Logo Passei Direto
Buscar

Estrutura de Pontes

User badge image
Panetone Gol1

em

Ferramentas de estudo

Questões resolvidas

Com relação aos componentes que podem formar a seção transversal temos: a) Faixas de rolamento: essa se refere a pista propriamente dita, a faixa por onde o veículo irá fazer a travessia do obstáculo. A largura dessa faixa é determinada pela largura do veículo de projeto acrescida uma largura de segurança, a qual depende da categoria da via. De modo geral, sua largura varia entre 3,00 a 3,60m. b) Acostamentos ou faixas de segurança: refere-se a parte da via destinada à parada de veículos em casos de emergência, podendo ser utilizado por pedestres ou ciclistas na ausência de local apropriado para os mesmos. c) Faixa de aceleração e desaceleração: são faixas de rolamento separadas, necessárias em ligações com outras vias. Essas faixas permitem que o veículo aumente ou diminua a velocidade para poder entrar ou sair da pista rápida com segurança. d) Passeios: local destinado a passagem de pedestres e ciclistas com segurança. O DNER estabelece larguras mínimas para os passeios laterais de obras-de-arte. Sendo 1,50 para passeios destinados apenas para pedestres e de 3,0 quando compartilhados com ciclistas, conforme apresentado na figura abaixo.
A imagem mostra a seção transversal de uma passarela, destacando a largura destinada a pedestres e ciclistas. A figura inclui as dimensões da passarela, com 300 mm de largura total, 150 mm para pedestres e 150 mm para ciclistas, separados por uma pintura de separação.
e) Elementos de proteção: são elementos presentes na pista para garantir segurança aos diversos usuários da via. Falaremos com mais detalhes sobre os elementos de proteção mais utilizados.

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

Com relação aos componentes que podem formar a seção transversal temos: a) Faixas de rolamento: essa se refere a pista propriamente dita, a faixa por onde o veículo irá fazer a travessia do obstáculo. A largura dessa faixa é determinada pela largura do veículo de projeto acrescida uma largura de segurança, a qual depende da categoria da via. De modo geral, sua largura varia entre 3,00 a 3,60m. b) Acostamentos ou faixas de segurança: refere-se a parte da via destinada à parada de veículos em casos de emergência, podendo ser utilizado por pedestres ou ciclistas na ausência de local apropriado para os mesmos. c) Faixa de aceleração e desaceleração: são faixas de rolamento separadas, necessárias em ligações com outras vias. Essas faixas permitem que o veículo aumente ou diminua a velocidade para poder entrar ou sair da pista rápida com segurança. d) Passeios: local destinado a passagem de pedestres e ciclistas com segurança. O DNER estabelece larguras mínimas para os passeios laterais de obras-de-arte. Sendo 1,50 para passeios destinados apenas para pedestres e de 3,0 quando compartilhados com ciclistas, conforme apresentado na figura abaixo.
A imagem mostra a seção transversal de uma passarela, destacando a largura destinada a pedestres e ciclistas. A figura inclui as dimensões da passarela, com 300 mm de largura total, 150 mm para pedestres e 150 mm para ciclistas, separados por uma pintura de separação.
e) Elementos de proteção: são elementos presentes na pista para garantir segurança aos diversos usuários da via. Falaremos com mais detalhes sobre os elementos de proteção mais utilizados.

Prévia do material em texto

ESTRUTURAS 
DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA
Prof.a Camila Barella Luiz
ESTRUTURAS 
DE PONTES
Marília/SP
2022
“A Faculdade Católica Paulista tem por missão exercer uma 
ação integrada de suas atividades educacionais, visando à 
geração, sistematização e disseminação do conhecimento, 
para formar profissionais empreendedores que promovam 
a transformação e o desenvolvimento social, econômico e 
cultural da comunidade em que está inserida.
Missão da Faculdade Católica Paulista
 Av. Cristo Rei, 305 - Banzato, CEP 17515-200 Marília - São Paulo.
 www.uca.edu.br
Nenhuma parte desta publicação poderá ser reproduzida por qualquer meio ou forma 
sem autorização. Todos os gráficos, tabelas e elementos são creditados à autoria, 
salvo quando indicada a referência, sendo de inteira responsabilidade da autoria a 
emissão de conceitos.
Diretor Geral | Valdir Carrenho Junior
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 5
SUMÁRIO
CAPÍTULO 01
CAPÍTULO 02
CAPÍTULO 03
CAPÍTULO 04
CAPÍTULO 05
CAPÍTULO 06
CAPÍTULO 07
CAPÍTULO 08
CAPÍTULO 09
CAPÍTULO 10
CAPÍTULO 11
CAPÍTULO 12
CAPÍTULO 13
CAPÍTULO 14
CAPÍTULO 15
08
19
32
44
54
66
76
87
98
109
121
132
143
155
169
CONHECENDO AS PONTES E OS VIADUTOS
CLASSIFICAÇÃO DAS PONTES QUANTO AO 
SISTEMA ESTRUTURAL
CLASSIFICAÇÃO DAS PONTES QUANTO AO 
MÉTODO CONSTRUTIVO 
OUTRAS CLASSIFICAÇÕES
CONSIDERAÇÕES PRELIMINARES AO 
PROJETO
SOLICITAÇÕES DE PONTES I
SOLICITAÇÕES DE PONTES II
SOLICITAÇÕES DE PONTES III
COMBINAÇÃO DAS AÇÕES: ESTADOS 
LIMITES
DIMENSIONAMENTO DAS VIGAS PRINCIPAIS: 
ARMADURA LONGITUDINAL
DIMENSIONAMENTO DAS VIGAS PRINCIPAIS: 
ARMADURA CISALHANTE
VERIFICAÇÃO DO ESTADO LIMITE DE 
SERVIÇO DAS VIGAS PRINCIPAIS
APARELHOS DE APOIO
DIMENSIONAMENTO DE APARELHOS DE 
APOIO DE NEOPRENE
MANUTENÇÃO DAS PONTES
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 6
INTRODUÇÃO
Se você já viajou de carro, certamente passou por alguma ponte ou viaduto, 
conhecidas no meio técnico como obras de arte. Dependendo de onde você mora, 
passa por uma obra dessa todos dias, afinal os grandes centros possuem diversas 
dessas estruturas que facilitam a locomoção dos carros, pedestres e ciclistas.
Como estudante de engenharia você já concluiu algumas matérias específicas 
do curso, com os seus conhecimentos e pensando em uma ponte você conseguiria 
me dizer o que seria necessário para projetar uma obra como essa? Quais seriam as 
diferenças entre as estruturas de uma ponte e a de uma edificação? Você acredita 
que os carregamentos são os mesmos? E a execução? Como será que construímos 
essas estruturas sobre grandes vales e rios de grande correnteza?
Essas são algumas das perguntas que tentaremos responder ao longo das nossas 
15 aulas. Primeiramente definiremos o que são pontes e viadutos e quais as suas 
diferenças. Você também aprenderá quais os elementos principais que constituem 
essas obras: a superestrutura, a mesoestrutura e a infraestrutura.
Nas três aulas seguintes abordaremos as diferentes classificações das obras de 
arte. Você estudará os diferentes sistemas estruturais que podem ser empregados 
nessas obras e quais as aplicabilidades de cada um. Também verá sobre os métodos 
construtivos, os materiais utilizados e as diferentes formas de mobilidade dos estrados 
das pontes.
 Na quinta aula estudaremos sobre as informações necessárias para se iniciar 
um projeto de uma ponte. Essas informações são fundamentais para decidir qual o 
melhor material, sistema construtivo e como será executada a estrutura. Decisões 
fundamentais para os próximos passos do projeto.
No capítulo seis começamos a estudar as diferentes cargas que podem atuar sobre 
estas estruturas, nessa aula você aprenderá sobre as cargas permanentes. Nas aulas 
sete e oito você aprenderá sobre as cargas variáveis incluindo as cargas móveis e na 
influência dessa nos esforços atuantes.
Em seguida, revisaremos os conceitos de estados limites. Você verá como combinar 
as diferentes ações atuantes sobre a estrutura e quando utilizar cada uma dessas 
combinações. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 7
Nas aulas dez, onze e doze abordaremos os passos necessários para o 
dimensionamento de uma viga principal de concreto armado. Passam primeiramente 
pelo dimensionamento das armaduras longitudinais e transversais no estado limite 
último e finalizando com a verificação das deformações da mesma no estado limite 
de serviço.
Logo mais, você estudará os diferentes aparelhos de apoio que são responsáveis 
por garantir que as vinculações consideradas em projeto sejam as que de fato ocorram 
entre os elementos da superestrutura e da mesoestrutura. Na aula quatorze você 
aprenderá a dimensionar um aparelho de apoio de Neoprene.
Por último, discutiremos sobre a manutenção das obras de arte, afinal tão importante 
como projetar e saber conservar nossas pontes e viadutos.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 8
CAPÍTULO 1
CONHECENDO AS 
PONTES E OS VIADUTOS
1.1 Definição 
Olá aluno, seja bem-vindo a primeira aula da disciplina de pontes! Ao longo dessa 
matéria você aprenderá os conceitos que envolvem a concepção e dimensionamento 
de pontes e viadutos. Então, primeiramente deveremos compreender o que de fato 
são estas obras. Segundo Pfeil (1979) pode-se defini-las como uma obra necessária 
para transpor um obstáculo ao longo da via, este obstáculo pode ser um rio, um braço 
de mar, um vale profundo ou até mesmo outras vias. 
Chama-se de ponte a obra destinada a vencer obstáculo molhado, isto é, transpor 
de um rio, lago ou braço de mar. Já, nos casos em que o obstáculo é do tipo seco, 
vias ou vales profundos, temos os chamados viadutos. As figuras abaixo apresentam 
um exemplo de uma ponte e um viaduto, respectivamente. 
Título: Ponte 25 de abril - Lisboa
Fonte: https://unsplash.com/photos/zzb1hka1geM
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 9
Título: Ponte 25 de abril - Lisboa
Fonte: https://www.rawpixel.com/image/3338819/free-photo-image-aerial-view-architecture-bridge
É comum a divisão das pontes em três nomenclaturas distintas, de acordo com 
a sua extensão. Marchetti (2008) as divide em bueiros, quando apresentam vãos 
até 2 metros; pontilhão, quando os vãos variam entre 2 a 10 metros de extensão; 
e pontes quando o vão ultrapassar os 10 metros. Não há, todavia, um consenso na 
literatura em relação ao comprimento do vão limite que caracteriza essa divisão. De 
todo modo, independente da nomenclatura, os procedimentos de projeto e execução 
são os mesmos e, portanto, tudo que você aprenderá ao longo deste livro será válido 
para qualquer uma, seja ela bueiro, pontilhão ou ponte. 
1.2 Elementos constituintes das pontes 
Uma vez compreendida a definição de ponte, vamos agora, aprender um pouco 
sobre os elementos que a constituem. De uma forma geral, podemos dividir seus 
elementos de acordo com a sua finalidade em três partes: infraestrutura, mesoestrutura 
e superestrutura. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 10
A infraestrutura, também conhecida como fundação, constitui a parte responsável 
pela transmissão dos esforços recebidos da mesoestrutura para o maciço de solo. Sendo 
assim, seu dimensionamento depende, além das cargas atuantes, das características 
geológicas do terreno. 
A escolha adequada do tipo de fundação deve levar em conta as seguintes 
características: 
• O carregamento proveniente da mesoestrutura e a capacidade de suporte das 
camadas do solo – devendo a primeira ser sempre inferior a resistência para 
que não ocorra ruptura;
• As deformações, recalques, do solo e as deformações aceitáveis para a 
superestrutura – os recalques diferenciais geram cargas não previstas na 
estrutura devendo, assim, ser evitados;• O procedimento de execução – deve-se sempre avaliar o modo de execução da 
fundação, de modo que se avalie o comprometimento da região vizinha à obra. 
As fundações podem ser superficiais como blocos ou sapatas ou profundas 
compreendidas por estacas ou tubulões. Quando possível, ou seja, quando o maciço do 
solo é formado por maciço rochoso ou solo superficial de alta resistência, recomenda-
se o uso das fundações superficiais nos trechos secos. Também fazem parte da 
infraestrutura as peças de ligação dos elementos da fundação a mesoestrutura como 
os blocos de cabeça de estaca e vigas de enrijecimento. 
Acima da infraestrutura temos a mesoestrutura, formada pelos elementos verticais 
chamados de pilares. Estes elementos tem por finalidade receber os esforços da 
superestrutura e conduzi-los até a fundação. Todavia, estes elementos também sofrem 
a ação de outros esforços que devem ser considerados no seu dimensionamento. 
Exemplos dessas ações são a pressão do vento, da água e o impacto de objetos 
como árvores trazidas pela correnteza. 
Fazem parte da mesoestrutura os aparelhos de apoio, os quais compreendem os 
elementos responsáveis pela transmissão das reações de apoio da superestrutura 
para a mesoestrutura. Estes elementos garantem as vinculações consideradas na 
análise estrutural, além de garantir uma distribuição uniforme das reações.
Por último, sobre a mesoestrutura encontra-se a superestrutura composta por lajes 
e vigas. Essa estrutura tem por finalidade receber todas as cargas provenientes da 
pista de rolamento. É a parte da ponte em contato imediato com os usuários sendo, 
portanto, responsável por suportar e transmitir os esforços de uso para as demais 
partes da ponte. As vigas pertencentes a superestrutura podem ser divididas em dois 
grupos: 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 11
• Vigas principais: as vigas principais são responsáveis por vencer o vão livre, 
sendo posicionadas no sentido longitudinal da ponte. Estas vigas também são 
chamadas de longarinas;
• Vigas secundárias: as vigas secundárias encontram-se posicionadas no sentido 
transversal da ponte, a sua finalidade é receber diretamente o carregamento do 
estrado e descarregá-las nas longarinas. 
Além dessas três partes já mencionadas, existem elementos complementares, 
que podem estar ou não presentes nas pontes. Estes elementos contribuem na 
integralização da ponte a rodovia ou ferrovia. 
O primeiro que iremos estudar é conhecido como encontro. Ele é um elemento 
de ligação entre a ponte e o terrapleno e pode ser observado na figura abaixo. Sua 
função é de suportar a ponte ao mesmo tempo que protege o aterro da erosão. Dessa 
forma, no dimensionamento desse elemento deve-se considerar as reações verticais 
e horizontais provenientes da superestrutura e o empuxo do aterro. Os encontros 
são empregados nos casos de risco de cheias que possam levar a erosão do solo e 
consequente destruição da saia do aterro.
O antigo Departamento Nacional de Estradas de Rodagem, DNER, substituído pelo 
Departamento Nacional de Infraestrutura de Transporte, DNIT, afirma em Brasil (1996) 
que os encontros podem ser classificados em dois tipos:
• Encontros leves: são aqueles que cujas solicitações de empuxo são relativamente 
pequenas, nesses casos busca-se alternativas para redução ou anulação dos 
empuxos sobre a estrutura; 
• Encontros de grande porte: nesses encontros as solicitações causadas pelo 
empuxo são altas, levando a um comprometimento da estabilidade do aterro. 
Estes encontros são empregados em pontes de grande extensão cujas reações 
horizontais são elevadas ou em pontes sobre aterros altos. 
Título: Esquema dos elementos de uma ponte 
Fonte: Autor
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 12
Há algumas situações de projeto nas quais a ponte deve ser ligada a via por meio de 
viadutos, chamados de viadutos de acesso. Estes são utilizados quando o curso d’água 
a ser vencido encontra-se em vales abertos, sendo nestes casos, inviável a construção 
de aterros. Outra situação em que esse tipo de obra complementar é necessária é no 
caso de pontes urbanas acessadas por diferentes vias. Um exemplo dessa situação 
é mostrado na figura abaixo, a ponte Tsing Ma em Hong Kong é acessada por um 
viaduto principal e dois laterais que conduzem a uma segunda via de nível distinto. 
Título: Ponte com viadutos de acesso – Ponte Tsing Ma em Hong Kong
Fonte: https://unsplash.com/photos/QKSk3qiRG5E
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 13
Também é possível que haja viadutos transversais à via, os chamados viadutos 
de meia encosta. Em regiões de serra muitas vezes é necessário que a via contorne 
encostas de elevada inclinação. Nessa situação deve-se garantir o nível da via por 
toda seção transversal, e para isso utiliza-se uma das duas técnicas: viaduto de meia 
encosta ou aterro com muro de arrimo. Ambas as técnicas são ilustradas na imagem 
abaixo. 
Título: Viaduto de meia encosta
Fonte: Debs e Takeya (2010) - pg 2
A escolha por qual dessas técnicas usar depende de dois fatores: o volume de 
terra requerido para a execução do aterro, juntamente com a estrutura necessária 
para garantir a estabilidade do local e global do aterro e o seu custo econômico. 
Em outras palavras, haverá situações em que o aterro mais o muro de arrimo será 
economicamente mais viável e outras situações em que o viaduto terá mais vantagens. 
ISTO ESTÁ NA REDE
Um dos maiores ícones da engenharia civil do nosso país é a ponte Rio – Niterói. 
Inaugurada em 1974, a ponte com 13,29 km de extensão sendo 8,84 km sobre a 
água é considerada a maior ponte da América Latina, sendo a maior do mundo 
em viga reta contínua. Relatos informam que a Ponte Rio-Niterói começou a 
ser idealizada em 1875, com o intuito de ligar a cidade do Rio de Janeiro aos 
municípios do outro lado da Baía do Guanabara. Todavia, apenas em 1968, no 
governo de Costa e Silva, o projeto tomou forma e foi executado pelos engenheiros 
Antônio Alves de Noronha Filho e Benjamin Ernani Diaz.
No link a seguir você encontra uma breve história e curiosidades sobre essa obra 
emblemática do nosso país. 
https://celere-ce.com.br/grandes-obras/ponte-rio-niteroi-construcao/
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 14
1.3 Seção Longitudinal 
Agora que você já conhece as principais partes das pontes, vamos estudar algumas 
denominações muito utilizadas nos projetos de pontes. Iniciemos pela avaliação da 
seção longitudinal da ponte. 
A primeira característica que buscamos conhecer em um projeto é o comprimento 
da ponte que representa a distância horizontal entre os extremos da ponte. Essa 
distância não pode ser confundida com o vão, também conhecido como tramo, que 
corresponde a medida horizontal entre eixos de apoio consecutivos. Há ainda uma 
terceira distância horizontal importante nas pontes, o vão livre, esse representa a 
medida entre as faces de dois apoios consecutivos. 
Em relação às medidas verticais do eixo longitudinal de uma ponte, duas se destacam: 
a altura da construção que representa a altura da superestrutura; e a altura livre, que 
representa a distância entre o ponto mais baixo da superestrutura e o nível máximo 
do curso d’água. 
Todas essas características são ilustradas na figura abaixo:
Título: Vista Longitudinal de uma ponte 
Fonte: Autor
1.4 Seção Transversal 
A principal função de uma ponte é ligar dois pontos distintos de uma via separados 
por um determinado obstáculo, seja ele um vale ou curso d’água. Em outras palavras, 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 15
as pontes garantem a continuidade da via, muitas vezes pelo menor caminho possível, 
levando praticidade ao usuário. 
Diante disso, a seção transversal da via deve ser formada em conformidade com 
a via projetada. Devendo ter elementos próprios de acordocom a sua finalidade, isto 
é, se trata-se de uma ponte rodoviária, ferroviária ou uma passarela. Ao longo dessa 
disciplina iremos nos aprofundar nas pontes rodoviárias.
Sem dúvida, a principal informação que queremos ao falarmos da seção transversal 
de uma ponte é a sua largura. Todavia, essa característica depende de uma série de 
fatores como a classe da rodovia, se ele será urbano ou rural, se será necessário faixas 
de aceleração, desaceleração, faixa de passeio e de ciclistas; todas essas informações 
influenciarão na largura final da ponte. Para se reduzir o número de tipos de seções 
transversais nas obras-de-arte (pontes) é conveniente limitar as variações de larguras 
dos acostamentos e faixas de rolamento de acordo com características topográficas 
(BRASIL,1996). 
As figuras abaixo, apresentam a seção transversal de uma ponte com faixa de 
rolamento simples e em seguida uma com pista dupla. Observe que a quantidade de 
elementos, incluindo pistas de rolamento,irão alterar a seção transversal da obra de arte. 
