleína, azul de tomassol.
O pH é importantíssimo para o funcionamento de uma série de proteínas, pois qualquer alteração no pH pode afetar as funções das mesmas.
A sua escala se dá através de logarítimo.
O nosso organismo controla o pH através do famoso: “SISTEMA TAMPÃO”.
29
Escala de pH
Solução tampão: solução que consegue manter o pH, mesmo quando é adicionada em pequenas concentrações de ácido (H+) ou base (OH-).
De acordo com Johannes Bronsted e Thomas Lowry, 1923) – relata que “ácido é uma substância que pode doar prótons (H+) e base uma substância que pode aceitar prótons (H+).”
Os ácidos e bases fracas atuam como tampões nas células e tecidos evitando variações do pH, para que não ocorram danos às estruturas das macromoléculas.
Os fluídos intra e extracelulates têm um pH característicos que é regulado principalmente pelos sistemas tampão.
30
Algumas soluções muito comuns e o seu pH
0 – 3: ÁCIDOS FORTES;
3,5 – 6,5: ÁCIDOS FRACOS;
7 – NEUTRO
8 – 10,5: BASES FRACAS;
11 – 14: BASES FORTES
31
Os principais sistemas tampão biologicamente importantes são: sistema fosfato e sistema bicarbonato.
O sistema fosfato – age no citoplasma de todas as células;
O sistema bicarbonato – age no tamponamento do sangue.
32
Curiosidades
O plasma sanguíneo humano normalmente tem um pH de 7, 35 a 7, 45, e muitas das enzimas que funcionam no sangue evoluíram para ter a atividade máxima nesse intervalo de pH. As enzimas apresentam a atividade catalítica máxima em um pH ótimo. Portanto, uma pequena mudança no pH pode fazer uma grande diferença na velocidade de algumas reações cruciais catalisadas por enzimas. 
O controle biológico do pH das nossas células e dos fluídos biológicos é de importância central em todos os aspectos do metabolismo e atividades celulares, e mudanças no pH sanguíneo têm consequências fisiológicas marcantes.
33
Minerais
Os sais minerais têm funções variadas nos seres vivos:
Podem atuar em componentes da estrutura esquelética;
Co-fatores de enzimas;
Manutenção do equilíbrio osmótico.
Aparecem em três maneiras diferentes nos organismos:
Dissolvidos na forma de íons na água do corpo;
Formando cristais como o carbono e o fosfato de cálcio encontrados no esqueleto;
34
Minerais
Muitos dos minerais essenciaisestão amplamente distribuídos nos alimentos, e os indivíduos que consomem na própria dieta balanceada e tendem, em sua maioria, a consumir quantidades bastantes adequada.
35
Minerais
Fósforo – encontrado em abundância nos tecidos da pele, atuando na formação de ossos e dentes.
Carência: Dores ósseas, delírio e perda de memória.
Fontes: Carne, aves, peixes e ovos.
Constituinte de nucleotídeos e do ATP;
Evitando as variações bruscas de pH da célula.
36
Minerais
Sódio (Na) e Potássio (K)
O equilíbrio osmótico;
Fontes: Sal de cozinha (Na), carnes, leite, frutas, legumes, batatas, grãos e cereais (K).
Através da membrana, a água pode se movimentar livremente de modo que prevaleça o equilíbrio soluto-solvente. Assim, a água se movimenta sempre da região de menor concentração de soluto para o de maior concentração. A pressão responsável pelo movimento da água é denominada pressão osmótica.
Famosa bomba de sódio e pótassio
37
Minerais
Cloro (Cl)
Auxilia o equilíbrio hídrico;
Equilíbrio osmótico e ácido-básico;
Carência – desequilíbrio ácido-básico dos líquidos orgânicos, podendo causar vômitos, diarreia, ou sudorese intensa.
Fonte – Sal de cozinha
38
Minerais
Cálcio (Ca)
Formação dos ossos e dos dentes;
Transmissão de impulsos nervosos, batimentos cardíacos;
Carência: Osteoporose, unhas fracas e cáries;
Fontes: Leite e seus derivados e vegetais verdes-escuros.
Atua na coagulação sanguínea
39
Minerais
Ferro (Fe) e Iodo (I)
Transporte de oxigênio;
Carência – anemia ferropriva
Fonte – fígado, gema de ovo, carnes, feijão, espinafre.
Junto da hemoglobina – que é uma proteína;
O iodo é um componente de hormônios da tireoide
Carência: bócio
Bócio é o aumento do volume da glândula tireoide, que pode ter vários motivos. Esse aumento pode ser notado pelo próprio paciente, principalmente quando ele se observa na frente do espelho e durante a deglutição. Os homens também podem notar o bócio quando estão se barbeando.
Fontes: frutos do mar e sal marinho
40
Questionário de Aprendizagem
Qual a importância de se controlar o pH nos sistemas biológicos?
02. Doenças causadas pela carência de minerais?
03. Sabemos que diversos íons atuam em nosso corpo desempenhando as mais variadas funções. Um exemplo desses íons é o cálcio, que:
a) atua na formação de ossos e dentes.
b) está presente na composição de hormônios da tireoide.
c) atua na digestão.
d) é um componente extremamente importante das hemácias.
e) faz parte da bomba cálcio-potássio.
GABARITO:
01 - As substâncias são consideradas ácidas quando o valor de pH está entre 0 e 7 e alcalinas (ou básicas) entre 7 e 14. A diminuição do pH no sangue humano está relacionado com o surgimento de doenças. O valor normal do pH sanguíneo deve ser 7,4.
02 – Pressão alta e Anemias.
03 - Alternativa “a”. O cálcio forma dentes e ossos, além disso participa da coagulação sanguínea e atua na contração muscular.
41
BIOQUÍMICA
REVISÃO:
AMINOÁCIDOS
Monitor: Raí Pereira de Paula
Curso: Biomedicina
Conteúdo
Aminoácidos
Classificação dos aminoácidos
Alimentos ricos em aminoácidos
Aminoácidos biologicamente ativos
Caráter anfótero
Ligações peptídicas
Peptídicos de interesse fisiológico
Aminoácidos
São as unidades estruturais básicas (monômeros) das proteínas.
Apesar de existirem aproximadamente 300 aminoácidos na natureza, apenas 20 comumente constituem as proteínas.
Só os aminoácidos L são constituintes de nossas proteínas!
Os aminoácidos D podem ser encontrados: na parede celular bacteriana e em alguns antibióticos.
44
Classificação dos aminoácidos
Quanto à capacidade de síntese do organismo – naturais e essenciais;
Quanto à cadeia lateral – natureza apolar e polar e a presença de grupo ácido ou básico.
45
Classificação dos aminoácidos
Naturais ou não essenciais:
Glutamato; Alanina; Glutamina; Glicina; Prolina; Serina; Aspartato; Tirosina; Cisteína; Asparagina.
Essenciais – organismos não produz.
Triptofano; Leucina; Treonina; Valina; Arginina; Lisina; Histidina.
46
Classificação dos aminoácidos
Quanto à cadeia lateral:
Aminoácidos com cadeias laterais apolares – cadeia lateral hidrofóbica-, não é capaz de formar pontes de hidrogênio.
Aminoácidos com cadeias laterais polares eletricamente neutras.
Aminoácidos com grupos carboxila em suas cadeias laterais (carregados negativamente).
Aminoácidos com cadeias laterais básicas (carregados positivamente).
47
Classificação dos aminoácidos
A Císteína possui o grupo triol (-SH) – pode reagir com outros grupos cisteína –SH e formar pontes dissulfeto.
48
Alimentos ricos em aminoácidos
Carne de frango, bovina, suína e peixes;
Laticínios;
Frutos do mar;
Ovo;
Dieta vegetariana – nozes, castanhas, amendoins, amêndoas, feijão, lentilha, arroz e aveia.
49
Aminoácidos biologicamente ativos
Alanina
Lisina
Glicina
Histidina
Triptofano
Fenilalanina e tirosina
Alanina: Ajuda a fortalecer o sistema imunológico
Lisina: Combinada à vitamina C, forma carnitina, que possibilita ao tecido muscular usar oxigênio com mais eficiência, retardando a fadiga.
Glicina: Tem efeito calmante.
Histidina: Pode ser convertida em histamina, um potente vasodilatador, liberado em respostas alérgicas.
Triptofano: Precursor da serotonina – importante nos processos bioquímicos do sono e do humor e em seus níveis muitos baixos de serotonina são associados com a depressão.
Fenilalanina e tirosina: precursores da adrenalina, noradrenalina e dopamina – com ações estimulantes do sistema nervoso central, e em seus níveis baixos que os normais de dopamina estão relacionados com a doença de Parkinson.
50
Caráter anfótero
Devido ao fato dos aminoácidos poderem agir tanto como um ácido, quanto como uma base, os aminoácidos são chamados de anfóteros.
Depende do pH.
Ponto Isoelétrico (pl) – pH no qual a carga líquida do aminoácido é zero.
51
Ligações Peptídicas
Os aminoácidos podem ser unidos pela formação de ligações covalentes, chamadas de ligações peptídicas.
Atenção!!!
A Ligação peptídica é a ligação formada entre o grupo carboxila de um aminoácido e o grupo amina do próximo, com a liberação de uma molécula de água (síntese por desidratação).
52
Peptídeos de interesse fisiológico
São peptídeos capazes de exercer uma atividade reguladora no organismos humano, ou no metabolismo de microrganismos, independente do seu valor nutritivo.
Glutationa (3 resíduos) – ação antioxidante;
Oxitocina (9 resíduos) – estimula as concentrações uterinas;
Bradicina (9 resíduos) – inibe a inflamação dos tecidos.
Insulina (2 cadeias polipeptídicas, uma com 21 outra com 30 resíduos) – promovendo a entrada de glicose nas células;
Glucagon (29 resíduos) – efeitos antagônico ao da insulina.
53
Questionário de Aprendizagem
Os aminoácidos são moléculas orgânicas que possuem um átomo de carbono ao qual se liga um átomo de hidrogênio, um grupo amina, um grupo carboxílico e uma cadeia lateral “R”. Marque a alternativa que indica corretamente o que difere um aminoácido de outro.