Título: Seção Transversal para rodovia de pista simples 
Fonte: BRASIL (1996) – pg. 38
Título: Seção Transversal para rodovia de pista dupla 
Fonte: BRASIL (1996) – pg. 39
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 16
Com relação aos componentes que podem formar a seção transversal temos:
a) Faixas de rolamento: essa se refere a pista propriamente dita, a faixa por onde 
o veículo irá fazer a travessia do obstáculo. A largura dessa faixa é determinada 
pela largura do veículo de projeto acrescida uma largura de segurança, a qual 
depende da categoria da via. De modo geral, sua largura varia entre 3,00 a 3,60m.
b) Acostamentos ou faixas de segurança: refere-se a parte da via destinada à 
parada de veículos em casos de emergência, podendo ser utilizado por pedestres 
ou ciclistas na ausência de local apropriado para os mesmos. 
c) Faixa de aceleração e desaceleração: são faixas de rolamento separadas, 
necessárias em ligações com outras vias. Essas faixas permitem que o veículo 
aumente ou diminua a velocidade para poder entrar ou sair da pista rápida com 
segurança. 
d) Passeios: local destinado a passagem de pedestres e ciclistas com segurança. 
O DNER estabelece larguras mínimas para os passeios laterais de obras-de-arte. 
Sendo 1,50 para passeios destinados apenas para pedestres e de 3,0 quando 
compartilhados com ciclistas, conforme apresentado na figura abaixo.
e) Elementos de proteção: são elementos presentes na pista para garantir segurança 
aos diversos usuários da via. Falaremos com mais detalhes sobre os elementos 
de proteção mais utilizados. 
Título: Seção Transversal do passeio 
Fonte: BRASIL (1996) – pg. 46
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 17
Um dos dispositivos de segurança mais comuns nas pontes e rodovias são as 
barreiras que compreendem uma proteção lateral dos veículos. Estes elementos de 
concreto armado possuem dimensões padronizadas e adequadas para garantir uma 
capacidade de absorção de choque, impedindo assim a queda de um eventual veículo 
desgovernado. A figura a seguir apresenta as dimensões padrões estabelecidas pelo 
DNER.
Título: Seção Transversal do passeio 
Fonte: BRASIL (1996) – pg. 45
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 18
Os guarda-corpos só estão presentes nas pontes que possuem passeios, uma vez 
que sua finalidade é garantir a segurança adequada dos pedestres e ciclistas. De modo 
geral, os passeios serão limitados lateralmente por uma barreira, na divisa passeio 
pista, e pelo guarda corpo na extremidade. Ao contrário das barreiras que devem ser 
de concreto armado, os guarda-corpos podem ser escolhidos visando proporcionar 
uma leveza e economia à obra (BRASIL, 1996).
Outro dispositivo de segurança usual são as defesas metálicas. Elas não fazem 
exatamente parte das pontes, entretanto, deve-se atentar para a ligação deste dispositivo 
às barreiras garantindo que a transição não apresente superfícies salientes conforme 
você pode observar na figura abaixo (BRASIL, 1996).
Título: Ligação entre barreira e defesas metálicas
Fonte: BRASIL (1996) – pg. 51
Agora que você já aprendeu o que é um ponte, seus principais elementos e as 
suas características, falaremos sobre as suas classificações. A literatura classifica as 
pontes e viadutos de diferentes maneiras, de acordo com o item avaliado. Na próxima 
aula falaremos da classificação em relação ao tipo estrutural da superestrutura das 
pontes. Até lá! 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 19
CAPÍTULO 2
CLASSIFICAÇÃO DAS 
PONTES QUANTO AO 
SISTEMA ESTRUTURAL
As pontes podem ser classificadas de diferentes formas, ao longo dessa aula 
falaremos sobre a classificação quanto ao tipo estrutural. Em uma pesquisa rápida 
sobre pontes ao redor do mundo você perceberá que elas nem sempre possuem o 
mesmo sistema estrutural. 
Você deve se recordar, das matérias de Estática e Mecânica dos Sólidos I e II e Sistemas 
Estruturais, que cada sistema estrutural tem suas peculiaridades, como esforços 
preponderantes, as quais influenciarão a escolha do material e o dimensionamento 
da estrutura. Um exemplo prático: em pontes treliçadas os elementos, conhecidos 
como barras, possuem apenas esforços normais de tração e compressão, nesses 
casos o aço é o material ideal. Já em pontes de vigas os esforços principais serão o 
cortante e o momento fletor, sendo mais indicado o uso do concreto armado. 
Diante disso, estudaremos os principais sistemas estruturais usados nas pontes. 
Vamos à aula!
2.1 Ponte em Laje
Em pontes de pequenos vãos, de no máximo 15 metros, é possível executar uma 
superestrutura sem vigas. Nestes casos a laje que recebe as ações dos usuários 
transmite as mesmas para os pilares (mesoestrutura). É claro que nesses casos, as 
lajes devem ser avaliadas quanto a punção. 
Dentre as vantagens desse sistema temos a possibilidade de uma superestrutura 
com altura reduzida, de grande resistência à torção e ao fissuramento, além de ser 
uma solução simples e de rápida execução. Esse sistema é uma boa solução para 
obras de encostas. 
A figura abaixo representa uma típica ponte em laje. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 20
Título: Ponte em Laje
Fonte: PFEIL (1979) – pg. 4
2.2 Ponte em Vigas
Um dos sistemas mais empregados no Brasil é o de vigas, você certamente já 
passou por alguma ponte ou viaduto nesse sistema. O emprego de superestrutura em 
vigas apoiadas não permite a transferência de momentos fletores da superestrutura 
para a infraestrutura. Há uma série de disposições para as vigas, detalhadas abaixo: 
a) Vigas simplesmente apoiadas sem balanços 
Este é o caso típico da viga apoiada apenas nas suas extremidades. Neste caso 
a ponte pode possuir uma única viga, quando possui um obstáculo pequeno, ou ser 
constituída por uma sucessão de tramos independentes, observe a figura a seguir. 
Em geral, esse sistema construtivo é executado com vigas pré-fabricadas de concreto 
armado ou protendido. 
Título: Ponte com sucessão de vigas biapoiadas – elementos pré-fabricados
Fonte: Autor
Esse tipo de sistema estrutural é um dos mais simples, sendo também bastante 
limitado. A distribuição dos esforços é definida pela imposição do vão, tendo poucas 
possibilidades de melhora. Portanto, os vãos empregados nesse sistema raramente 
ultrapassam os 50 metros. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 21
Atualmente a integração entre os sucessivos tramos é feita pela laje do tabuleiro. De 
modo geral, uma única laje une de três a quatro tramos de vigas. Esse procedimento 
melhora a fluidez dos usuários devido a diminuição das juntas na pista, além de 
melhorar a distribuição das ações horizontais, como a frenagem, nos apoios. 
Para o dimensionamento das estruturas é sempre necessário partir deuma 
determinada seção transversal, já conhecida, e então avaliar se esta será capaz de 
resistir aos esforços atuantes. Dessa forma, devemos sempre dar um “chute” inicial para 
as dimensões da estrutura. A esse “chute” damos o nome de pré-dimensionamento. 
Para as vigas biapoiadas de concreto armado temos que a altura adotada deve estar 
entre:
15 10
L Lh< < 
sendo L o comprimento do vão. 
É recomendado usar concreto armado para vãos de até 25 metros, acima desse 
valor é mais vantajoso o uso do concreto protendido. Nesse caso a altura da viga irá 
mudar, devendo ser adotado um valor entre:
 20 15
L Lh< < 
b) Vigas simplesmente apoiadas com balanços
Uma das formas mais simples de melhorar a distribuição dos atuantes em uma 
viga é adicionar balanços na sua extremidade. Observe a figura a seguir:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 22
Título: Comparação entre viga biapoioada com e sem balanço submetida a um mesmo carregamento 
Fonte: Autor
Perceba que as duas vigas apresentam o mesmo vão interno, todavia, a viga 
biapoiada apresenta um maior momento positivo no centro do vão. Isso deve-se ao 
momento nulo de seus apoios. Já a viga com balanço apresenta uma redução do 
momento positivo devido ao momento negativo nos apoios causado pelo balanço. 
O comprimento dos balanços deve ser determinado buscando a melhor distribuição 
dos esforços ao mesmo tempo em que avalia as características topográficas da região. 
O mesmo também não deve ser muito grande, de modo que não haja vibrações 
excessivas na pista. A literatura propõe a adoção de um balanço entre 15 a 20% do 
comprimento da ponte. 
Outra vantagem desse sistema é a eliminação dos encontros da pista que encarecem 
a obra. 
Entretanto, esse tipo de sistema também apresenta limitações relacionadas à 
manutenção. Devido às características do encontro da superestrutura com o aterro 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 23
é comum que haja fuga do material nas extremidades, exigindo frequente manutenção 
para reparo da pista. Por esse motivo, o emprego desse sistema tem sofrido limitações 
nos últimos anos. 
Dadas as características desse sistema costuma-se utilizar vigas de seção transversal 
variada, conforme mostra a figura abaixo. Em geral, sobre os apoios onde atuam os 
momentos negativos a rigidez da viga é maior, isto é, possui maior altura. Enquanto 
que nos extremos dos balanços e no centro do vão a altura é reduzida. 
Título: Ponte em viga com balaços 
Fonte: Autor
Para o pré-dimensionamento é recomendado utilizar uma altura, 1h , entre 9
L
 e 12
L
, 
sendo L o vão interno da ponte. Caso queira-se reduzir a altura central pode-se adotar 
2 20
Lh = .
c) Vigas contínuas
Quando é possível subdividir o vão a ser vencido em vãos menores, temos como 
solução natural a viga contínua apresentada na figura abaixo. Recomenda-se que 
os vãos extremos sejam aproximadamente 20% menores que os vãos centrais para 
garantir uma distribuição uniforme das solicitações.
Título: Ponte Contínua
Fonte: Autor
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 24
Outra forma de melhorar a distribuição dos momentos fletores é através de seção 
transversal variável ao longo do vão, pois o aumento da rigidez das vigas próximo 
aos apoios aumenta os momentos negativos sobre estes, diminuindo o momento no 
centro do vão. 
Dada a continuidade da viga por toda a extensão da ponte, estas não impõem ao 
tabuleiro as juntas de ligação. Entretanto, deve-se avaliar os efeitos da temperatura 
e, se necessário, adotar juntas de dilatação. Via de regra, recomenda-se juntas de 
dilatação a cada 100 metros para aparelhos de apoio comum, em casos especiais, 
em que o aparelho de apoio é a base de teflon, o espaçamento entre as juntas pode 
ser aumentado até perto dos 400 metros. 
Esse tipo de viga deve ser evitada quando há previsão de grandes deslocamentos 
nos apoios. Isso porque os recalques diferenciais causarão esforços adicionais à 
estrutura, levando a uma sobrecarga. 
d) Vigas Gerber 
Outra forma muito interessante de modificar os esforços de uma viga é por meio 
da inserção de pontos de descontinuidade, nos quais o momento é nulo, chamados 
de rótulas. Observe na figura a seguir que ao inserir uma rótula entre o apoio e 1,69 
metro – ponto de momento nulo na viga contínua – o diagrama de momento fletor 
“desce” de modo que os momentos negativos são reduzidos e o positivo aumentado. Já 
quando a rótula é inserida a mais de 1,67 metro do apoio o diagrama “sobe” diminuindo 
o momento positivo e aumentando o negativo.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 25
Título: Diagramas dos momentos fletores para diferentes posições de rótulas
Fonte: Autor
Perceba também que a descontinuidade gera uma associação de vigas, na qual 
há vigas dependentes – no centro do vão - e vigas independentes de estabilidade 
própria. Essa característica é outra grande vantagem desse tipo de ponte, pois a 
estabilidade das vigas laterais facilita a execução das mesmas em cada lado do 
obstáculo, sendo a parcela central, sobre o obstáculo, inserida ao final e por ser pré-
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 26
moldada dispensa escoramentos. Devido a suas vantagens, muitas obras empregam 
esse sistema, inclusive o orgulho nacional, a Ponte Rio-Niterói empregou rótulas no 
seu vão central. Você pode observar a colocação da viga dependente dessa obra na 
figura abaixo. 
Todavia, as juntas de ligação, também conhecidas como dentes Gerber, devem ser 
cuidadosamente dimensionadas, devido à redução da seção resistente ao cortante 
transmitido pela rótula. 
Título: Colocação da viga central na ponte Rio-Niterói 
Fonte: https://queromoraremniteroi.com.br/ponte-rio-niteroi/ 
2.3 Ponte em Pórtico
As pontes em pórtico são empregadas quando deseja-se promover a transmissão 
dos momentos fletores da superestrutura para a mesoestrutura. Os mesmos podem 
ou não ser transmitidos para a infraestrutura, o que influenciará isso será o tipo de 
ligação entre os pilares e as fundações. 
Dessa forma, podemos concluir que as pontes em pórticos se diferem das pontes 
em vigas devido a ligação destas com os pilares. Nos pórticos as ligações são rígidas, 
transferindo parte da flexão das vigas para os pilares o que leva a reduções dos 
momentos da viga à custa da flexão dos pilares. 
https://queromoraremniteroi.com.br/ponte-rio-niteroi/
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 27
Esse tipo de ponte não é muito comum no nosso país, todavia, há algumas pontes 
pelo mundo. A ponte localizada na aldeia de Hamnoy nas ilhas Lofoten na Noruega 
foi executada em pórtico. Observe na imagem a seguir que a ligação entre o pilar e a 
viga é rígida, isto é, a rotação de um dos elementos levará a rotação do outro.
Título: Ponte em Pórtico – ligação viga – pilar rígida 
Fonte: https://unsplash.com/photos/1p61WQW4ouo
2.4 Ponte em Arcos
Um dos sistemas estruturais mais antigos para vencer grandes vãos é o arco, como 
mostrado na figura abaixo. Utilizado desde o império romano, os arcos são estruturas de 
compressão preponderante, podendo ou não serem fletidas. Essa característica justifica 
o porquê desse sistema ser largamente empregado nas pontes quando o principal 
material estrutural era as rochas, no império romano, e o concreto, até recentemente.
https://unsplash.com/photos/1p61WQW4ouo
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 28
Título: Ponte Bixby Creek, Estados Unidos 
Fonte: https://www.rawpixel.com/image/3284810/free-photo-image-hill-arch-bridge
Em via de regra, recomenda-se o uso de arcos com tabuleiro superior para a 
transposição de vales profundos. Todavia, deve-se verificar o maciço de solo, pois os 
arcos descarregam sobre a fundação grandes reações horizontais que podemlevar 
a onerosas fundações. Desse modo o projeto apenas será viável se o solo for de alta 
resistência. 
Já em regiões planas é indicado o uso de arcos com tabuleiro inferior, pois é 
possível aliviar as reações horizontais ao incorporar o tabuleiro à estrutura principal. 
Nessa situação, o tabuleiro funcionará como um tirante, devendo ser adequadamente 
dimensionado. 
Dentre as principais pontes em arco do mundo, Debs e Takeya (2010) destacam a 
Ponte Wanxiang, localizada em Yangzi River na China como a maior ponte do mundo 
em arco. Ela foi construída em 1996 e possui um vão de 420 metros. Em segundo 
lugar, fica a Ponte Krk-1 na Croácia construída em 1980 com 390 metros de vão. E 
em terceiro tem outra chinesa, a Ponte Jiangjiang inaugurada em 1995 apresenta 
vão de 330 metros. 
https://www.rawpixel.com/image/3284810/free-photo-image-hill-arch-bridge
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 29
Também temos no território nacional pontes nesse sistema, a Ponte da Amizade 
(figura a seguir) localizada sobre o rio Paraná vence um vão de 290 metros para unir 
o nosso país ao Paraguai. 
Título: Ponte da amizade, Brasil – Paraguai 
Fonte: https://pt.wikipedia.org/wiki/Ponte_Internacional_da_Amizade 
ISTO ESTÁ NA REDE
Sendo uma das construções mais simbólicas do nosso país, a Ponte da Amizade 
liga as cidades de Foz do Iguaçu - Brasil a Ciudad del Este – Paraguai. A ponte de 
552,4 metros de comprimento é atravessada por aproximadamente 40 mil pessoas 
diariamente. Construída em arco com tabuleiro superior, a ponte possui cerca de 78 
metros de altura. Para conhecer detalhes sobre a história e curiosidades desta obra, 
acesse o link:
https://rotasdeviagem.com.br/historia-e-curiosidades-sobre-a-simbolica-ponte-da-
amizade/
Apesar desse sistema ter viabilizado grandes obras no passado, hoje, com o 
desenvolvimento de novas tecnologias, como o concreto protendido, esse sistema 
está caindo em desuso. Isso porque os altos custos da execução dos arcos, com 
cimbramento e formas, fazem com que pontes em outros sistemas sejam cada vez 
mais vantajosas economicamente. 
2.5 Ponte Estaiada
O sistema de ponte estaiada vem sendo cada vez mais utilizado em pontes de 
grandes vãos. Nesse sistema o tabuleiro é suspenso por uma série de cabos fixados 
a um ou mais mastros. A disposição dos cabos pode ser de dois tipos: harpa e leque. 
No tipo harpa (primeira estrutura da figura abaixo), os cabos são fixados no mastro 
em diferentes alturas de acordo com a distância do mastro ao ponto de fixação. 
Dessa forma a inclinação dos cabos tende a ser a mesma. Já no tipo leque (segunda 
estrutura da figura abaixo), todos os cabos saem do ponto superior do mastro, tendo 
diferentes inclinações para cada ponto de fixação. 
https://pt.wikipedia.org/wiki/Ponte_Internacional_da_Amizade
https://rotasdeviagem.com.br/historia-e-curiosidades-sobre-a-simbolica-ponte-da-amizade/
https://rotasdeviagem.com.br/historia-e-curiosidades-sobre-a-simbolica-ponte-da-amizade/
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 30
Título: Tipos de disposição de cabos: a) tipo harpa b) tipo leque 
Fonte: Autor 
Segundo Debs e Takeya (2010), o crescente uso desse sistema se deve às suas 
características construtivas. Ao contrário das pontes pênseis que necessitam de um 
cimbramento ao longo de todo o vão, as estaiadas vão sendo auto-equilibradas à 
medida que o tabuleiro vai sendo executado. Vale, ainda, destacar que em geral os 
tabuleiros são moldados em loco ou de aduelas pré-moldadas o que proporciona uma 
construção em balanços sucessivos. 
No Brasil destacamos a Ponte de Porto Alencastro sobre o rio Parnaíba. Localizada 
na divisa entre o Mato Grosso e Minas Gerais, a obra foi concluída em 2003 e possui 
350 metros de vão. 
No mundo, o destaque vai para o Viaduto Millau no sudoeste da França. Considerada 
a maior rodovia suportada por cabos do mundo, o viaduto de Millau (figura a seguir) 
está localizado a 343 metros de altura, sendo formado por seis vãos centrais de 342 
metros e vãos laterais com 204 metros. 
https://pt.wikipedia.org/wiki/Ponte_Internacional_da_Amizade
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 31
Título: Viaduto de Millau na França
Fonte: https://unsplash.com/photos/bUpwY7EdrlQ
Nessa aula nós abordamos os principais tipos de sistemas estruturais empregados na 
construção de pontes e viadutos. Na próxima aula daremos sequência às classificações 
das pontes, agora em relação a sua forma construtiva. Até a próxima aula!
https://unsplash.com/photos/bUpwY7EdrlQ
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 32
CAPÍTULO 3
CLASSIFICAÇÃO DAS PONTES 
QUANTO AO MÉTODO 
CONSTRUTIVO 
Outra forma de classificação das pontes é quanto ao seu método construtivo. Devido 
às características do obstáculo a ser superado, o processo construtivo é uma etapa 
fundamental do projeto das pontes e viadutos. Esse processo influencia o arranjo da 
estrutura e também os esforços que atuam durante a fase de execução da ponte. 
Portanto, trataremos ao longo dessa aula sobre os diferentes métodos construtivos 
das obras de arte. 
Nós podemos separar os métodos construtivos com relação a forma de moldagem 
do concreto em:
• Moldados in loco;
• Pré-moldados
Ou ainda podemos separá-los em relação ao tipo de cimbramento, também conhecido 
como escoramento da estrutura, em:
• Cimbramento fixo;
• Cimbramento móvel.
O cimbramento fixo é aquele montado exclusivamente para um determinado 
elemento da estrutura e que após a sua utilização será desmontado podendo ou não 
ser reutilizado na obra. Já o cimbramento móvel consiste em um dispositivo móvel 
capaz de escorar sequencialmente diferentes partes da ponte, sem ser desmontado. 
Os cimbramentos ainda podem ser divididos quanto seus apoios em:
• cimbramento com apoios intermediários; 
• cimbramento sem apoios intermediários. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 33
Geralmente, os de apoios intermediários são os fixos, enquanto os sem estes apoios 
são os móveis.