Átomo de hidrogênio
Átomo de carbono
Cadeia lateral “R”
Grupo Carboxílico
Grupo amina
GABARITO:
01 – Alternativa “c”. A cadeia lateral “R” é diferente para cada aminoácido. É ela que difere essas moléculas umas das outras, garantindo propriedades físico-químicas distintas.
54
Questionário de Aprendizagem
02. Como todos sabem, os aminoácidos são as moléculas orgânicas que formam as proteínas. Todas as proteínas são formadas por diferentes aminoácidos, que se combinam de formas diferentes. Sabemos que existem 20 aminoácidos e que alguns podem ser produzidos no nosso organismo; outros, no entanto, devem ser ingeridos na nossa dieta. Os aminoácidos que não podem ser produzidos pelo organismo são chamados de:
Essenciais
Alimentares
Não-essenciais
Especiais
Dietéticos
GABARITO:
02 - Alternativa “a”. Os aminoácidos essenciais são aqueles que nosso organismo não consegue sintetizar e, por isso, devem ser incluídos na nossa dieta.
55
Questionário de Aprendizagem
03. Sabemos que os aminoácidos são as unidades constituintes das proteínas. Essas moléculas orgânicas são ligadas umasàs outras por ligações denominadas de:
a) ligações de hidrogênio.
b) ligações dativas.
c) ligações iônicas.
d) ligações metálicas.
e) ligações peptídicas.
GABARITO:
03 - Alternativa “e”. As ligações peptídicas são formadas por uma reação entre o grupo carboxílico de um aminoácido e o grupo amina de outro.
56
BIOQUÍMICA
REVISÃO:
PROTEÍNAS
Monitor: Raí Pereira de Paula
Curso: Biomedicina
Conteúdo
O que são Proteínas? Funções das Proteínas
Estrutura das Proteínas: Primária, Secundária, Terciária e Quaternária
Tipos de Proteínas
Desnaturação Proteica
Hemoglobinas e as Anemias
O que são proteínas?
Proteínas são macromoléculas (moléculas biológicas) formadas pela união de 100 ou mais aminoácidos.
Possuem funções diversas nos seres vivos.
Estrutural: colágeno, queratina
Hormonal: insulina
Contração: actina, miosina
Transporte de oxigênio: mioglobina, hemoglobina
Defesa: anticorpo
Coagulação sanguínea: fibrinogênio
Catálise (realização de reações químicas): enzimas
Os aminoácidos obtidos das proteínas dos alimentos (ou de suplementos), bem como os aminoácidos sintetizados pelas células do organismo (aminoácidos não essenciais) são utilizados pelo RNA transportador no ribossomo para a síntese de novas proteínas necessárias ao organismo (processo de Tradução).
59
Estruturas das proteínas
Estrutura primária: sequência linear de aminoácidos;
Estrutura secundária: forma como os aminoácidos se organizam entre si na sequência primária, forma como os aminoácidos se organizam entre si na sequência primária;
Estrutura terciária: arranjo tridimensional dos átomos da proteína;
Estrutura quaternária: união não-covalente de várias moléculas protéicas enoveladas num complexo multi-protéico.
60
Estrutura primária
Estrutura secundária
Estrutura terciária
Estrutura quaternária
61
Tipos de proteínas
Globulares: Cadeias polipeptídicas dobradas em forma esférica;
Solúveis em água;
Ex.: enzimas; proteínas transportadoras, anticorpos, etc. 
Fibrosas: Cadeias polipeptídicas arranjadas em longos filamentos;
Insolúveis em água;
Ex.: queratina, colágeno.
62
Desnaturação proteica
Desnaturação é um processo que se dá em moléculas biológicas, principalmente nas proteínas, expostas a condições diferentes àquelas em que foram produzidas, como variações de temperatura, mudanças de pH, força iônica, entre outras. 
A desnaturação ocorre quando a proteína perde sua estrutura secundária e/ou terciária, ou seja, o arranjo tridimensional da cadeia polipeptídica é rompido, fazendo com que, quase sempre, perca sua atividade biológica característica.
Algumas proteínas desnaturadas, ao serem devolvidas para o seu meio original, podem recuperar a sua configuração espacial normal, renaturando-se. Entretanto, quando a desnaturação ocorre por elevações extremas de temperatura ou alterações muito intensas do pH, as modificações, geralmente, são irreversíveis.
63
Desnaturação proteica
64
Desnaturação proteica
Dois exemplos simples de desnaturação ocorrem:
Ao pingar gotas de limão no leite, o pH é alterado, causando a desnaturação das proteínas, que se precipitam na forma de coalho.
Ao cozinhar um ovo. O calor modifica irreversivelmente a clara, que é formada pela proteína albumina e água.
Os fatores que causam a desnaturação são:
Aumento de temperatura (cada proteína suporta certa temperatura máxima, se esse limite é ultrapassado ela desnatura);
Extremos de pH;
Solventes orgânicos miscíveis com a água (etanol e acetona);
Solutos (ureia);
Exposição da proteína a detergentes;
Agitação vigorosa da solução proteica até formação abundante de espuma.
65
Hemoglobina e Anemias 
A ANEMIA é definida como síndrome caracterizada por diminuição de massa eritrocitária total.