3.1 Pontes moldadas in loco sobre cimbramento fixo
O método construtivo mais conhecido e antigo é o moldado in loco sobre cimbramento 
fixo. Esse sistema consiste na construção de uma estrutura temporária sobre a qual são 
instaladas as formas que receberão a armadura e o concreto fresco. O cimbramento 
pode ser retirado após a cura do concreto, nos casos de obras em concreto protendido, 
o escoramento só será retirado após a protensão dos cabos. 
Por se tratar de uma estrutura temporária o cimbramento deve passar por 
um dimensionamento adequado que garanta a sustentação do peso próprio da 
superestrutura mais as cargas de construção, como pessoas e equipamentos. Dadas 
as características das obras de arte, é comum a execução de fundações provisórias 
para transferir as cargas do cimbramento ao maciço de solo.
Outro detalhe importante no projeto do cimbramento é a avaliação das condições de 
tráfego do local de implantação buscando não perturbar demasiadamente os usuários. 
Um típico cimbramento fixo é mostrado na figura abaixo.
Título: Escoramento de Viaduto
Fonte:http://www.agenciaalagoas.al.gov.br/noticia/item/11344-al-101-norte-construcao-de-viaduto-e-ponte-acontece-paralelamente
http://www.agenciaalagoas.al.gov.br/noticia/item/11344-al-101-norte-construcao-de-viaduto-e-ponte-acontece-paralelamente
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 34
Os tipos mais comuns de cimbramentos são as de madeira, as metálicas e as 
treliças ou vigas metálicas. Nos últimos anos o escoramento metálico ganhou muito 
espaço nas construções, hoje em dia é comum encontrar empresas especializadas 
apenas em projetos e execução de cimbramentos. 
A viabilidade ou não da utilização desse método construtivo é determinada pelas 
condições do local da obra. Em alguns casos, a utilização dessemétodo não é 
recomendada como:
• Na transposição de vales profundos, nos quais a altura do escoramento deverá 
ser maior que 15 metros;
• Na transposição de cursos d’água largos e profundos, cujos regimes não são 
bem definidos e apresentam fortes correntezas;
• Obras de arte com comprimentos acima de 400 metros;
• Obras com cronogramas apertados, pois a montagem e desmontagem de 
cimbramento, além da cura do concreto da estrutura demandam tempo.
Segundo Stcchi (2006), ao executar a moldagem in loco com escoramento você 
deve tomar os seguintes cuidados:
• Durante a concretagem deve-se ter cuidado com relação a possíveis recalques 
ou deformações;
• Verificar necessidades de contra flechas; 
• Durante a desforma deve-se primeiro desencunhar do centro em direção aos 
apoios e só depois desmontar o cimbramento. 
ISTO ACONTECE NA PRÁTICA
O cimbramento fixo pode ser do tipo especial. Veja o caso do cimbramento para 
a construção da ponte da Amizade sobre o Rio Paraná que divide o Brasil do 
Paraguai. 
Para escorar o arco de concreto, responsável pela sustentação da ponte, foi 
executada uma treliça metálica. Essa foi construída por um outro método 
construtivo, o chamado balanços sucessivos, falaremos sobre ele mais adiante. 
A figura a seguir apresenta a sequência de montagem da treliça metálica. A mesma 
consistiu primeiramente na execução dos pilones e os escoramentos de concreto. 
Depois com o auxílio de um “blondin” instalou-se guinchos e guindastes móveis, os 
quais retiraram de um flutuante as primeiras seções do arco pré-montadas. Em 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 35
seguida a montagem do restante da treliça foi em balanços sucessivos por meio de 
torres provisórias e cabos de aço.
Título: Esquema de montagem do cimbre metálico para moldagem do arco de concreto da Ponte da Amizade.
Fonte: Revista O Dirigente Construtor - Março/1965.
3.2 Pontes sobre cimbramento móvel
Nas pontes de seção uniforme e mais de três vãos sucessivos pode ser interessante 
o uso de um cimbramento móvel. Esse método consiste na concretagem de um 
segmento por vez, o qual é escorado sobre um cimbramento com dispositivos móveis 
que permitem o seu deslocamento após a cura. 
O segmento concretado equivale ao próprio vão, no caso de uma sequência de 
vigas simples; ou pode seguir até o ponto de momento nulo do vão adjacente, quando 
a ponte for de viga contínua. Em síntese, o segmento deve ter condições de auto 
sustentação após a desforma. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 36
O escoramento móvel pode ou não ter apoios intermediários. Os de apoios 
intermediários só apresentam vantagem quando o terreno é relativamente plano, com 
solo resistente e a distância da superestrutura ao terreno for pequena. O emprego 
desse método construtivo com apoios intermediários é mostrado abaixo.
Título: Construção de tabuleiro em viga contínua utilizando escoramento deslizante 
Fonte: LENHOARDT (1979) – pg. 40
Entretanto, para as situações que não se enquadram nas características anteriores, 
pode-se utilizar um cimbramento móvel apoiado na mesoestrutura. Vejamos o exemplo 
da Ponte Krahnenberg na Alemanha. Para a construção da ponte com vãos de até 50 
metros localizada em uma encosta, foram desenvolvidas treliças metálicas deslizantes 
que serviam de escoramento durante a montagem de cada vão. Um esquema dessa 
treliça é ilustrado na imagem abaixo. 
Título: Construção de tabuleiro utilizando escoramento deslizante em treliça metálica fixada nos pilares
Fonte: LENHOARDT (1979) – pg. 40
Quando moldadas in loco, as fôrmas são desprendidas do concreto já curado 
por meio de parafusos ou hidraulicamente (LEONHARDT, 1979). Todavia, também 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 37
é possível utilizar o cimbramento móvel na construção de pontes com elementos 
pré-moldados chamados de aduelas cuja solidarização pode ser feita com protensão 
posterior. Nesses casos, a montagem das aduelas é feita com auxílio de uma estrutura 
metálica temporária fixada aos pilares, que é retirada após a protensão de solidarização. 
Esse sistema é mostrado nas fotografias abaixo. 
Título: Construção de tabuleiro utilizando escoramento deslizante em treliça metálica fixada nos pilares
Fonte: DEBS e TAKEYA (2010) – pg. 28 do Anexo 8
Stucchi (2006) chama a atenção para a influência do modelo construtivo na 
distribuição dos esforços da viga. A execução parcial de uma viga contínua modifica 
a forma inicial de carregamento da estrutura, o que gerará inicialmente um diagrama 
de momento fletor diferente do esperado para a estrutura final (observe o diagrama 
I da figura abaixo). Com o passar do tempo, após os deslocamentos provenientes 
da fluência das peças, a viga tenderá a uma distribuição de momentos iguais a de 
uma viga contínua. Em outras palavras, ao final da vida útil da estrutura o método 
construtivo não exercerá mais influência nos diagramas. 
Dessa forma é fundamental avaliar a resistência dos elementos estruturais para as 
duas fases de carregamento: ao fim da construção e ao fim da vida útil. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 38
Título: Fases da distribuição dos esforços, para viga contínua construída em 2 etapas com junta no apoio central. 
Fonte: STUCCHI (2006) – pg. 25
3.3 Pontes pré-moldadas sobre o vão inteiro
Uma das formas mais simples de eliminar o cimbramento das pontes é empregar 
elementos pré-moldados de comprimento igual ao vão a ser vencido. Este tipo de 
solução é viável economicamente quando for possível subdividir a obra de arte em 
muitos vão similares ou quando se tem muitas pontes similares para executar. Todavia, 
ao avaliar o emprego desse método deve-se verificar a disposição dos dispositivos 
de elevação, os pesos dos elementos pré-moldados, os meios de transporte e as vias 
de acesso à obra. 
Os equipamentos de elevação são um fator importante para a instalação dos 
elementos. Na figura abaixo, ilustramos algumas possibilidades de içamento dos 
elementos pré-moldados. De modo geral, as mais empregadas são os guindastes 
quando o local de instalação permite o acesso dos mesmos. Em casos contrários, é 
comum utilizar treliças de lançamento. 
Além do problema de acesso, os equipamentos são limitados em relação ao peso 
de içamento. Para diminuir o peso da montagem é comum a utilização de vigas pré-
moldadas com as lajes do tabuleiro sendo concretadas total ou parcialmente in loco. 
Nesses casos as formas das lajes são escoradas nos elementos pré-moldados. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 39
Título: Procedimentos para montagem de vigas pré-moldadas 
Fonte: DEBS e TAKEYA (2010) – pg. 7 do Anexo 8
3.4 Balanços sucessivos
Um método nacional e consagrado como um dos principais métodos construtivos 
de pontes da atualidade. O processo dos balanços sucessivos parte do princípio de 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 40
construir a ponte a partir das suas extremidades, para isso executa-se segmentos 
progressivos de modo que cada novo trecho é sustentado pelo trecho anterior (observe 
a figura abaixo).
Título: Ponte estaiada em construção, utilizando o método dos balanços sucessivos
Fonte: https://unsplash.com/photos/UfFSO6JOlKE
A primeira ponte executada nesse sistema foi a antiga ponte sobre o rio do Peixe 
que ligava as cidades de Herval do Oeste e Joaçaba em Santa Catarina. A ponte foi 
construída em 1930 pelo engenheiro Emílio Baumgart e possuía um vão central de 
68 metros, infelizmente, no ano de 1983 ela foi destruída por uma enchente (DEBS e 
TAKEYA, 2010). 
Por volta da década de 50, esse processo foi desenvolvido por Finsterwalder sendo 
empregado na construção de grandes pontes fluviais como a sobre o rio Reno em 
Worms. O uso desse método é recomendado quando:
• A diferença de cotaentre a ponte e o obstáculo é muito grande, o que exigiria 
cimbramentos de altura elevada;
• O curso d’água possui alta correnteza;
• Durante a construção for necessário obedecer a gabaritos de navegação;
https://unsplash.com/photos/UfFSO6JOlKE
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 41
• O sistema estrutural empregado são pontes estaiadas, já que os cabos são 
protendidos à medida que o tabuleiro é executado para absorção dos momentos;
• A região da construção é um meio urbano com grande tráfego impedindo o uso 
de escoramento direto.
Os procedimentos para a utilização desse método podem ter seu início em pilares 
intermediários ou a partir dos encontros. As formas necessárias para a execução do 
tabuleiro são montadas em balanço, concretando-se um segmento de aproximadamente 
3 metros a cada 3 dias. Nos casos dos pilares intermediários, o balanço deve ser 
contrabalanceado pelo avanço simultâneo dos trechos nas duas direções. 
A construção pode ser agilizada ao substituir o concreto moldado in loco pelo pré-
moldado. Nesse caso deve-se atentar para a forma de ligação dos segmentos. Uma 
das primeiras técnicas de ligação utilizada foi a ligação por argamassa de cimento, o 
que não permitia uma grande redução no tempo de obra, pois era necessário esperar 
o tempo de cura da argamassa.
Todavia, em 1964, foi desenvolvida a técnica da junta conjugada colada capaz de 
reduzir significativamente o tempo da obra. A técnica consiste na utilização de peças 
pré-moldadas, aduelas, cujas faces são moldadas com encaixe do tipo macho-fêmea 
facilitando o processo de montagem. A ligação entre essas peças é feita por cola 
epóxica com aproximadamente 1 mm de espessura. 
Para você compreender a agilidade do emprego dessa técnica, falemos da construção 
da ponte Rio-Niterói. De acordo com Pfeil (1975), o uso da junta conjugada colada 
permitiu a construção de 7,7 metros de ponte por dia. Estima-se que caso essa obra 
fosse executada em junta argamassada seu avanço seria de 3,2 metros por dia, e 
igual a 0,8 metros se feita em moldagem in loco. 
Um detalhe muito importante ao utilizar os balanços sucessivos é na determinação 
prévia e precisa das deformações, imediatas e diferidas, para que as contra flechas 
sejam corretamente definidas. 
3.5 Deslocamentos progressivos
Um outro método que busca reduzir drasticamente o escoramento é o método dos 
deslocamentos progressivos. Essa técnica foi utilizada pela primeira vez em 1962 
para a construção da ponte sobre o rio Ager na Áustria. O processo resume-se na 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 42
construção da estrutura na cabeceira e progressivo deslocamento da mesma após o 
endurecimento dos segmentos até a finalização completa da ponte.
Em geral, de uma das margens da ponte são produzidos segmentos pré-moldados 
entre 10 a 30 metros de extensão que correspondem a ¼ ou ½ do vão. É importante 
considerar as cotas das cabeceiras para a sua escolha, recomenda-se sair da cota 
mais baixa de modo que o caminhamento seja em aclive e não em declive, evitando-
se a necessidade de equipamentos de frenagem. Após a cura, os segmentos são 
protendidos longitudinalmente, desmoldados e “empurrados” em direção ao vão por 
meio de apoios deslizantes de teflon associados a macacos hidráulicos. Na frente 
do primeiro segmento é instalada uma estrutura metálica, a qual tem a finalidade de 
reduzir os esforços solicitantes. Essa redução é possível, porque a estrutura metálica 
chegará ao apoio antes da estrutura modificando, assim, a vinculação estrutural e 
diminuindo o momento máximo negativo do balanço. A figura abaixo ilustra os passos 
aqui descritos. 
Título: Construção de tabuleiro em deslocamentos progressivos.
Fonte: LENHOARDT (1979) – pg. 49
Além da eliminação dos escoramentos, esse método construtivo permite a junção 
das vantagens da produção dos pré-moldados com as dos materiais moldados in 
loco. Uma vez que todos os segmentos são sequenciais, temos como resultado uma 
estrutura monolítica sem necessidade de ligações. 
O fato de todos os segmentos serem produzidos em um único espaço permite a 
redução do tempo com montagem e desmontagem de formas; possibilita a execução 
de coberturas provisórias permitindo uma concretagem em tempo de chuva; além de 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 43
reduzir as distâncias para o transporte dos materiais. Tudo isso leva a uma redução 
dos custos, o que colabora na viabilidade econômica desse processo justificando a 
sua rápida aceitação e implementação. 
Entretanto, devido às características próprias desse processo alguns cuidados são 
fundamentais. 
Stucchi (2006) destaca:
• A precisão do nivelamento e da forma para se evitar esforços adicionais causados 
por erros de geometria, assemelha-se aos cuidados com os recalques do 
escoramento.
• A influência do método construtivo no dimensionamento estrutural. Nesse caso, 
a estrutura é autolançada em balanço, o que gera mudanças dos esforços 
da seção a cada fase construtiva. Perceba que a mesma seção transversal 
se deslocará por todo o comprimento da viga sendo, portanto, solicitada por 
diferentes momentos devendo resistir a todos eles.
• O cuidado com interferências que possam bloquear o movimento das formas.
De acordo com Leonhardt (1979) os deslocamentos progressivos são adequados 
para pontes de no mínimo 3 vãos com comprimento total superior a 150 metros. Nos 
casos de estruturas com esbeltez superior a 16 deve-se utilizar apoios provisórios para 
controlar os deslocamentos. Também é possível estaiar balanços isolados. 
Além de pontes retas é possível a construção de pontes curvas com esse método, 
desde que sejam curvas uniformes. Com relação a produção, estima-se a execução de 
um segmento por semana. Todavia, em casos de cronogramas apertados, é possível 
a produção de até dois segmentos por semana. 
 
Dessa forma, chegamos ao fim de mais uma aula, na qual estudamos os diferentes 
métodos de construção das obras de arte e quais as influências deles no projeto das 
estruturas. Na próxima aula continuaremos falando sobre outras possíveis classificações 
para as pontes e viadutos. Até lá!
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 44
CAPÍTULO 4
OUTRAS CLASSIFICAÇÕES
As pontes podem ser classificadas de diversas maneiras, dependendo da 
característica avaliada, nas aulas anteriores falamos sobre duas das principais 
classificações das pontes: quanto ao tipo estrutural ou ao método construtivo. Na 
aula de hoje falaremos sobre outras classificações possíveis como: a finalidade, o 
material, a mobilidade do estrado. 
Além das formas de classificação falaremos detalhes sobre essas classificações 
e exemplos de pontes construídas pelo mundo. 
4.1 Classificação quanto à Finalidade
Uma das classificações mais simples das pontes, refere-se à finalidade da mesma. 
Conhecer para que se destina a construção de uma ponte é fundamental na hora de se 
projetar. Isso porque cada finalidade possui características próprias que influenciarão 
nos elementos presentes no tabuleiro, como falamos na primeira aula. 
De modo geral, as pontes ou viadutos são classificados quanto a sua finalidade em:
1. Ferroviárias;
2. Rodoviárias;
3. Passarelas (destinadas a passagem de pedestres);
4. Cicloviárias (destinadas a passagem de ciclistas);
5. Dutoviárias (destinadas a passagem de tubulações). 
4.2 Classificação quanto ao Material
Uma outra classificação muito comum das pontes é classificá-las de acordo com o 
material predominante na sua construção. Em geral as pontes podem ser executadas 
em madeira, concreto armado, concreto protendido e materiais metálicos. Falaremos 
sobre cada uma delas adiante. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 45
4.2.1 Pontes de Madeira
Um dos primeiros materiais a ser empregado na construção das pontes é a madeira.Utilizada desde a antiguidade na concepção de pontes com arranjos simples, a madeira 
se desenvolveu assim como os sistemas estruturais, podendo ser empregada aos 
diversos tipos estruturais mencionados no capítulo 2. 
Em relação aos métodos construtivos, Stucchi (2006) afirma que nas pontes de 
madeira não se aplicam os métodos de moldagem in loco sobre cimbramento fixo 
ou móvel; ou o método dos consolos sucessivos. 
Como material construtivo a madeira apresenta grande resistência aos esforços 
normais de tração e compressão, na tabela 1 apresentamos algumas espécies de 
madeira utilizadas em pontes.
Espécie Resistência à compressão (MPa)
Aroeira do Sertão 75,00
Jatobá 80,00
Gonçalo Alves 65,00
Ipê Roxo 70,00
Tabela 1: Espécies de madeira comuns para construção de Pontes
Fonte: Stucchi (2006) pg. 45
Entretanto, por ser um material natural a madeira apresenta algumas peculiaridades 
comparadas ao aço e ao concreto. Esse material é anisotrópico, isso é, o comportamento 
do material depende da direção de análise. Via de regra, a madeira apresenta uma 
resistência normal às fibras iguais a 20%, aproximadamente, da resistência na direção 
das fibras. Para direções entre 0° e 90° das fibras, a resistência é intermediária. 
Além da anisotropia, a madeira é desuniforme apresentando variação das 
características do eixo para a periferia do tronco. Isso deve-se principalmente à 
forma de crescimento da árvore de origem. Um exemplo dessa variabilidade é a 
suscetibilidade do albume – região mais externa ao tronco – a ação dos agentes 
biológicos comparada ao cerne. Todavia, essa madeira também absorve melhor os 
tratamentos do que as madeiras próximas ao eixo. Outra desvantagem do material é 
a presença de imperfeições como nós, fendas, furos, curvatura das fibras, etc. 
No Brasil as pontes de madeira são utilizadas basicamente em pontes rurais devido 
ao seu baixo custo, dada a sua disponibilidade na região da obra.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 46
Entretanto, esse material não se limita a pequenas obras. A ponte Kintai (imagem 
a seguir) de 1673, localizada na cidade Iwakuni no Japão, é composta por cinco arcos 
de madeira que somados correspondem a um comprimento de 193 metros. Os três 
arcos centrais são os maiores possuindo um vão de aproximadamente 35 metros cada. 
Título: Ponte Kintai no Japão
Fonte: https://en.wikipedia.org/wiki/Kintai_Bridge
4.2.2. Pontes Metálicas
É importante mencionar que quando falamos das pontes metálicas, nos referimos 
às pontes de aço e também às pontes em ligas de alumínio. O emprego dos materiais 
metálicos, ferro fundido, em pontes iniciou no final do século XVIII de forma singela. 
Todavia, o crescimento das ferrovias expandiu o uso desse material, uma vez que, 
as pontes ferroviárias são submetidas a cargas mais elevadas que as que ocorriam 
até então. 
Assim como a madeira, as pontes metálicas se adaptam a maioria dos sistemas 
estruturais de pontes. Sendo muito empregadas em Treliças, Arcos, Vigas de alma 
cheias: Grelhas ou Caixões, Pontes Pênseis e Estaiadas. Quanto ao método construtivo, 
as pontes metálicas se dão muito bem com os tipos construtivos para estruturas 
pré-moldadas.
Dentre as vantagens do uso dos materiais metálicos nas pontes temos a possibilidade 
de construir pontes com elementos esbeltos com alta resistência às solicitações 
normais. Entretanto, essa mesma esbeltez pode levar a problemas de estabilidade o que 
justifica a necessidade da verificação da estabilidade local nos elementos metálicos. 