Laboratorialmente, define-se anemia como hemoglobina menor que 12 g/dl em mulheres ou 13 g/dl em homens. 
66
Hemoglobina e Anemias 
ANEMIA FERROPRIVA 
A deficiência de ferro representa a causa mais comum de anemia. 
Tratamento: Suporte nutricional e Reposição de ferro
A ferritina é uma proteína globular que se localiza essencialmente no fígado. 
A ferritina é a mais importante proteína de reserva do ferro e é encontrada em todas as células, especialmente naquelas envolvidas na síntese de compostos férricos e no metabolismo e na reserva do ferro.
Valores de ferritina inferiores ao valor normal indicam, com certeza, carência de ferro e permitem o diagnóstico diferencial entre anemia ferropriva (da carência de ferro) e anemias devido a outras causas.
67
Hemoglobina e Anemias 
ANEMIA MEGALOBLÁSTICA
Pode ser causada por deficiência de vitamina B12 (cobalamina) ou vitamina B9 (ácido fólico), que ocorre por baixa ingesta (deficiência de folato) ou por impacto na absorção, como é o caso da anemia perniciosa (deficiência de vitamina B12).
68
Hemoglobina e Anemias 
TALASSEMIA
É uma doença hereditária resultante de um defeito genético na síntese de uma ou mais cadeias globínicas da
hemoglobina. 
O tratamento varia de simples observação e acompanhamento, nas formas mais brandas, até transfusões sanguíneas frequentes, nas formas mais severas.
69
Hemoglobina e Anemias 
ANEMIA FALSIFORME
Ocorre por mutação que substitui o ácido glutâmico por valina na posição 6 da cadeia ß da globina. 
A hemácia com a globina mutante quando desoxigenada torna a clássica forma de foice, perdendo a flexibilidade necessária para atravessar os pequenos capilares. 
Suplementar ácido fólico: 5mg/dia, VO. Ferro é contraindicado. 
70
Questionário de Aprendizagem
01. As proteínas são substâncias formadas pela união de uma grande quantidade de moléculas denominadas:
a) nucleotídeos.
b) base nitrogenada.
c) aminoácidos.
d) glicídios.
GABARITO:
01 - Alternativa “c”. As proteínas são formadas por uma sequência de aminoácidos unidos por ligações peptídicas.
71
Questionário de Aprendizagem
02. (Efoa-MG) Além de serem as macromoléculas mais abundantes nas células vivas, as proteínas desempenham diversas funções estruturais e fisiológicas no metabolismo celular. Com relação a essas substâncias, é correto afirmar que:
a) são todas constituídas por sequências monoméricas de aminoácidos e monossacarídeos.
b) além de função estrutural, são também as mais importantes moléculas de reserva energética e de defesa.
c) são formadas pela união de nucleotídeos por meio dos grupamentos amina e hidroxila.
d) cada indivíduo produz as suas proteínas, que são codificadas de acordo com o material genético.
e) a sua estrutura é determinada pela forma, mas não interfere na função ou especificidade.
GABARITO:
02 - Alternativa “d”. Todas as proteínas são formadas em um processo conhecido por tradução, em que os aminoácidos são unidos de acordo com a sequência determinada pelo RNAm. Este RNA, por sua vez, é produto de um processo de transcrição, onde ele é formado a partir de um molde de DNA.
72
BIOQUÍMICA
REVISÃO:
ENZIMAS
Monitor: Raí Pereira de Paula
Curso: Biomedicina
Conteúdo
Definição
Classificação 
Catálise
Cinética
Inibição 
Características e regulação enzimática
Cofator e coenzima, grupo prostético e sítio catalítico da enzima 
Enzima: substrato e produto
Definição 
As enzimas estão no centro de cada processo bioquímico. Agindo em sequências organizadas, elas catalisam cada uma das reações das centenas de etapas que degradam as moléculas dos nutrientes, que conservam e transformam energia química e que constroem as macromoléculas biológicas a partir de precursores elementares.
Toda ENZIMA é uma PROTEÍNA.
As enzimas têm um poder catalítico extraordinário, geralmente muito maior do que os catalisadores sintéticos ou inorgânicos. Elas têm um alto grau de especificidade para os seus respectivos substratos, aceleram as reações químicas e atuam em soluções aquosas sob condições suaves de temperatura e pH. Poucos catalisadores não biológicos têm esse conjunto de propriedades. 
Porque todas enzimas são proteínas, devido uma conclusão de dois pesquisadores – ressaltar que pepsina, tripsina e outras enzimas digestivas e descobrirem que todas são proteínas.75
Conceitos Importantes 
As enzimas, assim como as demais proteínas, têm pesos moleculares que variam entre cerca de 12.000 e mais de um milhão. Algumas não necessitam de outros grupos químicos além dos próprios resíduos de aminoácidos. Outras necessitam de um componente químico adicional, denominado COFATOR, que pode ser um ou mais íons inorgânicos.
Os íons inorgânicos são: Fe2+, Mg2+, ou Zn2+, ou molécula orgânica ou metalorgânica complexa, denominada COENZIMA.
As COENZIMAS agem como carreadores transitórios de grupos funcionais específicos. A maioria delas é derivada das vitaminas, nutrientes orgânicos que estar presentes em pequenas quantidades na dieta.
76
77
Classificação
Muitas enzimas receberam seus nomes pela adição do sufixo “ase” ao nome dos seus substratos ou a uma palavra que descreve sua atividade. Assim, a urease catalisa a hidrólise da ureia e a DNA-polimerase catalisa a polimerização de nucleotídeos para formar DNA. Outras enzimas foram batizadas pelos seus descobridores em razão de uma função ampla, antes que fosse conhecida a reação específica catalisada por elas. Por exemplo, uma enzima conhecida por atuar na digestão de alimentos foi denominada pepsina, do grego pepsis (digestão), e a lisozima foi denominada pela sua capacidade de lisar (degradar) a parede de bactérias.
78
Enzimas habituais ou constitutivas
Enzimas indutivas
As células sempre as sintetizam. Ex.: enzimas da glicólise
As células só as sintetizam quando estão na presença do substrato da enzima. Ex.:enzimas que quebram a galactose em leveduras
Isoenzimas
Enzimas que têm a mesma função, ou seja, catalisam uma mesma reação, porém apresentam estruturas diferentes. Ex.: glicoquinase e hexoquinase
Outras formas de classificar:
Classificação
79
Catálise
A catálise enzimática das reações é essencial para os sistemas vivos. Nas condições biológicas relevantes, as reações não catalisadas tendem a ser lentas – a maioria das moléculas biológicas é muito estável nas condições internas das células com pH neutro, temperaturas amenas e ambiente aquoso. Além disso, muitos processos químicos corriqueiros, como a formação transitória de intermediários instáveis carregados ou a colisão de duas ou mais moléculas exatamente na orientação exata necessária para que as reações ocorram, são desfavoráveis ou improváveis no ambiente celular. As reações necessárias para digerir os alimentos, enviar sinais nervosos ou contrair os músculos simplesmente não ocorrem em velocidades adequadas sem catálise.
80
Catálise
A propriedade característica das reações catalisadas por enzimas é que a
reação ocorre confinada em um bolsão da enzima denominado sítio ativo. A molécula que liga no sítio ativo e sobre a qual a enzima age é denominada substrato. O contorno da superfície do sítio ativo é delimitado por resíduos de aminoácidos com grupos nas cadeias laterais que ligam o substrato e que catalisam a sua transformação química. Frequentemente, o sítio ativo engloba o substrato, sequestrando-o completamente da solução. O complexo enzima-substrato, cuja existência foi primeiramente proposta por Charles-Adolphe Wurtz em 1880, é fundamental para a ação enzimática. Também é o ponto de partida para o tratamento matemático que define o comportamento cinético das reações catalisadas por enzimas e para a descrição teórica dos mecanismos das enzimas.
81
FIGURA 6-1 Ligação de um substrato no sítio ativo de uma enzima. A enzima quimotripsina, com o substrato ligado (PBD ID 7GCH). Alguns dos resíduos-chave do sítio ativo aparecem como uma mancha vermelha na superfície da enzima. [Fonte: PDB ID 7GCH, K. Brady et al., Biochemistry 29:7600, 1990]
82
As enzimas alteram a velocidade da reação, não o seu equilíbrio
Uma reação enzimática simples pode ser escrita como:
onde E, S e P representam enzima, substrato e produto; ES e EP são complexos transitórios da enzima com o substrato e com o produto.
Para entender a catálise, deve-se primeiro avaliar a importância
de distinguir entre o equilíbrio e a velocidade de uma reação. A função do catalisador é aumentar a velocidade da reação. A catálise não afeta o equilíbrio da reação. Qualquer reação, como S P, pode ser descrita por um diagrama de coordenadas da reação que representa a variação de energia durante a reação.
83
As enzimas afetam as velocidades da reação, mas não seu equilíbrio
Figura I Figura II
FIGURA 6-2 Diagrama da coordenada da reação. A energia livre do sistema está colocada no gráfico versus o progresso da reação S -> P. Diagramas deste tipo descrevem as mudanças de energia durante a reação. O eixo horizontal (coordenada da reação) reflete as mudanças químicas progressivas (p. ex., quebra ou formação da ligação) à medida que S é convertido em P. As energias de ativação, DG‡, para as reações S -> P e P -> S estão indicadas. DG9° é a variação total da energia livre padrão na direção S ->P.
FIGURA 6-3 Diagrama da coordenada da reação comparando uma reação catalisada por enzima com uma não catalisada. Na reação S S P, os intermediários ES e EP ocupam o nível mínimo na curva da progressão da energia de uma reação catalisada por uma enzima. Os termos DG‡ não catalisada e DG‡ catalisada correspondem, respectivamente, à energia de ativação da reação não catalisada e à energia de ativação total da reação catalisada. A energia de ativação é menor quando a reação é catalisada por uma enzima.
84
Cinética enzimática
[S]: concentração do substrato
V0: velocidade inicial da reação
Vmáx: velocidade máxima da reação
Km: constante de Michaelis-Menten. 
Equivale à concentração do substrato na qual a velocidade inicial é a metade da velocidade máxima. É o inverso da afinidade da enzima pelo substrato.