Outra desvantagem das estruturas metálicas está na sua durabilidade, devido à 
suscetibilidade do material a corrosão. As respostas desse tipo de estrutura às situações 
de incêndio também são desfavoráveis. 
https://en.wikipedia.org/wiki/Kintai_Bridge
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 47
Segundo Stucchi (2006) os aços mais empregados nas pontes são os apresentados 
na Tabela 2. A título de comparação vale lembrar que os aços utilizados nas estruturas 
de concreto armado possuem resistência entre 250 a 600 MPa.
Aço Resistência (MPa)
Aço-carbono A36 250,00
Aço baixa liga CORTEM 350,00
Aço baixa liga SAC 350,00
Aço baixa liga COS-AR-COR 350,00
Tabela 2: Aços para estruturas de pontes
Fonte: Stucchi (2006) pg. 40
Como exemplo de ponte metálica, destacamos a Ponte Golden Gate (imagem a 
seguir), uma das mais conhecidas e considerada como uma das sete maravilhas do 
mundo moderno. O cartão postal da cidade de São Francisco nos Estados Unidos, 
a ponte metálica construída pelo engenheiro Joseph Strauss e concluída em 1937, 
possui um sistema estrutural pênsil, responsável por suportar 1.966 metros da ponte, 
juntamente com um sistema treliçado. Ao todo a ponte tem um comprimento de 2.737 
metros, possuindo um vão central de 1.280 metros. 
Título: Ponte Golden Gate em São Francisco na Califórnia - EUA
Fonte: https://pt.wikipedia.org/wiki/Ponte_Golden_Gate
https://pt.wikipedia.org/wiki/Joseph_Strauss
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 48
4.2.3 Pontes de Concreto 
A utilização do concreto nos projetos de pontes começou pela busca de substituir 
as pedras empregadas nas pontes de arco triarticulado pelo concreto simples. Nessa 
época já se utilizava o concreto armado, entretanto, o seu uso era limitado à execução 
dos tabuleiros das pontes. 
Apenas no início do século XX é que o concreto armado começou a ser utilizado 
também como o material principal dos elementos estruturais das pontes. A partir 
de 1912, esse material passou a ser empregado na execução de pontes em vigas e 
pórticos com vãos de até 30 metros. 
Com o desenvolvimento de novas tecnologias e a destruição da Europa na Segunda 
Guerra Mundial, que resultou na necessidade de reconstruir rapidamente um grande 
número de pontes, as pontes de concreto protendido ganharam grande visibilidade. 
Como exemplo de pontes nacionais em concreto protendido temos a Ponte Rio-
Niterói, já comentada nas aulas anteriores, e também a Ponte Octavio Frias de Oliveira 
(imagem a seguir) na cidade de São Paulo. Inaugurada em 2008, a ponte sobre o rio 
Pinheiro é a única ponte estaiada do mundo com duas pistas em curva ligadas ao 
mesmo mastro. 
O mastro em forma de ‘X’ que recebe os cabos estaiados, foi construído em concreto 
armado e moldado por meio de formas deslizantes. As vigas pré-moldadas dos vãos 
de acesso ao trecho estaiado, assim como as lajes dos tabuleiros, foram executadas 
em concreto protendido. 
Título: Ponte Octávio Frias de Oliveira em São Paulo – Brasil 
Fonte:https://pt.wikipedia.org/wiki/Ponte_Oct%C3%A1vio_Frias_de_Oliveira#/media/Ficheiro:Ponte_estaiada_Octavio_Frias_-_Sao_Paulo.jpg
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 49
4.3 Classificação quanto a Mobilidade do Estrado
Nos casos em que o curso d’água transposto pela ponte é uma via navegável 
precisa-se garantir uma altura livre que permita a navegação dos navios padrões da 
região. Entretanto, há situações em que essa característica não pode ser atendida, 
sendo necessário um estrado móvel que permita a passagem dos navios. Em geral, 
mesmo que a ponte apresente diversos vãos, a execução de um único vão móvel 
atende as necessidades. 
A forma de mobilidade do estrado pode ser dividida em estrados de movimento de 
translação e movimento de rotação. Dentro do primeiro grupo temos as pontes deslizantes 
e as levadiças, enquanto que no segundo incluem-se as pontes basculantes e giratórias. 
4.3.1 Ponte Levadiça
As pontes chamadas levadiças apresentam um movimento de translação vertical 
do estrado como pode ser observado na imagem abaixo. A ponte Jacques Chaban- 
Delmas (imagem a seguir) sobre o Rio Garonne, na França, inaugurada em 2013, 
representa a maior ponte levadiça da Europa. Ela foi construída em aço e concreto, 
possuindo um comprimento total de 575 metros, sendo seu maior vão de 110 metros.Título: Ponte Jacques Chaban- Delmas
Fonte: https://en.wikipedia.org/wiki/Pont_Jacques_Chaban-Delmas
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 50
Também no Brasil já possuímos uma ponte levadiça. A antiga ponte sobre o rio 
Guaíba em Porto Alegre, construída na década de 50, apresentava um vão móvel de 
58 metros de extensão. A estrutura de altura igual a 43 metros eleva este trecho a 
uma altura de 24 metros para a passagem dos navios de grande porte. Entretanto, 
devido ao grande crescimento do tráfego de navios na região e ao tempo de içamento 
da ponte, foi-se inaugurada uma nova ponte em 2014. 
4.3.2 Ponte Deslizante
Outra ponte que apresenta estrado com movimento de translação é a chamada 
ponte deslizante (observe a figura abaixo). Como o próprio nome sugere, essas pontes 
apresentam um tabuleiro que desliza horizontalmente para as extremidades deixando 
o vão livre para a passagem das embarcações.
Título: Esquema de ponte deslizante
Fonte: Pfeil (1979, p. 7)
4.3.3 Ponte Basculante
As pontes basculantes possuem um movimento de rotação em torno de um eixo 
horizontal. Para vãos de dimensões pequenas é possível a rotação de todo o estrado 
em torno de um eixo localizado em uma das extremidades. Todavia, é mais comum a 
divisão do vão em duas partes móveis, cada uma com eixo de giração na extremidade 
próxima aos apoios. 
Um exemplo de ponte basculante em uma única folha é a ponte basculante do rio 
Mystic nos Estados Unidos (imagem a seguir). Essa ponte de comprimento total de 
66 metros e uma altura de 14 metros foi inaugurada em 1922. Com uma altura livre 
de apenas 1,22 metros, a ponte é aberta a cada hora durante o verão para permitir a 
passagem de veleiros e iates. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 51
Título: Ponte basculante do rio Mystic - EUA
Fonte: https://en.wikipedia.org/wiki/File:Mystic_River_Bascule_Bridge_closing.JPG
Já a ponte basculante mais conhecida do mundo é a Tower Bridge (imagem a seguir) 
localizada em Londres, Inglaterra. Finalizada no ano de 1894, essa construção de 128 
anos possui um comprimento total de 244 metros e altura de 42 metros. Inicialmente 
a abertura da ponte dependia de máquinas a vapor, entretanto a ponte passou por 
reformas que substituíram as máquinas por um moderno sistema eletrônico. 
Título: Tower Bridge aberta para passagem de embarcações 
Fonte: https://unsplash.com/photos/kFWYZJQ0ZsA
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 52
4.3.4 Ponte Giratória
Há uma outra possibilidade de movimentação do estrado que a rotação do mesmo 
em torno de um eixo vertical. As pontes chamadas giratórias giram em um plano 
paralelo ao corpo d’água com um ângulo de rotação de 90°. 
A ponte El Ferdan Railway (imagem a seguir) é um exemplo de ponte giratória. 
Construída sobre o canal de Suez próxima a Ismalia no Egito, essa ponte ferroviária é 
formada por duas partes giratórias. Na maioria do tempo a ponte permanece aberta 
permitindo a passagem das embarcações. Seu fechamento só ocorre para a passagem 
dos trens. 
Título: El Ferdan Railway Bridge aberta para passagem de embarcações 
Fonte: https://en.wikipedia.org/wiki/El_Ferdan_Railway_Bridge
ISTO ESTÁ NA REDE
Você sabia que a primeira ponte móvel do país era uma ponte giratória? 
Localizada na cidade de Recife a antiga ponte 12 de setembro, inaugurada em 
1922, apresentava um vão central giratório para dar passagem às embarcações. 
Infelizmente, a ponte foi substituída em 1971. 
Mais detalhes sobre esta e outras pontes de Recife você pode assistir na 
reportagem do link abaixo. Aperte o play!
https://www.youtube.com/watch?v=rcuWlH-EhI0
https://www.youtube.com/watch?v=rcuWlH-EhI0
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 53
Na aula de hoje finalizamos as diferentes classificações das pontes e viadutos. Na 
próxima aula começaremos propriamente a falar sobre os projetos dessas estruturas, 
falando primeiramente sobre quais as primeiras informações precisamos ter para nos 
ajudar a escolher o melhor tipo de ponte para o nosso projeto. Até lá!
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 54
CAPÍTULO 5
CONSIDERAÇÕES 
PRELIMINARES AO PROJETO
Nas aulas anteriores nós estudamos os diferentes tipos de pontes, você aprendeu 
que cada sistema estrutural, material empregado, método construtivo irá influenciar 
no projeto estrutural da ponte. 
Hoje, iremos iniciar o projeto propriamente dito, falaremos sobre a sua primeira 
etapa e todos os documentos e informações que precisamos para dar início a um 
projeto de obra de arte.
 Primeiramente você deve conhecer a finalidade da ponte, pois é ela quem determinará 
os elementos geométricos que definirão o tabuleiro da ponte. Afinal os elementos e 
dimensões necessárias para uma ponte rodoviária são diferentes dos necessários para 
uma ponte ferroviária ou uma passarela. Estes elementos influenciam diretamente 
nas cargas atuantes sobre a estrutura. 
Após a coleta de informações sobre a seção transversal da ponte e as cargas 
móveis, deve-se levantar informações complementares como a topografia da região, 
dados hidrológicos do corpo hídrico e características geotécnicas do maciço de solo. 
Todos esses dados serão fundamentais para que o engenheiro possa escolher o tipo 
de ponte mais adequado para aquele projeto. 
Outras informações como elementos de interesse construtivo ou econômico e notícias 
tecnológicas de caráter especial podem influenciar nas decisões de projeto. Sendo 
assim, podemos dizer que o estudo adequado das características do empreendimento 
garante a qualidade do projeto não devendo ser negligenciado. 
5.1 Elementos Geométricos
Como já mencionamos, os elementos geométricos serão definidos de acordo 
com a finalidade da obra de arte. As pontes rodoviárias dependem dos elementos 
geométricos das vias, estabelecidos pelos órgãos públicos. No caso das rodovias 
federais, o responsável pela construção e manutenção das vias é o Departamento 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 55
Nacional de Estradas e Rodagem (DNER); para as rodovias estaduais as condições 
técnicas para as estradas e pontes são estabelecidas pelo órgão estadual responsável.
As rodovias federais são divididas pelo DNER em classes de acordo com as 
características do tráfego:
• Classe I
• Classe II
• Classe III
De acordo com a classe da rodovia e do relevo da região, define-se a velocidade 
diretriz da rodovia, a qual será utilizada no projeto da estrada. A tabela 1 apresenta 
as velocidades estabelecidas pelo DNER para as rodovias federais. 
Relevo Classe I Classe II Classe III
Plano 100 80 70
Ondulado 80 70 60
Montanhoso 60 50 40
Tabela 1 – Velocidades diretrizes para rodovias federais [km/h]
Fonte: Pfeil (1979, pg. 11)
A classe da rodovia também limita os raios de curvatura horizontal das rodovias, 
de modo que se garanta uma força centrífuga máxima não superior ao atrito nos 
veículos viajando na velocidade diretriz. Nos casos em que a obra de arte deve ser 
curva, ela deve respeitar estes mesmos raios limites. A tabela 2 apresenta os raios 
mínimos de curvatura para as rodovias federais. 
Relevo Classe I Classe II Classe III
Plano 345 200 110
Ondulado 210 110 50
Montanhoso 115 50 30
Tabela 2 – Raios de curvatura mínimos para rodovias federais [m]
Fonte: Pfeil (1979, pg. 12)
O DNER estabelece inclinações máximas para o desenvolvimento altimétrico das 
estradas, as quais são apresentadas na tabela 3. Essas inclinações valem para estradas 
com altitude até 1000 metros acima do nível do mar, devendo ser reduzidas em 0,5% 
para altitudes superiores. 
Relevo Classe I Classe II Classe III
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 56
Plano 3,0 3,0 3,0
Ondulado 4,5 5,0 5,0
Montanhoso 6,0 7,0 7,0
Tabela 3 – Máximas rampas para rodovias federais [%]
Fonte:Pfeil (1979, pg. 13)
As inclinações apresentadas na tabela 3 podem ser acrescidas de 1% para rampas 
de extensão até:
• 900 metros em regiões planas;
• 300 metros em regiões onduladas;
• 150 metros em regiões montanhosas.
Via de regra, o desenvolvimento planimétrico e altimétrico das pontes e viadutos 
pequenos é definido pelo projeto da rodovia. Quando necessário transpor um rio ou 
vale de grandes dimensões deve-se projetar a estrada pensando na melhor localização 
para a obra de arte. Esse local é caracterizado pela possibilidade de se cruzar o rio 
na seção mais estreita de acordo com um ângulo reto ao eixo da rodovia, a fim de se 
minimizar o comprimento da ponte (ARAÚJO, 1999). 
A largura das pontes rodoviárias também é limitada pelas características das faixas 
de tráfego das rodovias, como discutido no capítulo 1. 
Outra característica geométrica das pontes é o seu gabarito. Definido como a altura 
livre que permite o escoamento do fluxo de veículos. Os viadutos localizados sobre 
outras vias de trânsito devem ter altura e largura entre apoios que permitam o tráfego 
de caminhões e carretas sob elas.
As pontes sobre cursos d’água navegáveis também devem ser projetadas para que 
seus gabaritos não interfiram na passagem das navegações. Em último caso, pode-se 
projetar pontes de estrado móvel. 
Pfeil (1979) afirma que as pontes sobre vias navegáveis a chatas e rebocadores, 
devem prever uma altura livre entre 3,5 a 5,0 metros acima do nível máximo do rio; 
e largura de pelo menos duas vezes a largura máxima das embarcações acrescida 
uma folga de 1 metro. Na figura a seguir você pode observar o perfil da ponte rio 
Paraguai em Cáceres, cujo gabarito de navegação foi fixado em 35 metros de largura 
e 12 metros de altura. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 57
Título: Ponte com gabarito de navegação 35,00 m x 12,00 m (ponte sobre o rio Paraguai em Cáceres, BR-70MT)
Fonte: (PFEIL, 1979) – pág 33
No caso das pontes sobre rios não navegáveis deve-se respeitar a altura livre 
estabelecida pelo órgão responsável pela obra. Araújo (1999) menciona o limite de 
1,5 metros acima do nível máximo d’água determinado pelo estado do Tocantins.
5.2 Elementos Topográficos
Além das informações geométricas do tabuleiro, você precisará conhecer a topografia 
da região. Dados como as cotas da encosta e o vale a ser vencido são fundamentais 
para as decisões de projeto. Desse modo, Araújo (1999) determina que o estudo de 
implementação de uma obra de arte deve conter os seguintes elementos: 
• Planta, em escala de 1:1000 ou 1:2000; perfil em escala horizontal de 1:1000 ou 
1:2000 e escala vertical de 1:100 ou 1:200 do trecho da rodovia em que ocorrerá 
a implantação da obra em uma extensão tal que ultrapasse seus extremos 
prováveis de, pelo menos, 1000 metros para cada lado.
• Planta do terreno no qual será implantada a ponte, em uma extensão tal que 
exceda de 50 metros, em cada extremidade, seu comprimento provável e largura 
de 30 m, desenhada na escala de 1:100 ou 1:200, com curvas de nível de metro 
em metro, contendo a posição do eixo locado e a indicação de sua esconsidade.
• Perfil ao longo do eixo locado na escala de 1:100 ou 1:200 e numa extensão tal 
que exceda de 50 metros, em cada extremidade, o comprimento provável da obra.
• Quando se tratar de transposição de curso d’água, seção do rio segundo o eixo 
locado, na escala 1:100 ou 1:200, com as cotas de fundo do rio em pontos 
distanciados cerca de 5 metros.
5.3 Elementos Hidrológicos
Como já mencionado anteriormente, as pontes devem apresentar uma altura livre 
igual ou maior que as alturas limites, de modo que as mesmas permitam a passagem 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 58
das embarcações abaixo do tabuleiro. Essa altura depende da cota de máxima cheia 
do corpo hídrico, a qual representa o máximo nível provável para o corpo hídrico 
durante a vida útil da obra. Essa cota é estimada a partir de um risco assumido de 
que a estrutura venha a ser inundada, considerando questões econômicas, ambientais 
e de segurança dos usuários que possam ser afetados. 
Para a sua determinação o projetista necessita de alguns elementos hidrológicos. 
Pfeil (1979) destaca os seguintes:
• Cotas de máxima cheia e estiagem observadas com indicação das épocas, 
frequência e período dessas ocorrências.
• Dimensões e medidas físicas suficientes para a solução dos problemas de vazão 
do curso d’água sob a ponte e erosão do leito, quais sejam:
a) Área em km2 da bacia hidrográfica a montante da obra até a cabeceira;
b) Extensão do talvegue em km, desde o eixo da obra até a cabeceira;
c) Altura média anual das chuvas, em milímetros;
d) Declividade média do espelho d’água em um trecho próximo da obra, de 
extensão suficiente para caracterizá-la, bem como indicações concernentes 
à permeabilidade do solo, existência na bacia hidrográfica de vegetações e 
retenções evaporativas, aspecto das margens, rugosidade e depressões do leito 
no local da obra.
• Notícias acerca de mobilidade do leito do curso d’água e, acaso existente, com 
indicação da tendência ou do ciclo e amplitude da divagação; alvéos secundários, 
periódicos ou abandonados, zonas de aluviões, bem como de avulsões e erosões, 
cíclicos ou constantes; notícias sobre a descarga sólida do curso d’água e sua 
natureza, no local da obra, e sobre material flutuante eventualmente transportado.
• Se a região for de baixada ou influenciada por marés, a indicação dos níveis 
máximo e mínimo das águas, velocidades máximas de fluxo e de refluxo, na 
superfície, na seção em estudo.
• Informações sobre obras de arte existentes na bacia, com indicações de 
comprimento, vazão, tipo de fundação, etc
• Notícia sobre serviços de regularização, dragagem, retificações ou proteção 
das margens.
Como você já aprendeu em hidrologia, a engenharia hidráulica possui diversos 
métodos para a estimativa da cota de máxima cheia. Entretanto, Araújo (1999) evidencia 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 59
a necessidade de se evitar o refluxo a montante de pontes construídas sobre rios 
de grandes vazões. Chama-se de refluxo o aumento do nível d’água a montante da 
ponte causado pelo estrangulamento do rio devido ao aterro da estrada, como visto 
na figura abaixo. Há casos em que esse aumento da cota atinge grandes distâncias 
influenciando negativamente a altura livre abaixo da ponte. 
Título: Refluxo a montante da ponte devido ao estrangulamento da seção de escoamento do rio
Fonte: (ARAÚJO, 1999) – pg 12
Em cursos d’água com pequenas vazões, é possível estimar a cota de máxima 
cheia admitindo que o rio funciona como um canal de seção aberta constante e igual 
a seção de escoamento abaixo da ponte. Nesse caso, conhecendo a vazão máxima 
de projeto e as características da seção é possível determinar a altura do escoamento 
através da fórmula de Manning.
Você deve se recordar que a fórmula de Manning é dada por:
Na qual V é a velocidade de escoamento do canal dada por [m/s]
n é o coeficiente de rugosidade das paredes e fundo do rio 
Rh é o raio hidráulico da seção 
I é a declividade média do rio
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 60
Sabendo que a vazão de escoamento e o raio hidráulico são respectivamente iguais a: 
onde Q é a vazão de escoamento do canal em [m³/s]
A é a área da seção de escoamento em [m²]
P o perímetro molhado da seção em [m]
Podemos reescrever a fórmula de Mannig como:
Até aqui você compreendeu como determinar a cota de máxima cheia que é 
importante na determinação da altura livre. Aqui destacamos que para garantir a 
altura livre limite necessária ao projeto, sem a necessidade de usufruir de estrados 
móveis o projetista da ponte pode se deparar com duas situações distintas:
• Projeto rodoviário pronto: o projetista já possui o nível da face superior do 
tabuleiro definido pelo projetistada estrada, que normalmente adota uma cota 
aproximadamente 40 cm acima da cota de terraplanagem. Nesse caso a diferença 
da cota superior do tabuleiro a soma da cota de máxima cheia a altura livre 
limite equivale à altura de construção possível para a superestrutura da ponte; 
• Projeto rodoviário não finalizado: nesse caso o tabuleiro não possui cota definitiva, 
sendo possível ao projetista estrutural calcular o nível superior do tabuleiro através 
da soma da cota de máxima cheia com a altura livre e a altura da construção. 
5.4 Elementos Geotécnicos
É fundamental que o projetista conheça detalhadamente, em natureza e distribuição, 
o maciço de solo da região de implantação da obra de arte. Afinal as suas características 
podem viabilizar ou não o empreendimento. 
Para a obtenção dessas informações é imprescindível a realização de sondagens de 
reconhecimento do subsolo. Estas devem ser realizadas em número tal que permita 
a caracterização precisa do subsolo quanto a sua natureza e da distribuição de suas 
camadas. Os furos devem possuir profundidade que garanta a inexistência de camadas 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 61
de menor resistência abaixo das camadas avaliadas. Dada a importância e grandeza das 
pontes e viadutos, é necessário que um determinado número de sondagens, podendo 
ser a sua totalidade, atinja a rocha. O maciço rochoso também deverá ser investigado 
por meio de sondagens rotativas por no mínimo três metros de profundidade. 
Pfeil (1979) sugere que as profundidades das sondagens sejam determinadas 
segundo os seguintes critérios:
• As sondagens de percussão devem prosseguir até que a resistência à penetração 
seja igual ou superior a X número de golpes a cada 30 cm por cinco cravações 
consecutivas; ou até atingir um material impenetrável à peça de lavagem; ou até 
uma profundidade máxima, H, estabelecida pelo geotécnico. A especificação de 
X e H depende da natureza do solo e do tipo da obra. Para obras medianas, Pfeil 
(1979) recomenda a adoção de X = 40 golpes e H = 40 metros de profundidade.
• As sondagens rotativas devem prosseguir até uma recuperação igual ou 
superior a em até três avanços consecutivos; ou uma recuperação superior 
após penetração de 5 metros em rocha parcialmente alterada; ou ainda após 
uma recuperação média igual ou superior a após penetrar 10 metros em rocha 
parcialmente alterada. Caso nenhuma das condições anteriores sejam atingidas 
pode-se interromper a sondagem após atingir uma profundidade máxima H. 
Assim como para as sondagens por percussão os valores limites: , , e H devem 
ser definidos para cada caso de acordo com o tipo da obra. 
É interessante que, caso já possua um anteprojeto da ponte, preveja-se a realização 
de duas sondagens na linha transversal de cada um dos apoios. Um exemplo de 
relatório de sondagem é mostrado na figura a seguir. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 62
Título: Relatório de sondagem do terreno - eixo 1 do rio Pau Seco
Fonte: (ARAÚJO, 1999) – pg 17
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 63
Os resultados obtidos devem ser compilados e apresentados em relatórios de 
sondagem, os quais devem apresentar os seguintes elementos:
a) Planta de locação das sondagens, com informações do eixo da via;
b) Descrição dos equipamentos utilizados nas sondagens, como peso, altura;
c) As sondagens de reconhecimento do subsolo, realizadas por toda a provável 
extensão da ponte. Recomenda-se que essas sejam feitas ao longo de duas linhas 
paralelas, uma de cada lado do eixo da via a uma distância de aproximadamente 
três metros do mesmo;
d) Os perfis de todas as sondagens, os quais devem apresentar a natureza e 
espessura das diversas camadas atravessadas pela sonda, com suas respectivas 
profundidades e índices de resistência à penetração. É importante mencionar 
que as profundidades devem ser determinadas com base em uma referência 
de nível que relaciona a cota da boca do furo à referência de nível da obra. Os 
perfis também devem conter informações referentes ao nível d’água encontrado 
no momento da sondagem e após vinte e quatro horas depois de finalizada. 
Outro relatório interessante para o reconhecimento dos aspectos geotécnicos é 
o relatório de prospecção de geologia aplicada no provável local de implantação da 
ponte. Ele considera o esboço estrutural e realça peculiaridades geológicas existentes. 
Nos casos em que a estabilidade dos terrenos contíguos a obra pode ser 
comprometida pelas solicitações dos aterros de acesso, é interessante que se faça 
estudos geotécnicos especiais. De modo que permitam a elaboração do projeto para 
o conjunto terreno-aterro-obra de arte.
5.5 Elementos Acessórios
5.5.1 Existência de Elementos Agressivos
Dependendo da localidade onde será implementada a ponte, pode ser necessário 
a obtenção de informações referente a agressividade do ambiente aos materiais 
construtivos. Podendo essas informações serem determinantes para a escolha do 
tipo de ponte. 
Para Pfeil (1979) essas informações incluem a:
• Agressividade da água, como seu pH e também as substâncias dissolvidas. De 
modo que se possa verificar a o teor de agentes agressivos; 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 64
• Presença de materiais de ação destrutiva ao concreto;
• Possibilidade da presença de gases tóxicos presos no subsolo, os quais possam 
ser liberados durante a execução da infraestrutura. Essa situação é comum em 
regiões de terrenos pantanosos.
Além dessas substâncias, deve-se atentar também à biodiversidade da região. Por 
exemplo, há rios nos quais habitam moluscos capazes de perfurar madeiras, o que 
pode comprometer a execução da ponte, caso o escoramento seja feito em madeira 
e se apoie no leito do rio. 
A biologia das águas de regiões litorâneas também pode influenciar no método 
construtivo escolhido. Afinal devido à grande presença de sais na água o tempo de 
permanência de armaduras dentro d’água antes de uma concretagem no processo 
submerso pode ser comprometido.
5.5.2 Informações de Interesse Construtivo
Além da agressividade do ambiente, algumas outras informações a respeito do 
entorno e localidade da obra podem auxiliar nas decisões do projeto, visando a sua 
construção e economia. Araújo (1999) lista os seguintes elementos:
• As formas e condições dos acessos ao local da construção;
• Possíveis fornecedores para materiais de construção, o custo e a confiabilidade 
do transporte;
• O clima da região como tempos de chuvas e regime do rio, buscando determinar 
as épocas favoráveis para a execução da obra;
• A possibilidade de interferência de serviços de terraplanagem ou desmonte de 
rocha na proximidade da construção. 
• As condições para obtenção de água potável.
5.5.3 Efeitos de Terremotos 
As obras de arte em regiões sujeitas a efeitos sísmicos devem ser dimensionadas 
para carregamentos especiais que garantam a sua estabilidade sob o efeito das 
acelerações horizontais causadas pelos tremores de terra (PFEIL, 1979).
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 65
No Brasil não se considera a possibilidade de terremotos em seu território, razão 
pela qual as normas dispensam a verificação dos efeitos sísmicos nas estruturas. 
Entretanto, não é o que temos visto nos últimos anos. Regiões como o Mato Grosso, 
já sentiram leves tremores de terra causados por terremotos na cordilheira dos Andes. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 66
CAPÍTULO 6
SOLICITAÇÕES DE PONTES I
Na aula passada você aprendeu quais as informações iniciais que você precisa 
para começar o projeto de uma obra de arte. Agora, falaremos sobre os passos para 
o dimensionamento dessa estrutura. 
A estrutura é um conjunto de elementos, verticais e horizontais, responsáveis pela 
sustentação da obra de arte, aqual recebe além do seu próprio peso ações provenientes 
dos usuários, empuxos de solo, ações do vento entre outras. Dessa forma, o primeiro 
passo para o dimensionamento é conhecer as ações atuantes sobre as estruturas. 
Antes de falarmos dessas ações, vamos reforçar alguns pontos importantes. Ao longo 
das próximas aulas focaremos no projeto de pontes convencionais de concreto armado, 
isto é, pontes formadas por um tabuleiro em laje apoiada sobre vigas longitudinais 
principais. Com isso em mente, você consegue me dizer qual seria o caminho das 
cargas atuantes sobre esse tabuleiro? 
Cada um dos elementos estruturais tem a finalidade de receber e conduzir as 
cargas atuantes até o maciço rochoso. Via de regra, o elemento em contato direto 
com os usuários é a laje, ela receberá as cargas dos veículos e as transferirá para 
as vigas. Estas receberão as reações provenientes das lajes e as conduzirão para os 
pilares, que por sua vez levarão as cargas até as fundações. É fundamental que você 
compreenda essa sequência de carregamentos, para entender quais cargas considerar 
no dimensionamento dos elementos. 
Além disso, precisamos relembrar os tipos de forças que podem atuar sobre uma 
estrutura. Em geral, temos as forças de superfície, as forças lineares e as forças 
pontuais. As lajes podem receber esses três tipos, já as vigas e os pilares por serem 
modelados como elementos de barra só podem receber forças lineares e pontuais. 
Feita essa revisão, vamos iniciar o assunto da nossa aula que é: quais as ações 
atuantes nas estruturas? 
Segundo a NBR 8681:2004 as ações de uma estrutura podem ser divididas em:
• Ações permanentes: são as cargas que atuarão por toda a vida útil da estrutura, 
nela incluímos o peso próprio da estrutura e dos elementos acessórios como 
pavimentação, postes, barreiras e guarda-corpos;
• Ações variáveis: são ações que atuaram sobre a estrutura em momentos e 
intensidades variáveis, são exemplos dessas ações as cargas móveis, as cargas 
de vento e a correnteza das águas;
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 67
• Ações excepcionais: são ações com pouquíssima probabilidade de ocorrerem 
durante a vida útil da construção, mas que não devem ser desconsideradas. É 
o caso dos choques de veículos, por exemplo.
3.1 Ações Permanentes
Segundo a NBR 7187 (2003), norma que estabelece os critérios para projetos de 
pontes em concreto armado e protendido, as ações permanentes são aquelas cujas 
intensidades podem ser consideradas constantes ao longo da vida útil da estrutura. 
Falaremos especificamente sobre cada uma delas na aula de hoje.
3.1.1 Peso Próprio dos Elementos
Ao falarmos em ações permanentes o peso próprio é o primeiro a vir à mente, 
afinal, ele coabitará com a estrutura, enquanto ela estiver presente o seu peso estará 
atuando sobre ela. 
Para a determinação do peso próprio dos elementos nós precisamos conhecer duas 
coisas: a geometria da estrutura e o peso próprio do material que a constitui. É por essa 
razão, que antes de dimensionar a estrutura em concreto armado nós precisamos de 
um anteprojeto. No anteprojeto as dimensões dos elementos estruturais são definidas 
de acordo com um pré-dimensionamento. 
ANOTE ISSO
É muito comum que haja uma dispensa do pré-dimensionamento quando o 
calculista já possui um histórico de projetos similares. Nesses casos as dimensões 
e índices de consumo dos projetos já finalizados constituem um excelente ponto de 
partida, não necessitando de um pré-dimensionamento.
Entretanto, na ausência desse histórico pode-se realizar o pré-dimensionamento das 
vigas principais considerando uma carga permanente média e uma carga móvel 
atuando separadamente em cada vão, combinando-se depois os carregamentos 
mais desfavoráveis para cada caso.
O nível de detalhamento do pré-dimensionamento depende da sua finalidade. Há 
casos como de licitações de projetos, em que é necessário um detalhamento 
considerável do anteprojeto, para que seja possível uma estimativa orçamentária 
precisa e uma análise comparativa dos diversos anteprojetos apresentados.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 68
Justamente por conta desse pré-dimensionamento é comum que ao final do 
dimensionamento seja necessário modificar as dimensões finais da estrutura. Nesses 
casos é necessário redimensionar a estrutura para o peso próprio real. Entretanto, 
a norma dispensa essa etapa, caso o peso definitivo não diferir mais do que 5% do 
admitido no dimensionamento (PFEIL,1979).
A tabela abaixo apresenta o peso específico para alguns materiais de construção 
utilizados nos projetos de pontes. 
Concreto armado 25,0
Concreto simples 22,0
Areia, brita ou terra fofa 16,0
Areia, brita ou terra compactas 19,0
Lastro de brita para ferrovias 17,0
Macadame ou brita compactadas com rolo 22,0
Pavimentação 24,0
Alvenaria de pedra 27,0
Madeira Peroba 8,0
Dormente de madeira 12,5
Ligas de alumínio 28,0
Ferro fundido 78,0
Aço e aço fundido 78,5
Tabela 1 – Pesos específicos dos Materiais de Construção, em kN/m³
Fonte: Pfeil (1979, p. 44)
Há ainda outros elementos não estruturais cujo peso deve ser determinado. 
As barreiras, guarda-corpos e postes estarão sempre presentes na ponte, sendo 
considerados, portanto, como cargas permanentes. 
Nas pontes rodoviárias a pavimentação da faixa de pedestres deve ser considerada, 
assim como um eventual recapeamento. Debs e Takeya (2010) recomendam considerar 
uma carga mínima de 2 kN/m² para o recapeamento. Em pontes de grandes vãos 
essa carga adicional pode ser desconsiderada a critério do proprietário da obra. 
Agora que você compreendeu o que são as cargas permanentes, vamos praticar? 
Façamos um exemplo. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 69
Exemplo 1: Com base na seção transversal da ponte de concreto armado abaixo, 
determine as cargas permanentes que estão atuando sobre a laje, as vigas e pilares. 
Considere que as vigas são biapoiadas com vão igual a 20 metros. 
Título: Seção transversal de ponte em concreto armado (unidades em cm)
Fonte: Autor
a) Determinação das cargas sobre a laje
Iniciemos determinando o peso próprio da própria laje, perceba que a laje é um 
elemento de placa sendo o seu peso distribuído uniformemente sobre a sua área. Isto 
significa, que o peso próprio da laje é uma força de superfície dada por:
onde: γCA→ peso próprio do concreto armado
h→ a espessura da laje
Portanto, temos:
Observe que a laje recebe sobre ela a barreira de proteção na lateral da ponte 
e a pavimentação da faixa de tráfego. Esses elementos também gerarão sobre a 
laje cargas permanentes. Iniciemos pelo pavimento, este está aplicado sobre toda a 
superfície da laje o que gerará uma força peso de superfície. Dessa forma precisamos 
apenas da espessura do pavimento, todavia, perceba que ela varia do centro para as 
extremidades. Sendo assim, utilizaremos espessura média:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 70
Considerando também a sobrecarga de recapeamento de 2 kN/m² obtemos uma 
força peso de pavimentação igual a:
Passemos agora para a determinação do peso próprio da barreira, perceba que ela 
atuará ao longo de toda a ponte. Logo, a força resultante do peso desse elemento 
será linear. 
Dessa forma determinamos todas as ações provenientes de peso próprio atuante 
na laje. A figura abaixo mostra a distribuição dessas cargas para cada metro de laje. 
Título: Carregamento permanente sobre 1 metro longitudinal de laje – vista da seção transversal
Fonte: Autor
b) Determinação das cargas sobre as vigas
Vamos agora, avaliar as cargas sobre as vigas, as vigas suportarão além do seu 
próprio peso as cargas descarregadas pelas lajes sobre elas. Observe, que a seção 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 71
transversal da ponte é simétrica, portanto, cada viga receberá metade dascargas 
atuantes sobre a laje por metro de comprimento. Isto é, a reação da laje é uma força 
linearmente distribuída sobre a viga. Para determinar essa reação basta somarmos 
todas as cargas sobre a laje e dividirmos por dois:
O peso próprio da viga será o produto do peso específico do concreto pela área da 
sua seção transversal: 
Na figura abaixo representamos a distribuição das cargas permanentes que atuam 
na viga, resultando em uma carga linear total de 57,89 kN/m. 
Título: Carregamento permanente sobre a viga longitudinal
Fonte: Autor
c. Determinação das cargas dos pilares
Do enunciado sabemos que a viga é biapoiada sobre dois pilares, com um vão igual 
a 20 metros como pudemos ver na figura acima. Você já aprendeu em teoria das 
estruturas como determinar as reações de apoio de vigas isostáticas. Logo podemos 
apenas dizer que a reação é a carga normal descarregada sobre o pilar. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 72
3.1.2 Empuxos
Além do peso próprio há outras ações permanentes que podem ou não estar 
presentes no projeto. Uma delas é o empuxo, que pode ser causado pelo solo ou 
pela água. 
3.1.2.1 Empuxo de Terra
Como visto em mecânica dos solos, a terra em contato com a estrutura exerce sobre 
ela uma força horizontal chamada de empuxo. Esse pode ser classificado quanto a sua 
natureza em ativo, passivo ou de repouso. O empuxo é dito ativo quando o solo sofre 
uma distensão provocando um deslocamento da estrutura para fora do terrapleno; 
já quando o solo é comprimido, isto é, a estrutura se desloca contra o terrapleno 
temos o chamado empuxo passivo. Todavia, há casos em que a estrutura não sofre 
deformação, nessa situação temos o empuxo de repouso. 
Deve-se sempre buscar o carregamento que leve a situação mais desfavorável para 
a estrutura, de modo que estas sejam dimensionadas a favor da segurança. Sendo 
assim, em casos como da figura abaixo, a atuação estabilizante do empuxo passivo 
só poderá ser considerada se não houver possibilidade do solo ser retirado ao longo 
da vida útil da estrutura. 
Título: Esquema ilustrativo da atuação dos empuxos do solo sobre um encontro
Fonte: DEBS E TAKEYA (2010) – pg. 24
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 73
Pensando ainda no carregamento mais desfavorável, é possível simplificar a 
determinação do empuxo ao desconsiderar a coesão do solo (caso exista) e o atrito 
entre o solo e a estrutura. Debs e Takeya (2010) recomendam utilizar um peso específico 
para o solo úmido de no mínimo 18 kN/m³ e um ângulo de atrito interno de no máximo 
30°. Entretanto, essa recomendação não dispensa um estudo geotécnico para avaliação 
das características do solo da região. 
Uma situação interessante a ser avaliada é o desenvolvimento planimétrico das 
pontes, cuja superestrutura funciona como arrimo. Nos casos dos tabuleiros ortogonais, 
a atuação do empuxo deve ser considerada apenas em uma das extremidades da 
superestrutura. Todavia, nos tabuleiros curvos ou esconsos, as forças de empuxo devem 
ser consideradas para ambas as extremidades, uma vez que, gerarão um esforço de 
flexão sobre a superestrutura, como você pode observar na ilustração abaixo. 
Título: Empuxo do solo atuando sobre a superestrutura – vista em planta
Fonte: DEBS E TAKEYA (2010) – pg. 24 (REDESENHAR) 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 74
Regiões de taludes, nas quais os pilares encontram-se parcialmente enterrados, 
as forças de empuxo devem ser estimadas para uma largura fictícia igual a 3 vezes a 
largura do pilar, desde que seja menor ou igual a largura da plataforma. Esse acréscimo 
deve-se ao efeito de arqueamento das forças horizontais do solo sobre o pilar (observe 
a figura abaixo). 
Título: Empuxo do solo sobre pilar isolado
Fonte: DEBS E TAKEYA (2010) – pg. 25
Nos casos em que a superestrutura é suportada por uma série de pilares alinhados 
transversalmente, a largura fictícia é igual a 3 vezes a largura do pilar deve ser menor 
ou igual a distância transversal entre eixos de pilares adjacentes. Caso esse critério 
não seja respeitado, deve-se adotar uma largura fictícia igual a:
• Metade da distância entre os eixos dos pilares acrescida 1,5 vezes a largura do 
pilar, para os pilares externos; 
• A distância entre os eixos dos pilares, para os pilares intermediários.
3.1.2.2 Empuxo de Água
As águas também exercerão sobre as estruturas forças de empuxo que devem ser 
avaliadas no dimensionamento. Elementos estruturais submersos, receberão a ação 
de um empuxo hidrostático de módulo igual ao peso do volume de água deslocado e 
sentido vertical para cima. Já as laterais desses elementos recebem forças horizontais. 
Via de regra, dimensiona-se estes elementos para que seu peso próprio ultrapasse no 
mínimo 10% do empuxo vertical (PFEIL, 1979).
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 75
Nos muros de arrimo deve-se sempre atentar ao nível do lençol freático, uma vez 
que, este gerará pressões hidrostáticas sobre a parede. Para dispensar a consideração 
dessa sobrecarga é necessário projetar sobre toda a altura da estrutura uma camada 
filtrante contínua que, associada a um sistema de drenos, evitará a atuação do empuxo 
da água proveniente do lençol freático, da água livre ou da água de acumulação de 
chuva (DEBS E TAKEYA, 2010).