Inibição enzimática
A inibição enzimática é a redução da velocidade de uma reação enzimática provocada por uma molécula. 
As moléculas que provocam essa ação inibitória são chamadas de inibidores e podem ser tanto constituintes da própria célula como podem ser substâncias estranhas a ela.
Inibição enzimática
Inibição Enzimática Reversível
Diminui a atividade enzimática através de interação reversível. Ou seja, o inibidor estabelece com a enzima um complexo com uma ligação instável, não covalente. Como a ligação é instável, após a dissociação com o inibidor, a enzima pode retomar sua atividade. 
Existem três tipos de inibição enzimática reversível: competitiva, incompetitiva e mista. Esses tipos podem ser distinguidos experimentalmente pelos efeitos do inibidor sobre a cinética de reação da enzima.
Inibição enzimática
Inibição Enzimática Irreversível
Os inibidores irreversíveis são aqueles inibidores que se ligam no sítio ativo da enzima, de modo a formar um complexo estável, ou seja, há a formação de uma ligação covalente entre o inibidor e a enzima, o que pode promover uma destruição dos grupos funcionais essenciais da enzima. Essa inibição é progressiva, aumentando com o tempo até que atinja uma máxima inibição. As substâncias que modificam quimicamente os resíduos de aminoácidos específicos podem agir como inibidores irreversíveis. Os inibidores irreversíveis são muito úteis em estudos de mecanismo de reação.
Inibição enzimática
INIBIÇÃO COMPETITIVA
A molécula inibidora apresenta estrutura semelhante ao substrato da enzima que se liga para realizar a catálise. Ela se liga ao sítio ativo da enzima, que não pode realizar o processo catalítico, pois seu sítio ativo está ocupado para poder ligar-se ao substrato correto. Portanto o inibidor compete como substrato pelo sítio de ação.
O inibidor forma com a enzima o complexo enzima-inibidor EI, que é análogo ao complexo enzima substrato ES.
Inibição enzimática
INIBIÇÃO INCOMPETITIVA
Caracteriza-se pelo fato de o inibidor não se combinar com a enzima livre, nem afetar sua reação com o substrato normal; contudo ele se combina com o complexo ES para originar um complexo ternário inativo ESI, incapaz de sofrer a etapa subsequente da reação para produzir o produto.
Essasinter-relações indicam que o grau de inibição pode aumentar à medida que se aumenta a concentração do substrato.
Podem ser observadas em reações catalisadas por enzimas que possuem mais de um substrato.
Reduz igualmente a Vmax e Km.
Inibição enzimática
Um inibidor não competitivo pode se combinar com a enzima livre ou com o complexo ES, interferindo na ação de ambos. Esses inibidores ligam-se a um sítio da enzima diferente do sítio ativo, muitas vezes ocasionando deformação da mesma de forma que ela não forme o complexo ES na velocidade usual e, uma vez formado, ele não se desdobra na velocidade normal para originar o produto.
Ocorre quando uma molécula ou íon pode se ligar em um segundo local na superfície enzimática, que não seja o sítio ativo. Isso pode distorcer a enzima, tornando o processo catalítico ineficiente.
INIBIÇÃO MISTA (NÃO COMPETITIVA)
Inibição enzimática
O inibidor não competitivo pode ser uma molécula que não se assemelha com o substrato, mas apresenta uma grande afinidade com a enzima. É o mecanismo inverso do inibidor competitivo, porque inibe a ligação do complexo ES e não da enzima livre.
O efeito da reação modifica a velocidade e o Km permanece constante.
Como exemplo, há a proteína α1-antitripsina que liga-se à tripsina e inibe a ação desta.
INIBIÇÃO MISTA (NÃO COMPETITIVA)
Enzimas alostéricas (ou regulatórias) são enzimas que contêm uma região separada daquela em que se liga o substrato, na qual pequenas moléculas regulatórias (moduladores) podem ligar-se e modificar a atividade catalítica destas enzimas. 
Enzimas alostéricas
Muitas enzimas alostéricas são oligoméricas (constituídas de múltiplas subunidades); geralmente estão localizadas em um ponto de ramificação, ou próximo a ele, em uma via metabólica, influenciando no direcionamento de substratos para uma ou outra via disponível. 
Enzimas alostéricas
Aspartato transcarbamilase
Enzimas digestivas
PARTE I - Questionário de Aprendizagem
01. As enzimas estão presentes em pequenas quantidades no organismo. Elas são moléculas extremamente específicas, atuando somente sobre um determinado composto e efetuam sempre o mesmo tipo de reação. Em relação às enzimas, foram feitas quatro afirmações: 
I. Enzimas são proteínas que atuam como catalisadores de reações químicas. 
II. Cada reação química que ocorre em um ser vivo, geralmente é catalisada por um tipo de enzima. 
III. A velocidade de uma reação enzimática independe de fatores como a temperatura e o pH do meio. 
IV. As enzimas sofrem um processo de desgaste durante a reação química da qual participam. 
I e II
I e III
I, II e IV
III e IV
I, II, III e IV
GABARITO:
01 - A
96
PARTE II - Questionário de Aprendizagem
O gráfico abaixo mostra a taxa de digestão de um alimento em diferentes pH. Com base nesses dados, podem ser substrato e enzima, respectivamente: 
a) amido e amilase da saliva. 
b) proteína e pepsina. 
c) proteína e tripsina. 
d) gordura e lipase intestinal. 
e) amido e amilase intestinal. 