3.1.3 Deformações
De modo geral as fundações das obras de arte são dimensionadas para que seus 
recalques diferenciais sejam pequenos, sendo seus efeitos insignificantes. Nestes casos, 
ao se projetar pontes hiperestáticas, como as de vigas contínuas, não é necessário a 
consideração desses recalques na determinação dos esforços de projeto. 
Entretanto, quando a ponte será construída sobre uma área que pode vir a ter 
grandes recalques, estes devem ser previstos ainda na fase de projeto. Um exemplo 
de localização deste caso são encostas sujeitas a deslizamentos lentos (PFEIL, 1979).
Dessa forma, os recalques previstos podem auxiliar na escolha da estaticidade 
da estrutura principal. Podendo ela ser hiperestática ou isostática. As estruturas 
hiperestáticas apresentam maior sensibilidade ao deslocamento de seus apoios, 
devendo ser descartada, se possível, quando houver a possibilidade de recalques 
diferenciais excessivos (DEBS e TAKEYA, 2010).
Todavia, as estruturas em concreto possuem capacidade de adaptação aos recalques 
diferenciais, devido a fluência do material. Debs e Takeya (2010) ressaltam que as 
estruturas hiperestáticas em concreto armado são capazes de se acomodar às 
deformações das fundações, desde que não demore muito para retirar o escoramento.
Deve-se tomar cuidado no projeto de pontes implantadas em zonas carboníferas. 
Essas regiões podem apresentar grandes recalques bruscos na fundação. Sendo, 
portanto, necessário a previsão de nichos, para colocação de macacos destinados a 
renivelar os tabuleiros, no projeto da estrutura estaticamente determinada (PFEIL, 1979).
Na aula de hoje você aprendeu quais são as ações permanentes que podem atuar 
sobre as estruturas das pontes e viadutos. Nas próximas daremos continuidade às 
solicitações das pontes falando das ações variáveis e excepcionais que devem ser 
consideradas. Bom estudo!
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 76
CAPÍTULO 7
SOLICITAÇÕES DE PONTES II
7.1 Ações variáveis
Como comentamos na aula passada, uma estrutura receberá ações de diferentes 
tipos ao longo da sua vida útil. As normas classificam essas ações em três tipos: 
permanentes, variáveis e excepcionais. 
No capítulo anterior você aprendeu quais as ações permanentes que podem atuar 
nas estruturas das pontes. Hoje começaremos a falar das ações variáveis. Estas 
são consideradas cargas cuja atuação e intensidade irão mudar ao longo da vida da 
estrutura. Isso significa que ela não atuará a todo momento, entretanto, as estruturas 
devem resistir aelas quando aplicadas.
São exemplos de ações variáveis as cargas móveis, provenientes dos veículos que 
passam sobre as pontes; as ações do vento que varia ao longo da vida da estrutura; 
e a correnteza das águas sobre os apoios submersos. Iniciaremos o assunto, falando 
sobre as cargas móveis. 
7.1.1 Carga Móvel
As pontes destinam-se a travessia de veículos e pedestres estando, portanto, sujeitas 
às ações destes. A estimativa dessas ações no projeto de pontes pode ser feita com 
base na NBR 7188 (2013), a qual define cargas móveis padrão para pontes e viadutos, 
passarelas e estruturas de garagem. 
Para as pontes rodoviárias a norma estabelece um trem tipo de seis rodas, agrupadas 
de duas em duas em uma série de três eixos a 1,5 metro de distância. O peso total do 
veículo é distribuído igualmente para cada roda, sendo representado por uma carga 
pontual P. Além dessas forças, a norma estabelece a consideração de uma carga 
uniformemente distribuída (p) sobre toda a faixa de rolamento, exceto na área ocupada 
pelo veículo. A distribuição dessas forças é esquematizada na figura abaixo. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 77
Título: Disposição das cargas sobre faixa de tráfego
Fonte: NBR 7188 (2013)
Os diversos elementos estruturais de pontes ou viadutos com faixas de passeio 
devem ser dimensionados considerando uma carga uniformemente distribuída de 
valor igual a 3,0 kN/m² sobre todo o passeio atuando simultaneamente a carga móvel 
na faixa de tráfego. Para o dimensionamento dos elementos estruturais do passeio 
deve-se utilizar uma carga distribuída de 5,0 kN/m².
A NBR 7188 (2013) especifica dois trens tipo para as pontes rodoviárias, o TB-450 
e o TB-240, ambos detalhados na tabela 1. Via de regra o TB-450 é o trem tipo para 
as pontes e viadutos rodoviários, porém, a norma sugere a majoração em 10% desse 
trem tipo para obras de arte localizadas a menos de 100 km de terminais portuários. 
O trem tipo TB-240 é indicado para obras de arte de estrada vicinais municipais de 
uma faixa e obras particulares, a critério da autoridade competente. Ambos os trens-
tipo possuem as mesmas dimensões apresentadas na figura a seguir. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 78
Título: Trem tipo
Fonte: DEBS E TAKEYA (2010) – pg. 31
Item TB-450 TB-240
Quantidade de eixos 3 3
Quantidade de rodas 6 6
Peso total do veículo ( kN ) 450 240
Peso de cada roda ( kN ) 75 40
Largura de contato da roda ( m ) 0,50 0,50
Comprimento de contato da roda ( m ) 0,20 0,20
Área de contato da roda ( m² ) 0,10 0,10
Distância entre eixos ( m ) 1,50 1,50
Distância entre centros das rodas de cada eixo ( m ) 2,00 2,00
Tabela 1 – Características dos trens tipo especificados pela NBR 7188
Fonte: Autora 
ISTO ACONTECE NA PRÁTICA
Perceba que o trem tipo estabelecido pela norma não representa adequadamente 
os veículos que circulam pelas rodovias brasileiras. Muitos autores chamam 
atenção para o fato de a norma brasileira ter copiado normas internacionais sem 
qualquer preocupação com as características reais dos veículos aqui utilizados. 
Os veículos que usualmente trafegam pelas rodovias são os caminhões, as carretas 
e as combinações de veículos de carga, chamados de CVCs. Esses veículos têm 
seu peso limitado de acordo com o conjunto de eixos pela “Lei da balança” de 
1998. No quadro abaixo você confere os principais tipos de veículos utilizados no 
Brasil com seus respectivos pesos por eixos, peso total e uma carga distribuída 
equivalente, obtida pela razão entre o peso do veículo e a área da faixa de rolamento 
ocupada pelo veículo mais uma folga de 15 metros entre veículos consecutivos. 
Essa distância corresponde a uma situação de tráfego normal. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 79
Veículo
Peso 
Total 
(kN)
Carga 
distribuída 
(kN/m²)
Caminhão de 2 eixos traseiros
230 2,4
Carreta com 3 eixos traseiros
 
415 3,6
Caminhão com 6 eixos
485 4,9
Bi-trem com 9 eixos
740 5,4
Quadro 1 – Caminhões e Carretas de uso corrente no Brasil
Fonte: Adaptado de DEBS E TAKEYA (2010) – pg. 28
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 80
Agora que você já conhece o trem tipo padrão, vamos relembrar como posicionar 
o mesmo sobre a ponte. As cargas móveis diferenciam-se das cargas estáticas pois 
podem ocupar qualquer posição ao longo da estrutura. Isso significa, que os esforços 
gerados por essa carga em uma determinada seção variam com o movimento veículo. 
A forma mais fácil de observar essa variação é por meio das linhas influência, como 
você aprendeu em Sistemas Estruturais. 
Segundo Sussekind (1981), a linha de influência é uma representação gráfica do 
efeito elástico da ação de uma carga pontual unitária em uma determinada seção. Em 
outras palavras, a linha de influência mostra o valor do esforço em uma determinada 
seção, gerado pela carga unitária posicionada naquela exata posição. 
Sendo assim, o máximo momento fletor da seção será obtido ao posicionar o trem 
tipo sobre o ponto de maior momento da linha neutra. Um detalhe importante, é que 
a carga unitária será adicionada apenas nas regiões que levam a uma amplificação 
do momento avaliado. Para melhor compreensão dos conceitos apresentados vamos 
para um exemplo. 
Exemplo 1: Você precisa determinar a armadura longitudinal positiva da viga de um 
viaduto, para isso você precisará do máximo momento fletor atuante na seção central 
do vão. Com os conhecimentos adquiridos em teoria das estruturas, você obteve a 
linha de influência da seção para uma carga unitária (apresentada na figura abaixo). 
Para simplificar o problema, considere que o eixo da roda do trem tipo TB-450 passe 
exatamente sobre a viga. Determine a posição correta para sua aplicação e em seguida 
calcule o momento fletor correspondente para essa disposição. 
Título: Linha de influência da seção S1 para viga isostática com balanço – Esforço: Momento fletor
Fonte: Autor
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 81
Primeiramente vamos relembrar os conceitos de dimensionamento, sempre 
deveremos dimensionar a estrutura para o maior esforço possível. Logo, precisamos 
posicionar o trem tipo em um local que levará ao maior momento fletor solicitante 
da seção S1. 
Para isso, observe a linha de influência obtida e perceba que a posição de uma carga 
pontual que gera maior momento fletor é a própria seção S1, pois é justamente sobre 
esse ponto que temos o maior momento fletor na linha de influência. Dessa forma 
sabemos que uma das cargas concentradas do trem tipo estará sobre este ponto. 
Todavia, o trem tipo é composto por três cargas pontuais de 75kN separadas 1,5 m 
uma da outra, devemos buscar a disposição que resultará na maior combinação da 
atuação simultânea dessas três cargas. 
Essa disposição ocorrerá quando o veículo estiver posicionado com a sua roda 
central sobre a seção S1 e as rodas dianteira e traseira a 1,5 m dessa seção, como 
representado na figura abaixo. 
Título: Posicionamento do trem tipo
Fonte: Autor
Uma vez posicionado o trem tipo, precisamos posicionar a carga uniforme p em todas 
as regiões não ocupadas pelo veículo e que influenciarão positivamente o momento 
máximo da seção. Dessa forma, olhe novamente para a linha de influência, repare que 
as cargas aplicadas sobre o balanço geram momentos negativos na seção S1 o que 
causará um alívio no momento positivo da seção. Sendo assim, para obter o máximo 
momento fletor da seção a carga distribuída não será aplicada sobre os balanços da 
viga. A disposição final das cargas é apresentada a seguir. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 82
Título: Posição correta para o trem tipo
Fonte: Autor
Agora que posicionamos corretamente as cargas, devemos determinar o momento 
máximo atuante na seção, que com base na linha de influênciaé extremamente simples. 
Vamos lá, note que uma carga pontual de 1,0 kN posicionada no centro do vão causar 
um momento fletor de 2,0 kN.m na seção S1. Logo se aplicarmos sobre este mesmo 
ponto uma carga de 2,0 kN, o momento na seção subirá para 4,0 kN.m (= 2.2,0 kN.m), 
portanto, a carga P = 75kN da roda central gerará um momento de 75.2,0 = 150,0 Kn.m. 
Entretanto, há ainda mais duas cargas pontuais aplicadas a 1,5m do ponto central. 
Por semelhança de triângulos, obtemos o momento gerado na seção S1 por uma 
carga unitária em S2 como mostra a figura. 
Título: Triângulos semelhantes – Linha de influência
Fonte: Autor
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 83
Dessa forma temos:
Por simetria, sabemos que o que significa que o momento causado pela carga 
da roda dianteira é igual ao momento da roda traseira e vale 75.1,25 = 93,75 kN.m. 
Já o momento resultante de uma carga uniformemente distribuída, será o valor 
dessa carga multiplicado pela área abaixo da linha de influência, Logo temos:
Finalmente podemos determinar o momento máximo pela soma dos momentos 
gerados por cada uma das cargas na seção S1. Temos, portanto, que o momento 
máximo atuante é:
Ms,max=150+93,75+93,75+1,25+1,25
Ms,max=340,00 kN.m
Agora que você já compreendeu como usar as linhas de influência e os trens tipo 
especificados pela norma, passemos a falar dos coeficientes de ponderação desses 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 84
carregamentos. A NBR 7188 (2013) prevê a majoração das cargas aplicadas sobre 
as faixas de tráfego por meio dos coeficientes de impacto vertical, número de faixas 
e impacto adicional. Explicaremos o significado e como determinar cada um destes 
coeficientes a seguir. 
Definido estes coeficientes determinamos as cargas móveis sobre a faixa de tráfego 
como:
• Cargas concentradas
Q=P.CIV.CNF.CIA
• Cargas uniformemente distribuídas
q=p.CIV.CNF.CIA
7.1.1.1 Coeficiente de Impacto Vertical (CIV)
O primeiro coeficiente de ponderação das cargas móveis é o coeficiente de impacto 
(CIV). Ele tem a finalidade de amplificar as cargas móveis, de modo que os seus efeitos 
dinâmicos possam ser ‘desprezados’ e o dimensionamento possa ser realizado apenas 
com uma análise estática.
Via de regra, consideramos que as ações atuantes nas estruturas variam 
gradualmente, de zero ao seu valor máximo, ao longo da vida da estrutura. Esse 
comportamento nos permite considerar essas ações estáticas, dispensando análises 
estruturais complexas como a análise dinâmica. Todavia, as cargas móveis atuantes 
nas obras de arte são aplicadas bruscamente sobre essas estruturas, fazendo com 
que uma simples análise estática não represente adequadamente a realidade. 
Diante disso, Debs e Takeya (2010) enfatizam que as oscilações provocadas pela 
passagem dos veículos, especialmente os trens, devem ser avaliadas por uma análise 
dinâmica. Porém, devido à complexidade dessa análise a NBR 7188 (2013) permite 
o uso de um coeficiente de majoração das cargas para que as mesmas possam ser 
consideradas estáticas. Este coeficiente deve ser empregado no dimensionamento 
de todos os elementos estruturais da ponte. 
O CIV é determinado de acordo com o vão da ponte, isso se justifica devido a 
relação inversamente proporcional entre os efeitos dinâmicos das cargas e o peso da 
estrutura. Dessa forma, a influência dos efeitos dinâmicos diminui à medida que o vão 
da estrutura aumenta, uma vez que, o peso próprio da estrutura aumenta com o vão. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 85
Por isso também, observa-se uma importância maior dos efeitos dinâmicos nas 
pontes metálicas, em geral mais leves, do que nas pontes de concreto armado. As 
pontes ferroviárias também devem receber uma atenção especial quando comparadas 
às rodoviárias. 
Estudos experimentais apontam que o CIV varia com relação ao vão, L, em uma 
função hiperbólica com tendência assintótica para 1 conforme L tende ao infinito 
como mostrado no gráfico a seguir (DEBS E TAKEYA, 2010). 
Título: Valores experimentais para a variação do CIV em relação ao vão
Fonte: DEBS E TAKEYA (2010) – pg. 34
Em decorrência de tudo aqui exposto, a NBR 7188 (2013) determina a amplificação 
das cargas móveis pelo coeficiente de impacto vertical (CIV) igual a:
• para estruturas com vão até 10 metros 
CIV=1,35
• para estruturas de vão entre 10 e 200 metros
onde Liv representa o vão em metros para vigas biapoiadas; ou a média 
aritmética dos vãos de vigas contínuas; ou o comprimento do balanço em 
vigas em balanço.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 86
• para estruturas de vão acima de 200 metros
nestes casos é recomendado um estudo específico para avaliação dos efeitos 
dinâmicos e determinação do CIV. 
7.1.1.2 Coeficiente do Número de Faixas (CNF)
Além dos efeitos dinâmicos, as cargas móveis devem ser corrigidas de acordo com 
o número de faixas de tráfego do tabuleiro. Isso para corrigir as distorções estatísticas 
da probabilidade de simultaneamente passarem veículos paralelos em todas as faixas.
Para essa correção a NBR 7188 (2013) define o coeficiente do número de faixas 
(CNF) dado por:
CNF=1-0,05.(n-2)>0,9
onde n igual ao número de faixas de tráfego rodoviário a serem carregadas sobre 
o tabuleiro. É importante lembrar que os acostamentos e faixas de segurança não 
são considerados faixas de tráfego. 
Destaca-se que este coeficiente não deve ser utilizado para o dimensionamento 
dos elementos estruturais transversais ao sentido do tráfego, como lajes e vigas 
transversinas.
7.1.1.3 Coeficiente de Impacto Adicional (CIA)
Por último, a norma prevê a majoração das cargas aplicadas a uma distância 
inferior a 5,0 metros das descontinuidades da pista de rolamento. Aqui considera-se 
descontinuidade das extremidades da ponte, as juntas de dilatação e estruturas de 
transição e acessos. São recomendados os seguintes valores para o CIA:
• para obras em concreto ou mistas
CIA=1,25
• para obras em aço
CIA=1,15
Ao longo desta aula você aprendeu sobre as cargas móveis que são típicos 
carregamentos variáveis presentes nas obras de arte. Entretanto, há outras ações 
variáveis que atuam sobre as estruturas das pontes e viadutos. Falaremos sobre elas 
na próxima aula. Até lá! 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 87
CAPÍTULO 8
SOLICITAÇÕES DE PONTES III
8.1 Ações Variáveis
Na aula passada você aprendeu sobre as cargas móveis, ações variáveis 
características das pontes e viadutos, apesar de também poderem estar presentes 
em lajes de estacionamento. Hoje, falaremos sobre as outras ações variáveis que 
podem agir simultaneamente, ou não, as cargas móveis sobre os elementos das 
pontes e viadutos. 
8.1.1 Força Centrífuga
A força centrífuga é uma força horizontal presente quando um veículo realiza uma 
curva. Nos casos de curvas realizadas sobre as pontes, essa força horizontal atuará 
sobre o tabuleiro da mesma. 
Ao percorrer uma trajetória circular a uma certa velocidade surge, devido ao atrito 
das rodas a o pavimento, uma força horizontal em direção ao centro e sentido para 
fora da curva chamada de força centrífuga. Essa força pode ser calculada por:
onde: Q é o peso total do veículo
v é a velocidade do veículo 
R é o raio de curvatura da trajetória
É importante salientar que para a força centrífuga estar presente basta que a pista de 
tráfego seja curvilínea, isso não significa que o eixo da obra seja curvo. Debs e Takeya 
(2010) apresentam a ponte reta abaixo, na qual você pode observar que a estrutura 
possui um eixo retilíneo, enquanto a ferrovia sobre o tabuleiro é curva gerando uma 
força centrífuga devido ao movimento circular descrito pelo trem. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 88
Título: Exemplo de ponte curva em abóbada reta
Fonte: DEBS E TAKEYA (2010) – pg. 38Para fins de projeto, a NBR 7187 (2003) recomenda a consideração da força 
centrífuga como uma força uniformemente distribuída ao longo do eixo do veículo 
quando em pontes ferroviárias, ou sobre a superfície de rolamento quando em pontes 
rodoviárias. Os valores para essa força devem ser determinados de acordo com o raio 
de curvatura e o peso do veículo (), conforme a equação:
O coeficiente varia com o tipo de tráfego da ponte e seu raio de curvatura:
• Para pontes rodoviárias
C=0,25 para curvas com R≤300m
C=75/R para curvas com R>300m
• Para pontes ferroviárias de bitola larga (1,60m)
C=0,15 para curvas com R≤1200m
C=180/R para curvas com R>1200m
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 89
• Para pontes ferroviárias de bitola estreita (1,00m)
C=0,10 para curvas com R≤750m
C=75/R para curvas com R>750m
Ao estudar a aplicação da força centrífuga sobre a estrutura, percebe-se que sendo 
essa aplicada sobre a superfície de rolamento gerará no centro geométrico das vigas 
principais, além de uma força horizontal, um momento fletor de valor igual a:
sendo x a distância entre o centro geométrico das vigas e o ponto de aplicação da 
força centrífuga. 
Esse momento provocará um aumento das cargas nas vigas externas enquanto 
alivia as vigas internas (observe a figura abaixo). Por esse motivo as vigas exteriores 
de pontes curvas devem ser dimensionadas com solicitações maiores que as vigas 
internas (PFEIL, 1979).
Título: Exemplo de ponte curva em abóbada reta
Fonte: DEBS E TAKEYA (2010) – pg. 40
A ação da força horizontal é resistida por um contraventamento perpendicular ao 
eixo da ponte. Via de regra, este é fornecido pela própria laje do tabuleiro. 
Em relação a mesoestrutura, a atuação da força centrífuga é importante para o 
dimensionamento adequado dos aparelhos de apoio. 
8.1.2 Choque Lateral 
Nas pontes ferroviárias, deve-se considerar a ação de uma carga horizontal proveniente 
do choque lateral entre as rodas e trilhos. Essa força surge devido a existência da 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 90
folga entre o friso das rodas e o boleto do trilho; uma vez que o movimento do trem 
não é perfeitamente retilíneo, a folga permite o choque das rodas ora contra um trilho 
ora contra o outro.
A NBR 7187(2003) determina que, somente para pontes ferroviárias, deve-se 
considerar uma força horizontal aplicada no topo do trilho de valor igual a: 
onde Qe representa o peso do eixo mais pesado. 
No projeto de pontes ferroviárias curvas a força proveniente do choque lateral não 
deve ser adicionado a força centrífuga. Neste caso, a norma recomenda a adoção da 
força horizontal mais desfavorável. 
Assim como a força centrífuga, a ação do choque lateral é fundamental no 
dimensionamento dos aparelhos de apoio da superestrutura na mesoestrutura. 
8.1.3 Efeito de Frenagem e Aceleração
Outra força horizontal proveniente das cargas móveis no tabuleiro são as forças 
de frenagem ou aceleração. Via de regra, os veículos não trafegam em velocidade 
constante estando ora sendo acelerados e ora sendo freados. Essas ações produzirão 
uma força na direção do tráfego de valor igual a força necessária para modificar a 
velocidade do veículo. 
A NBR 7187 (2003) especifica que as forças geradas por estes efeitos devem ser 
calculadas como uma fração das cargas móveis atuantes. Para essas cargas não se 
considera o impacto. 
Nas pontes rodoviárias, a força longitudinal deve ser igual ao maior valor entre: 
• 5% da carga móvel sobre a pista de tráfego, isso inclui peso do veículo mais 
carga distribuída;
• 30% do peso do veículo-tipo.
Nas pontes ferroviárias, a força longitudinal será o maior valor entre: 
• 15% da carga móvel para a frenação;
• 25% do peso dos eixos motores para a aceleração.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 91
8.1.4 Ação do Vento
O vento incidente sobre as pontes causará forças sobre a estrutura, todavia, a NBR 
7187 (2003) apenas menciona a consideração dessa ação com indicado na NBR 6123, 
a qual trata da determinação das ações de vento sobre edifícios. Devido à ausência 
de recomendações específicas para pontes, Debs e Takeya (2010) recomendam o 
emprego dos procedimentos estabelecidos na antiga norma de pontes NB 2 (1961), 
apresentados a seguir. 
8.1.4.1 Ação do Vento na Direção Horizontal
Nas obras de arte, o vento atuará como uma força horizontal, normal ao eixo da 
ponte, com distribuição uniforme ao longo de toda a sua extensão. Para a determinação 
da ação dessa carga admite-se dois cenários: 
a) Ponte descarregada
No primeiro cenário, considera-se que o vento incidirá sobre uma superfície igual 
à projeção da estrutura sobre plano normal à direção do vento.
Neste caso recomenda-se a adoção de uma pressão de vento igual a 1,5 kN/m² 
independentemente do tipo de ponte avaliado, conforme a figura abaixo. 
Título: Pressão do vento sobre ponte descarregada: a) ponte rodoviária b) ponte ferroviária 
Fonte: Autor
b) Ponte carregada: 
Outro cenário para a avaliação da ação do vento é quando o tabuleiro da ponte está 
carregado. Nessa situação o vento incidirá sobre a projeção da estrutura acrescida de 
uma faixa proveniente dos usuários da via. A altura da faixa depende do tipo de ponte:
• Pontes ferroviárias: altura igual a 3,50 m; 
• Pontes rodoviárias: altura igual a 2,00 m; 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 92
• Passarelas: altura igual a 1,70 m; 
Quando avaliada a situação de uma ponte carregada, deve-se admitir uma pressão 
de vento de 1,0 kN/m² para pontes ferroviárias ou rodoviárias, e igual a 0,7 kN/m² 
para passarelas. A imagem abaixo, ilustra cada uma dessas situações. 
Título: Pressão do vento sobre ponte carregadas: a) ponte ferroviária b) ponte rodoviária c) passarela
Fonte: Autor
Diante disso, temos que a força do vento transversal ao tabuleiro da ponte é dada 
por:
onde q é a pressão do vento sobre a estrutura;
hS é a altura da superestrutura;
hV é a altura da faixa do usuário;
L é o comprimento da ponte.
A norma prevê a dispensa das ações do vento para determinados tipos de sistemas 
estruturais de pontes, são eles:
• Pontes em laje: nas pontes cujo sistema estrutural principal da superestrutura 
é a laje, os efeitos da pressão do vento podem ser dispensados devido a sua 
alta rigidez a torção e a pequena altura da superestrutura. 
• Pontes de arco paralelo com tabuleiro superior: nas pontes de arcos paralelos 
cuja largura é superior a 1/9 do vão podem ser dispensadas as ações do vento 
desde que haja contraventamento contínuo, conforme mostra a figura abaixo. 
Essa dispensa deve-se ao fato de a estrutura atuar como uma viga-balcão de 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 93
grande largura quando sujeito a pressão do vento. O mesmo ocorre para pontes 
abóbadas com largura superior a 1/10 do vão. 
Título: Estruturas em arco em que a ação do vento pode ser dispensada
Fonte: DEBS E TAKEYA (2010) – pg. 47
Pfeil (1979) menciona a necessidade de se considerar as ações do vento na direção 
longitudinal a ponte para o dimensionamento da infraestrutura. Neste caso, a força 
do vento pode ser estimada por meio de:
8.1.4.2 Ação do Vento na Direção Vertical: Forças de Sucção
Além das forças horizontais já mencionadas, o vento pode gerar sobre o tabuleiro 
uma força de sucção. Esse esforço tem direção vertical atuando no sentido contrário 
ao peso próprio. Pfeil (1979) recomenda a consideração dessa força, juntamente 
com os esforços horizontais transversais para a verificação do tombamento da 
ponte. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 94
Para isso pode-se adotar uma pressão de vento igual 1,00 kN/m² sobre toda a 
projeção horizontal do tabuleiro. A resultante dessa pressão deve ser aplicada a uma 
distância igual a da extremidade que recebeo vento, considere igual à largura do 
tabuleiro. 
8.1.5 Pressão da Água em Movimento
Da mesma forma que o movimento do vento gera cargas sobre as estruturas, o 
escoamento da água dos corpos d’água em contato com a estrutura gera a chamada 
pressão de água corrente. De acordo com a NBR 7187 (2003) essa pressão é dada por:
sendo p a pressão estática equivalente [kN/m²];
va a velocidade de escoamento da água [m/s];
k o coeficiente adimensional que depende da forma e do ângulo de incidência 
da água sobre a face do pilar. 
Forma Ângulo de incidência k
Circular Qualquer 0,34
Retangular
90° 0,71
45° 0,54
0° 0,00
Tabela 1 – Valores para o coeficiente dimensional k
Fonte: Adaptada NBR 7187 (2013)
É importante mencionar que pontes sobre rios sujeitos a cheias torrenciais podem 
carregar troncos ou galhos. Esses por sua vez, prendem-se nos pilares aumentando 
a área de atuação da correnteza, o que pode levar a uma força superior à estimada 
apenas com a área de contato do pilar (PFEIL, 1979). 
A NBR 7187 (2003) destaca a importância do efeito dinâmico das ondas sobre 
a estrutura. As situações em que a estrutura sofrerá ação de ondas, é fundamental 
a determinação dos seus efeitos dinâmicos por meio de métodos baseados na 
hidrodinâmica.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 95
ISTO ESTÁ NA REDE
Você conhece o caso da ciclovia Tim Maia no Rio de Janeiro? 
Em 2016, a recém-inaugurada ciclovia Tim Maia, localizada na zona sul do Rio, desabou 
após ser atingida por uma onda de cerca de 2,5 metros de altura. O acidente, que levou 
duas pessoas a óbito, foi causado por erro de projeto ao não considerar a possível 
inversão do sentido das forças devido à ação das ondas comuns na região. 
O artigo do link abaixo, faz uma análise técnica interessante dessa fatalidade com 
base em fundamentos da análise estrutural. 
https://ibape-nacional.com.br/biblioteca/wp-content/uploads/2017/08/078.pdf
8.1.6 Empuxo de Terra Provocado por Cargas Móveis
O movimento de entrada e saída das cargas móveis no tabuleiro das pontes, causam 
uma sobrecarga sobre o terrapleno da obra de arte, conforme mostra a figura abaixo. 
Essa sobrecarga causará um empuxo de terra adicional sobre a cortina/encontro.
Título: Efeito da carga móvel na cortina
Fonte: DEBS E TAKEYA (2010) – pg. 48
Já falamos sobre o empuxo de terra nas ações permanentes da estrutura, essa 
sobrecarga, porém, é uma ação variável que atua conforme as cargas móveis 
amplificando o empuxo já existente. 
De modo geral a sobrecarga sobre a cabeceira da ponte é considerada como uma 
carga uniformemente distribuída (observe a figura abaixo). Seu valor é estimado com 
base no peso do trem tipo e a carga p. 
onde é a sobrecarga;
qv é o peso do trem tipo em carga uniformemente distribuída 
Lp corresponde a largura do tabuleiro.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 96
Título: Transformação da carga móvel em carga uniformemente distribuída
Fonte: DEBS E TAKEYA (2010) – pg. 49
8.1.7 Cargas de Construção
Como comentamos na aula 3, alguns métodos construtivos podem gerar sobre as 
estruturas ações temporárias não esperadas durante a vida útil da ponte. Por isso, é 
fundamental a consideração das ações das cargas passíveis de ocorrer durante esse 
período no projeto estrutural da ponte. 
A NBR 7187 determina que notadamente deve-se avaliar as ações provenientes 
do peso dos equipamentos e estruturas auxiliares de montagem e lançamento dos 
elementos estruturais, incluindo seus efeitos em cada etapa executiva da obra. 
As cargas de construção devem ser consideradas com o esquema estático, resistência 
dos materiais, e seções resistentes existentes por ocasião da sua aplicação (DEBS 
E TAKEYA, 2010).
8.2 Ações Excepcionais 
A NBR 8681 define as ações excepcionais como aquelas cuja duração é extremamente 
curta e muito baixa probabilidade de ocorrência durante a vida da construção, mas 
que devem ser consideradas no projeto de determinadas estruturas. 
Enquadrasse dentro do projeto das pontes as ações excepcionais provenientes:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 97
• do choque de veículos móveis;
• de explosões;
• de fenômenos naturais pouco frequentes como: grandes enchentes e sismos.
Dentre essas, apenas a ação proveniente do choque dos veículos é mencionada pela 
NBR 7187. A mesma determina a verificação da segurança dos pilares passíveis ao 
choque de veículos rodoviários ou embarcações em movimento. Sendo dispensada a 
verificação nos projetos que forem adicionados dispositivos de proteção da estrutura 
contra este tipo de colisão. 
Entretanto, a atual norma NBR 7187 (2003) não especifica valores de cargas para a 
consideração do choque de veículos. Desse modo, Debs e Takeya (2010) recomendam 
a utilização dos valores estabelecidos pela norma alemã DIN 1072, de 1973. Esta define 
que os elementos estruturais passíveis a colisão de veículos, devem ser verificados 
para forças horizontais, não simultâneas, de 1.000 kN na direção longitudinal e de 
500 kN na direção transversal. Não podendo ser consideradas atuando em elementos 
distantes 1,2 metros da superfície de rolamento.
Com a aula de hoje, encerramos o assunto das solicitações atuantes nas obras 
de arte. Na próxima aula falaremos sobre as combinações dessas diferentes ações 
para as verificações estruturais necessárias no dimensionamento dessas estruturas. 
Bons estudos!
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 98
CAPÍTULO 9
COMBINAÇÃO DAS AÇÕES: 
ESTADOS LIMITES
Ao longo das últimas três aulas você aprendeu sobre diversas cargas que podem 
atuar sobre as estruturas das pontes e viadutos. Agora, você irá aprender como 
combinar essas ações para as diferentes verificações das estruturas. 
Um projeto estrutural vai além da determinação de dimensões e armaduras. É 
claro, que avaliar a estrutura em relação ao colapso é importante, afinal não queremos 
acidentes. Todavia, muito além de apenas resistir às cargas atuantes sem sofrer 
ruína, as estruturas precisam ter um comportamento adequado, de modo que possam 
proporcionar conforto aos usuários e sejam duráveis. 
Diante disso, a norma estabelece dois estados limites para avaliação da estrutura: o 
estado limite último (ELU) e o estado limite de serviço (ELS). O primeiro é responsável 
pela avaliação da estrutura na ruína (foto à esquerda da figura abaixo), é nessa etapa 
que dimensionamos a estrutura. Após o dimensionamento adequado, sabendo que a 
estrutura não irá ruir sob a ação das cargas é necessário avaliar o comportamento da 
estrutura ao ser carregada. Isso é, no ELS estamos interessados nos deslocamentos 
que a estrutura apresenta ao ser solicitada por uma determinada carga (foto à direita 
da figura abaixo). Especificamente nas estruturas de concreto armado deve-se avaliar 
a fissuração do material, uma vez que uma fissuração excessiva facilita o contato dos 
agentes corrosivos com a armadura, acelerando o processo de corrosão e diminuindo 
a durabilidade da estrutura. 
Tendo, portanto, diferentes finalidades é compreensível que cada estado limite 
combine de forma distinta as diversas ações atuantes sobre a estrutura. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 99
Título: a) Rutura de marquise – erro do ELU b) Flecha excessiva – erro do ELS
Fonte: a) encurtador.com.br/oCK57 b) https://www.teses.usp.br/teses/disponiveis/3/3144/tde-04092008-155911/pt-br.php
A NBR 7187 (2003) responsável pelas diretrizes para um projeto de ponte de 
concreto armado e/ou protendido remete as verificações limites estabelecidas na 
NBR 6118. Logo, ao longo dessa aula abordaremos os estados limites definidos 
por essa norma e aprenderemos a determinar as suas respectivas combinações 
de ações.
9.1 Estado Limite Último (ELU)
Como já mencionado, o estado limite último engloba as verificações relacionadas 
às formas de ruína daestrutura. Neste estado limite avalia-se todos os casos que 
possam levar a paralisação do uso da estrutura. 
Fazem parte da análise do ELU das estruturas de concreto armado e protendido 
as seguintes verificações:
• Estado limite último da perda do equilíbrio da estrutura, admitida como corpo 
rígido; 
• Estado limite último de esgotamento da capacidade resistente da estrutura, no 
seu todo ou em parte, devido às solicitações normais e tangenciais; 
• Estado limite último de esgotamento da capacidade resistente da estrutura, no 
seu todo ou em parte, considerando os efeitos de segunda ordem;
• Estado limite último provocado por solicitações dinâmicas; 
• Casos especiais.
https://www.teses.usp.br/teses/disponiveis/3/3144/tde-04092008-155911/pt-br.php
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 100
É na avaliação do ELU que você deve questionar se a estrutura irá ou não suportar 
as solicitações atuantes. Para responder a essa pergunta utilizamos a velha expressão 
aprendida em Estática e Mecânica dos Sólidos I e II: 
onde representa a máxima tensão atuante no elemento estrutural
 representa a tensão admissível suportada pelo material
Essa expressão nos diz que quando as tensões causadas por uma determinada força 
é maior do que a resistência do material, a estrutura entra em ruína. Logo, devemos 
dimensionar os elementos estruturais de modo que as tensões causadas pelas ações 
sejam menores do que a resistência do material que os constitui. 
Via de regra, nos projetos, nós garantimos a segurança estrutural por meio da 
utilização de coeficientes de ponderação que minoram as resistências dos materiais e 
majoram as cargas atuantes. Todavia, como você pode observar ao longo das últimas 
três aulas, não são poucas as ações que podem solicitar as estruturas. 
As ações podem ser classificadas como permanentes, variáveis e excepcionais; 
dentre as quais apenas as permanentes estarão atuando toda a vida útil da estrutura. 
As demais ações estarão ou não atuando sobre a estrutura, podendo seu valor variar 
ao longo do tempo. Dessa forma afirmar que todas as ações variáveis estarão atuando 
simultaneamente com seus máximos valores característicos é algo completamente 
improvável e definitivamente antieconômico. Caso assumissemos essa suposição 
como verdade, iríamos obter estruturas superdimensionadas e consequentemente 
mais caras, podendo até serem inviáveis de executar. 
E é justamente por isso, que a norma estabelece as combinações das ações para as 
diferentes verificações dos estados limites. Essas combinações consideram, além de outros 
aspectos, a probabilidade de as diversas ações variáveis atuarem simultaneamente. Para 
isso, a norma indica a utilização de coeficientes de ponderação e fatores de combinação 
das cargas variáveis. Apresentamos esses coeficientes nas tabelas 1 e 2. 
Combinações de ações Normal Especiais Excepcionais
Ações Permanentes 1,4 1,3 1,2
Ações Variáveis
Gerais 1,4 1,2 1,0
Temperatura 1,2 1,0 0,0
Ações de Protensão 1,2 1,2 1,2
Recalques de apoio e retração 1,2 1,2 0,0
Tabela 1 – Coeficientes de ponderação 
Fonte: Adaptada NBR 6118:2014 – pg 65
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 101
Ações ψ0j ψ0 ψ0j ψ1 ψ0j ψ2
Cargas móveis e seus 
efeitos dinâmicos
Passarelas 0,6 0,4 0,3
Pontes rodoviárias 0,7 0,5 0,3
Pontes ferroviárias não especializadas 0,8 0,7 0,5
Pontes ferroviárias especializadas 1,0 1,0 0,6
Vento Pressão dinâmica do vento nas estruturas em geral 0,6 0,3 0
Temperatura Variações uniformes de temperatura em relação à média anual local 0,6 0,5 0,3
Tabela 2 – Fatores de combinação e redução para as cargas variáveis. 
Fonte: DEBS E TAKEYA (2010) – pg. 5 do Anexo 2
É importante mencionar que a norma recomenda a utilização de um coeficiente de 
ponderação igual a 1,0 para os casos em que a ação da carga permanente é favorável 
à estrutura. Um exemplo de situação em que isso ocorre é quando se deseja avaliar 
a inversão dos esforços causados por uma força de sentido contrário ao peso como 
a força de sucção do vento ou de uma onda. 
9.1.1 Combinação Última Normal 
As combinações últimas normais são utilizadas para avaliar o esgotamento da 
capacidade resistente para elementos estruturais e a perda do equilíbrio como corpo 
rígido. Nessas combinações deve-se considerar os valores característicos das ações 
permanentes e variáveis. É necessário, entretanto, adotar uma das ações variáveis 
como principal, sendo as demais consideradas secundárias tendo assim seus valores 
reduzidos. 
Assim, uma estrutura que possui m cargas permanentes e n cargas variáveis, possui 
uma força de cálculo para combinação normal última igual a: 
sendo γg→ coeficiente de ponderação para as cargas permanentes
γq→ coeficiente de ponderação para as cargas variáveis
ψ0j→ fator de combinação para a carga variável j
Fgk,i→ valor característico da carga permanente i 
Fqk,1→ valor característico da carga variável principal
Fqk,j→ valor característico da carga variável secundária j
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 102
Atenção para a escolha da ação variável principal, ela deve ser determinada de 
modo que a combinação resultante seja o maior possível. 
9.1.2 Combinação Última Especial ou de Construção
As combinações últimas especiais são utilizadas para avaliar os carregamentos 
especiais. Estas são ações transitórias, cuja duração de ocorrência é pequena, quando 
comparada a vida útil da estrutura, mas podem superar os carregamentos normais. 
Como você aprendeu na nossa terceira aula, muitas vezes o processo construtivo da 
ponte gera ações diferentes daquelas previstas para a estrutura finalizada. Nestes casos a 
estrutura também deve resistir a esses carregamentos, sendo a força de cálculo dada por: 
sendo γg→ coeficiente de ponderação para as cargas permanentes
γq→ coeficiente de ponderação para as cargas variáveis
ψ0j→ fator de combinação para a carga variável j
Fgk,i→ valor característico da carga permanente i 
Fqk,1→ valor característico da carga variável principal
Fqk,j→ valor característico da carga variável secundária j
9.1.3 Combinação Última Excepcional
A combinação última excepcional é utilizada quando é necessário avaliar a estrutura 
sob ações de cargas excepcionais. Essas cargas de pouca probabilidade de ocorrência, 
com duração extremamente curta, porém com grande poder destrutivo. Exemplos de 
ações excepcionais são sismos e incêndios. 