GABARITO:
01 - B
97
BIOQUÍMICA
REVISÃO:
LIPÍDEOS
Monitor: Raí Pereira de Paula
Curso: Biomedicina
Conteúdo
O que são lipídeos?
Classificação dos lipídeos
Ácidos graxos: saturados e insaturados
Lipídeos estruturais em membranas
Os glicerofosfolipídeos são derivados do ácido fosfatídico
O que é colesterol? O que é o colesterol bom e o ruim? Quais os fatores de risco para colesterol? O que fazer para não ter um colesterol alto?
Gordura Trans
O que são lipídeos?
Lipídios são biomoléculas de estruturas diversas, insolúveis em água e solúveis em compostos orgânicos (álcool, clorofórmio, acetona, etc.).
100
Classificação dos Lipídeos
1)Lipídios de armazenamento de energia 
Ex.: Óleos, gorduras, ceras.
2)Lipídios estruturais em membranas
Ex.: Fosfolipídios, glicolipídios.
3)Lipídios como sinalizadores, cofatores e pigmentos
Ex.: Hormônios, ubiquinonas, caroteno.
101
Ácidos graxos: saturados e insaturados
As gorduras e os óleos utilizados de modo quase universal como formas de armazenamento de energia nos organismos vivos são derivados de ácidos graxos.
Os ácidos graxos são derivados de hidrocarbonetos, com estado de oxidação quase tão baixo (i.e., altamente reduzido) quando os hidrocarbonetos nos combustíveis fósseis. 
102
Os triacilgliceróis são ésteres de ácidos graxos e glicerol
Os lipídeos mais simples construídos a partir de ácidos graxos são os triacilgliceróis, também chamados de triglicerídeos, gorduras ou gorduras neutras. Os triacilgliceróis são compostos por três ácidos graxos, cada um em ligação éster com uma molécula de glicerol. Aqueles que contêm o mesmo tipo de ácido graxo em todas as três posições são chamados de triacilgliceróis simples, e sua nomenclatura é derivada do ácido graxo que contêm. Os triacilgliceróis simples de por exemplo, são tripalmitina, triestearina e trioleína, respectivamente. A maioria dos triacilgliceróis de ocorrência natural é mista, pois contém dois ou três ácidos graxos diferentes. Para dar nome a esses compostos sem gerar ambiguidade, o nome e a posição de cada ácido graxo devem ser especificados. 
Como as hidroxilas polares do glicerol e os carboxilatos polares dos ácidos graxos estão em ligações éster, os triacilgliceróis são moléculas apolares, hidrofóbicas, essencialmente insolúveis em água. Os lipídeos têm densidades específicas mais baixas do que a água, o que explica por que as misturas de óleo e água (p. ex., tempero de salada com azeite e vinagre) têm duas fases: o óleo, com densidade específica mais baixa, flutua sobre a fase aquosa.
103
FIGURA 10-3 O glicerol e um triacilglicerol. O triacilglicerol misto mostrado aqui tem três ácidos graxos diferentes ligados à cadeia do glicerol. Quando o glicerol apresenta ácidos graxos diferentes em C-1 e C-3, o C-2 é um centro quiral.
104
Os triacilgliceróis são ésteres de ácidos graxos e glicerol
105
Revisão – Lipídeos de armazenamento
Os lipídeos são componentes celulares insolúveis em água, de estruturas diversas, que podem ser extraídos dos tecidos por solventes apolares. 
Quase todos os ácidos graxos, os componentes hidrocarbonados de muitos lipídeos, têm um número par de átomos de carbono (geralmente 12 a 24); eles são saturados ou insaturados, com ligações duplas quase sempre na configuração cis. 
Os triacilgliceróis contêm três moléculas de ácidos graxos esterificadas aos três grupos hidroxila do glicerol. Os triacilgliceróis simples contêm somente um tipo de ácido graxo; os mistos contêm dois ou três tipos. Eles são principalmente gorduras de reserva, estando presentes em muitos alimentos. 
A hidrogenação parcial de óleos vegetais na indústria alimentícia converte algumas ligações duplas cis para a configuração trans. Ácidos graxos trans na dieta são um importante fator de risco para doenças cardíacas coronarianas.
106
Lipídeos estruturais em membranas
A característica central na arquitetura das membranas biológicas é uma dupla camada de lipídeos que atua como barreira à passagem de moléculas polares e íons. Os lipídeos de membrana são anfipáticos: uma extremidade da molécula é hidrofóbica e a outra é hidrofílica. Suas interações hidrofóbicas entre si e suas interações hidrofílicas com a água direcionam o seu empacotamento em camadas, chamadas de bicamadas de membrana. Esta seção descreve cinco tipos gerais de lipídeos de membrana: glicerofosfolipídeos, nos quais as regiões hidrofóbicas são compostas por dois ácidos graxos ligados ao glicerol; galactolipídeos e sulfolipídeos, que também contêm dois ácidos graxos esterificados com o glicerol, mas não apresentam os fosfatos característicos dos fosfolipídeos; lipídeos tetraéter em arqueia, nos quais duas cadeias muito longas de alquilas estão unidas por ligação éter ao glicerol em ambas as extremidades; esfingolipídeos, nos quais um único ácido graxo está ligado a uma amina graxa, a esfingosina; e esteróis, compostos caracterizados por um sistema rígido de quatro anéis hidrocarbonados fusionados.
107
Lipídeos estruturais em membranas
FIGURA 10 -7 Alguns tipos comunsde lipídeos de armazenamento e de membrana. Todos os tipos de lipídeos representados aqui têm ou glicerol ou esfingosina como esqueleto (em cor salmão), ao qual estão ligados um ou mais grupos alquila de cadeia longa (em amarelo) e um grupo cabeça polar (em azul). Em triacilgliceróis, glicerofosfolipídeos, galactolipídeos e sulfolipídeos, os grupos alquilas são ácidos graxos em ligação éster. Os esfingolipídeos contêm um único ácido graxo em ligação amida com o esqueleto
108
Os glicerofosfolipídeos são derivados do ácido fosfatídico
Os glicerofosfolipídeos, também chamados de fosfoglicerídeos, são lipídeos de membrana nos quais dois ácidos graxos estão unidos por ligação éster ao primeiro e ao segundo carbono do glicerol e um grupo fortemente polar ou carregado está unido por ligação fosfodiéster ao terceiro carbono. O glicerol é pró-quiral: não apresenta carbonos assimétricos, mas a ligação de fosfato a uma extremidade converte-o em um composto quiral, que pode ser chamado corretamente de L-glicerol-3-fosfato, D-glicerol-1-fosfato, ou sn-glicerol-3 fosfato. Os glicerofosfolipídeos são denominados como derivados do composto precursor, o ácido fosfatídico, de acordo com o álcool polar no grupo cabeça. A fosfatidilcolina e a fosfatidiletanolamina têm colina e etanolamina como grupos cabeça polares, por exemplo. Em todos esses compostos, o grupo cabeça está unido ao glicerol por uma ligação fosfodiéster, na qual o grupo fosfato tem carga negativa em pH neutro.
109
O que é colesterol? O que é o colesterol bom e o ruim? Quais os fatores de risco para colesterol? O que fazer para não ter um colesterol alto?
110
Lipídios como sinalizadores, cofatores e pigmentos
 Sinalizadores: hormônios eicosanóides (carregam mensagens a células próximas). Ex.: substâncias inflamatórias (prostaglandina, tromboxano e leucotrieno) 
Ácido araquidônico e derivados eicosanóides. NSAIDs – Compostos antiinflamatórios não esteroidais (Aspirina, Acetoaminofeno, Ibuprofeno) que bloqueiam a formação de prostaglandinas e tromboxanos a partir de aracdonato inibindo a enzima cicloxigenase.
Sinalizadores: hormônios esteróides (carregam mensagens entre os tecidos).
Cofatores: Ubiquinonas e plastoquinonas (transportadores de elétrons na mitocôndria e no cloroplasto, respectivamente)
111
Acúmulos intracelulares-lipídios
ACÚMULOS
Triglicerídeos
Colesterol
ESTEATOSE (DEGENERAÇÃO GORDUROSA)
São acúmulos anormais de triglicerídeos dentro das células parenquimatosas.
Órgãos afetados: fígado (mais comum devido ao metabolismo lipídico), coração, músculo e rins. 
Causas: Toxinas, desnutrição protéica, diabetes melito, obesidade e anoxia. Nas nações desenvolvidas, as causas mais comuns de degeneração gordurosa hepática significativa (fígado gorduroso) são o abuso do álcool e doença hepática gordurosa não alcoólica, que frequentemente está associada com diabetes e obesidade.
112
Acúmulos intracelulares-lipídios
ESTEATOSE HEPÁTICA (FÍGADO GORDUROSO)
Acúmulos intracelulares-lipídios
O metabolismo celular do colesterol é estreitamente regulado de modo que a maioria das células usa o colesterol para a síntese das membranas celulares sem acúmulo intracelular de colesterol ou ésteres de colesterol.
Acúmulos em vacúolos intracelulares  processos patológicos.
COLESTEROL E ÉSTERES DE COLESTEROL
Lipoproteínas
Lipoproteínas: Quilomícrons
Lipoproteínas: HDL, VLDL e LDL
Gordura trans
Gordura trans
Questionário de Aprendizagem
Dentre os lipídios abaixo, o mais apolar é:
Esteróides
Triacigliceróis
Esfingolipídios
Ácidos Graxos
 
02. Os lipídios são envolvidos em vários processos de reconhecimento celular, bem como determinantes dos grupos sanguíneos humanos:
Ésteres de colesterol
Esfingolipipídios
Glicerofosfolipídios
Glicoproteínas
GABARITO:
01 –D
02 - B
121
Referência 
LEHNINGER, T. M., NELSON, D. L. & COX, M. M. Princípios de Bioquímica. 7ª Edição, 2019. Ed. Artmed.

Outros materiais