Para a determinação da força de cálculo dessa combinação, considera-se as ações 
permanentes, juntamente com as ações excepcionais e as variáveis s com probabilidade 
não desprezível de ocorrência simultânea. Seu valor é dado por:
sendo γg→ coeficiente de ponderação para as cargas permanentes
γq→ coeficiente de ponderação para as cargas variáveis
ψ0j→ fator de combinação para a carga variável j
Fgk,i → valor característico da carga permanente i 
Fq exc → valor característico da carga excepcional 
Fqk,j→ valor característico da carga variável j
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 103
9.1.4 Combinação para Verificação de Fadiga 
A verificação do estado limite último de fadiga é definida pela NBR 6118 no seu 
item 23.5. Essa verificação é destinada basicamente a pontes e viadutos, os quais 
são estruturas submetidas a ações dinâmicas repetidas. 
A fadiga pode ser entendida como um processo de modificações progressivas 
e permanentes do material, quando submetido a solicitações repetitivas. Para a 
verificação desse ELU a norma permite a consideração de uma única intensidade de 
solicitação, que equivale a combinação frequente de ações, dada por:
onde Fgk,i → valor característico da carga permanente i 
Fqk,1→ valor característico da carga variável principal
Fqk,j→ valor característico da carga variável j
ψ2j→ fator de redução quase permanente para a carga variável j
ψ1→ fator de redução frequente
No caso específico desse estadolimite, o fator de redução empregado depende 
da obra e do elemento estrutural conforme mostrado abaixo:
• Para pontes rodoviárias:
ψ1=0,5 para a verificação de vigas principais; 
ψ1=0,7 para a verificação das transversinas;
ψ1=0,8 para a verificação das lajes do tabuleiro.
• Para pontes ferroviárias:
ψ1=1,0 
9.2 Estado Limite de Serviço (ELS)
Os estados limites de serviço (ELS) estão relacionados ao conforto do usuário, à 
durabilidade da estrutura. Permitindo uma adequada utilização da mesma ao longo de 
toda sua vida útil. A norma menciona quatro verificações para as estruturas de concreto 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 104
armado, todavia em casos de obras especiais pode ser necessário a verificação de 
estados limites não previstos na norma. Os ELS padrão para qualquer estrutura em 
concreto armado ou protendido são:
• Estado limite de formação de fissuras;
• Estado limite de abertura de fissuras; 
• Estado limite de deformações excessivas; 
• Estado limite de vibrações excessivas; 
A verificação da formação de fissuras das peças de concreto fletidas está relacionada 
à mudança do estádio de carregamento. Quando as tensões de tração geradas pela 
flexão são maiores que a resistência do concreto, este fissura-se. É nesse momento 
que as armaduras passam a ser acionadas. 
Dada as características do próprio material, concreto armado, é comum que os 
elementos fletidos tenham fissuras. Todavia, essas fissuras não devem ter grandes 
aberturas pois isso facilitaria a corrosão das armaduras, comprometendo a durabilidade 
da estrutura. Dessa forma é necessário avaliar, quando presentes, a abertura das 
fissuras para garantir que essas são inferiores aos limites máximos especificados 
pela NBR 6118. 
As deformações da estrutura também devem estar dentro dos limites máximos 
permitidos. Essas limitações garantem o correto funcionamento das estruturas, 
alguns equipamentos são sensíveis a desníveis, e um conforto do usuário. Além 
disso, deformações excessivas podem gerar esforços provenientes da não linearidade 
geométrica. 
Por fim, as estruturas sujeitas a vibrações devem ser avaliadas quanto a sua 
frequência de vibração. Nestes casos deve-se buscar afastar a frequência da estrutura 
da frequência crítica das ações atuantes. Em estruturas usuais a da frequência crítica 
é definida de acordo com a destinação da edificação.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 105
ISTO ESTÁ NA REDE
Um caso clássico de vibrações em estruturas é a Ponte Tacoma Narrows. A ponte 
localizada em Washington nos EUA apresentava grandes vibrações devido a ação 
do vento da região. 
Título: Oscilação na Ponte Tacoma Narrows
Fonte: https://br.pinterest.com/pin/80853755785587839/
A ponte foi dimensionada para suportar grandes cargas estáveis, dinâmicas e 
permanentes, entretanto, a sua falta de rigidez transversal e torsional permitiam 
grandes vibrações verticais quando submetida a ventos acima de 7 km/h. 
Essa característica levou a estrutura ao colapso em 1940, mesmo ano de sua 
conclusão, quando a ponte foi atingida por ventos de 70 km/h que causaram 
oscilações de 2 a 5 metros de altura. Você consegue assistir a ruptura no link 
abaixo:
https://www.youtube.com/watch?v=j-zczJXSxnw
Após esse acidente (sem vítimas fatais) o estudo da estabilidade aerodinâmica 
de pontes suspensas ganhou grande importância. Desde então tivemos muitos 
avanços nas áreas de ressonância, aerodinâmica de estruturas e efeitos não-
lineares. E é devido a ele que a NBR 6118 determina a obrigatoriedade dos ensaios 
em túnel de vento com modelos de ponte pênsil em projeto.
https://www.youtube.com/watch?v=j-zczJXSxnw
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 106
9.2.1 Combinação quase Permanente de Serviço
Nas combinações quase permanentes de serviço, todas as ações variáveis são 
consideradas com seus valores quase permanentes. Essa combinação é utilizada 
para a avaliação dos deslocamentos da estrutura. A resultante dessa combinação é 
dada por: 
onde Fgk,i → valor característico da carga permanente i 
Fqk,j→ valor característico da carga variável j
ψ2j→ fator de redução quase permanente para a carga variável j
9.2.2 Combinação Frequente de Serviço
As combinações frequentes de serviço são utilizadas para a verificação da abertura 
de fissuras do concreto armado e vibrações. Podem também ser consideradas para 
verificações de deformações provenientes de vento ou temperatura que possam 
comprometer as vedações.
Nessa combinação a ação variável principal é tomada com seu valor frequente, 
enquanto as demais ações variáveis são tomadas com seus valores quase permanentes. 
A resultante dessa combinação é dada por: 
onde Fgk,i → valor característico da carga permanente i 
Fqk,1→ valor característico da carga variável principal
Fqk,j→ valor característico da carga variável j
ψ2j→ fator de redução quase permanente para a carga variável j
ψ1→ fator de redução frequente
9.2.3 Combinação Rara de Serviço 
Por último, temos as combinações raras empregadas para a verificação da formação 
das fissuras no concreto. Nelas a ação variável principal, assim como as cargas 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 107
permanentes, é tomada com seu valor característico. Para as demais ações variáveis 
usa-se seus respectivos valores frequentes. A resultante dessa combinação é dada por: 
onde Fgk,i → valor característico da carga permanente i 
Fqk,1→ valor característico da carga variável principal
Fqk,j→ valor característico da carga variável j
ψ1j→ fator de redução frequente para a carga variável j
Agora que você já compreendeu as diferenças dos estados limites e o porquê das 
diferentes combinações dos esforços, vamos praticar. 
Exemplo 1: Para uma dada seção do vigamento principal de uma ponte rodoviária 
em concreto armado determine a combinação última normal. Sabe-se que os esforços 
nessa seção são:
• Carga permanente 1: Mgk1=600kN.m 
• Carga permanente 2: Mgk2=300kN.m 
• Carga móvel: Mqk=420kN.m 
• Carga móvel passeio: Mqk=220kN.m
Iniciemos a resolução do nosso exercício observando que se trata de uma 
combinação para ELU. Dito isso, vamos primeiramente resgatar qual a equação para 
essa combinação e quais os coeficientes que são necessários, vejamos:
Perceba que precisaremos então dos coeficientes de ponderação e do fator de 
combinação ψ_0 para as cargas variáveis. Comecemos olhando a tabela 1 e obtendo 
os coeficientes de ponderação, nesse caso temos: 
γg=1,4 
γq=1,4 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 108
Da tabela 2 obtemos o fator de combinação para pontes rodoviárias:
ψ0=0,7
Dessa forma nos resta apenas determinar qual força variável é a principal. No nosso 
problema temos dois momentos provenientes de cargas variáveis: a carga móvel do 
tráfego e a carga móvel do passeio. Como estamos avaliando a estrutura no ELU, 
precisamos da combinação que nos dê o maior esforço de momento fletor atuante 
na viga. Logo, escolhemos como principal a carga que gera o maior momento fletor 
na viga, isso é, o Mqk=420kN.m. 
Substituindo os valores na fórmula temos:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 109
CAPÍTULO 10
DIMENSIONAMENTO 
DAS VIGAS PRINCIPAIS: 
ARMADURA LONGITUDINAL
Ao longo das nossas aulas, discutimos os diferentes tipos de pontes existentes, suas 
diferenças quanto ao material, estrutura e tipo construtivo. Também falamos sobre 
as cargas atuantes nessas estruturas, as diferenças entre as cargas permanentes, 
variáveis e excepcionais. Mencionamos a existência das envoltórias, utilizadas nos 
dimensionamentos dos elementos estruturais. Por último, falamos dos estados limites 
necessários para as diferentes verificações das estruturas. Nessa semana entraremos 
de fato no dimensionamento desses elementos. 
É importante mencionar algumasparticularidades da nossa aula. Devido ao 
tempo e espaços disponíveis trataremos aqui do dimensionamento de pontes de 
concreto armado. Sendo assim, os passos aqui apresentados poderão sofrer algumas 
modificações de acordo com o material escolhido. Pontes em concreto protendido, 
aço ou madeira apresentam cada qual peculiaridades próprias do material. 
Você também observará que nossas próximas aulas, referentes ao dimensionamento 
das vigas, funcionarão apenas como uma revisão de assuntos já estudados em 
Estruturas de Concreto Armado I e II. Afinal, o passo a passo para o dimensionamento 
de uma viga de concreto armado de um edifício ou de uma ponte é praticamente 
o mesmo. Em geral, o que irá mudar são as possíveis cargas atuantes, no caso de 
pontes temos as cargas móveis que podem causar a fadiga da estrutura. 
Devido, principalmente, à grandeza das solicitações das vigas de obras de arte é 
comum considerar a influência da laje do tabuleiro na resistência da viga principal, o 
que resulta em uma viga de seção T. Todavia, essa consideração deve ser feita apenas 
para os casos em que a laje e a viga estão solidarizadas. Atenção: a consideração da 
influência das lajes na resistência das vigas também pode ser utilizada nas construções 
comuns, edifícios e casas, sendo sua consideração escolha do projetista.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 110
A largura da laje que colabora com a viga, formando a seção T, é em geral inferior a 
largura da laje disponível, definida pela sua geometria. Isso porque a transmissão do 
esforço por cisalhamento é ineficiente para grandes larguras, causando a diminuição 
das tensões normais de compressão da alma da mesa para o bordo da viga (PFEIL, 
1979). 
De acordo com a NBR 6118 (2014) a largura colaborante () deve ser igual a largura 
da viga () acrescida 10% da distância entre os pontos de momento fletor nulo do 
diagrama (observe o diagrama na figura abaixo). Nas vigas contínuas é possível adotar 
uma largura colaborante única para toda a viga, desde que a largura adotada seja a 
mínima entre todos os trechos da viga. 
Título: Diagrama de momento fletor para viga contínua – com distância a 
Fonte: Autor
Nos casos em que não se deseja analisar o diagrama de momento fletor da viga, 
podemos estimar a distância em função do comprimento do vão:
• Viga simplesmente apoiada: a=1,00.L
• Tramo com momento em uma só extremidade: a=0,75.L
• Tramo com momento nas duas extremidades: a=0,60.L
• Tramo em balanço: a=2,00.L
Além disso, devem ser respeitados os limites geométricos da laje como mostra 
a figura abaixo, portanto, a largura colaborante é dada com base em b_1 e b_3 
definidos por:
b1≤{0,50.b2 0,10.a 
b3≤{b4 0,10.a 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 111
Título: Esquema para largura da mesa colaborante
Fonte: NBR 6118 (2014) – pg. 88
Agora que você já aprendeu como determinar a largura colaborante da seção 
transversal, falemos sobre o dimensionamento das vigas. Via de regra, as vigas estão 
submetidas a dois esforços: momento fletor e cortante, sendo dimensionadas para 
resistir a ambos. As vigas de concreto armado apresentam dois tipos de armaduras, 
cada qual responsável por resistir a um desses esforços. A chamada armadura 
longitudinal resiste ao momento fletor, enquanto que a transversal – comumente 
chamada de estribos – resiste ao esforço cortante.
Iniciamos o dimensionamento das vigas pela determinação da armadura longitudinal, 
uma vez que, o momento fletor representa o esforço preponderante da viga. Dessa 
forma, é mais provável que caso as dimensões adotadas no pré-dimensionamento 
não sejam adequadas, essas deverão ser alteradas devido aos momentos e não ao 
cortante. Por isso, falaremos na aula de hoje sobre a determinação dessa armadura. 
Como você deve se lembrar, a determinação da armadura para uma viga de seção 
retangular deve seguir os seguintes passos, revisados com mais detalhes nas próximas 
seções: 
1. Determinação dos esforços de cálculo
2. Determinação das propriedades dos materiais 
3. Determinação da altura útil da viga
4. Determinação da altura da linha neutra da seção
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 112
5. Verificação do domínio de deformação
6. Determinação da área de aço necessária
7. Verificação das áreas limites segundo a NBR 6118
8. Determinação da armadura longitudinal efetiva
Entretanto, as vigas de seção T podem sofrer algumas alterações dependendo da 
posição da sua linha neutra. As vigas de seção T podem ser classificadas em: falsa 
ou verdadeira (observe a figura abaixo).
Título: Classificação da seção T de acordo com a altura da linha neutra
Fonte: Adaptado (PINHEIRO, 2007) pg 9.4
A classificação da seção T, definirá a forma do dimensionamento da seção. As 
seções T são chamadas de falsas quando a altura da linha neutra é menor que a altura 
da laje (figura abaixo). Nesses casos elas funcionam como uma seção retangular de 
largura seguindo, portanto, os mesmos passos já mencionados. Vale lembrar que a 
armadura deverá ser acomodada dentro da largura da viga .
Título: Esquema de uma seção T falsa para dimensionamento
Fonte: (PINHEIRO, 2007) pg 9.5
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 113
Nas seções T verdadeiras, aquelas cuja altura da linha neutra é maior do que a 
altura da laje, devemos separar a seção em duas vigas retangulares: uma formada 
apenas com as abas da mesa comprimida e outra apenas com a alma como mostra 
a figura. Nesse caso a soma do momento resistido por cada uma das seções será 
igual ao momento atuante na viga como mostra a figura abaixo. 
Para isso, determina-se primeiro o momento resistido pela seção formada pelas abas, 
a qual possui uma altura da linha neutra igual a altura da laje. Conhecendo obtém-se 
o momento resistido pela segunda seção por: . Essa segunda seção é dimensionada 
como uma viga de seção retangular comum. 
A armadura total da viga de seção T verdadeira é igual a soma da área para cada 
uma das seções. 
Título: Esquema de uma seção T verdadeira para dimensionamento
Fonte: (PINHEIRO, 2007) pg 9.5
ANOTE ISSO
A princípio sempre se adota que a seção T é falsa, iniciando o dimensionamento da 
viga como uma viga retangular simples de largura igual a bf. A Classificação será 
feita após a determinação da altura da linha neutra x, como segue:
• se x≤hf→ seção T é falsa, portanto, pode seguir o dimensionamento;
• se x>hf→ seção T é verdadeira, devendo então reiniciar o dimensionamento com 
a determinação de M0 e em seguida dimensionar a seção retangular de largura 
igual a bw.
10.1 Determinação dos Esforços de Cálculo
Como já discutido nos capítulos anteriores, o primeiro passo de um projeto é a 
determinação das cargas e consequentemente dos esforços atuantes nos elementos 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 114
estruturais. Sendo assim, dedicamos sobre este tópico as últimas quatro aulas, não 
precisando ser aqui novamente abordado. 
Destaco apenas, que uma vez tratando do dimensionamento dos elementos estruturais, 
usaremos as combinações de esforços obtidas para o estado limite último. 
10.2 Determinação das Propriedades dos Materiais 
Outro passo presente em qualquer dimensionamento estrutural é a obtenção das 
propriedades dos materiais usados na estrutura. No caso do dimensionamento das 
armaduras é necessário conhecer a resistência suportada pelos dois materiais que 
compõem a seção: o aço e o concreto. 
Segundo a NBR 6118 (2014), para as avaliações do estado limite ultimo deve-
se minorar a resistência característica dos materiais por meio de coeficientes de 
ponderação, como mostra a expressão:
onde:
fk é a resistência característica do material sendo: fck para o concreto
fyk para o aço. 
γm é o coeficiente de ponderação do material determinado pela tabela 1. 
Combinações ConcretoAço
Normais 1,4 1,15
Especiais ou de construção 1,2 1,15
Excepcionais 1,2 1,0
Tabela 1 – Coeficientes de ponderação para os materiais 
Fonte: NBR 6118:2014 – pg 71
10.3 Determinação da Altura Útil
Para o estádio de carregamento último, o qual antecede a ruptura do elemento, a 
seção transversal que efetivamente resiste ao momento é diferente da seção transversal 
do elemento. Essa alteração deve-se ao comportamento das peças de concreto armado 
submetidas à flexão. Uma vez que, o momento fletor gera solicitações normais de 
tração e compressão ao longo da seção temos que o concreto, de pequena resistência 
a tração, se microfissura ativando as armaduras passivas. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 115
Dessa forma temos a seguinte disposição de esforços: 
Título: Disposição das solicitações normais de uma viga de concreto armado no estádio de carregamento III 
Fonte: Autor
Perceba que essa nova disposição possui uma altura resistente chamada de altura 
útil ( a qual é definida como a distância do centro de massa da armadura à fibra 
comprimida mais distante. Para uma seção transversal armada com uma única camada 
de armadura temos que a altura útil é dada por: 
sendo h a altura geométrica da seção transversal
c o cobrimento mínimo da armadura definido pela NBR 6118.
∅t o diâmetro da armadura transversal
∅l o diâmetro da armadura longitudinal
10.4 Determinação da Altura da Linha Neutra
Os elementos de concreto armado quando submetidos a flexão, devem ser 
dimensionados para o seu estádio de carregamento III mostrado na figura. A norma 
recomenda a desconsideração da resistência do concreto na região tracionada da seção, 
sendo todas as tensões de tração suportadas pela armadura tendo sua resultante 
aplicada no centro de massa. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 116
Título: Disposição das solicitações normais equivalentes para viga no estádio de carregamento III 
Fonte: Autor
Já na região comprimida da seção, acima da linha neutra, quem resistirá às 
tensões atuantes é o concreto. No estádio de carregamento III o concreto encontra-
se plastificado, tendo suas tensões distribuídas em forma parábola-retângulo. Todavia, 
para facilidade dos cálculos a NBR 6118 (2014) sugere a utilização de uma distribuição 
retangular equivalente, que terá sua resultante (Rcc) atuando no centro da distribuição. 
Para essa distribuição adota-se:
tensão equivalente fc=0,85.fcd 
profundidade y=λ.x
onde fcd é a resistência de cálculo do concreto
x é a altura da linha neutra
Dessa forma temos que o momento atuante na seção (Md) pode ser escrito como o 
produto entre a resultante do diagrama (Rcc) pelo braço de alavanca (z). Sendo escrita da 
seguinte forma para os concretos de classe I de resistência característica até 50MPa.
Logo, para um determinado Md, temos que a altura da linha neutra é igual a:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 117
10.5 Verificação do Domínio de Deformação
Conhecendo a altura da linha neutra é possível determinar o domínio de deformação 
da estrutura. Como você já aprendeu em Estruturas de Concreto Armado, a ruptura 
das estruturas de concreto armado pode ocorrer por meio da deformação plástica 
excessiva do aço ou pelo encurtamento-limite do concreto. 
A forma como essa ruptura ocorre caracteriza o domínio de deformação, como 
mostra a figura a seguir. 
Título: Domínios de deformação para seção transversal de concreto armado 
Fonte: NBR 6118:2014, pg 122
A classificação do domínio é feita através do coeficiente definido pela razão entre 
a altura da linha neutra e a altura útil da seção. 
• Domínio 2: 0<βx≤0,259
• Domínio 3: 0,259<βx≤0,628 para aço CA-50
• Domínio 4: 0,628<βx≤1 para aço CA-50
Conhecer o domínio de ruptura é importante para que você conheça a ductilidade 
da ruptura da viga. Por questões de segurança é necessário garantir que o elemento 
possua uma ruptura dúctil, logo a norma recomenda um coeficiente limite dado por:
βx,lim=0,45 → concretos classe I 
βx,lim=0,35 → concretos classe II 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 118
Nos casos em que o βx=x/d ultrapassa os valores limites estabelecidos pela norma, 
o projetista tem duas opções: aumentar a altura da viga ou dimensionar a mesma 
com armadura de compressão. Por fins de economia é recomendado, sempre que 
possível, adotar a primeira opção. 
10.6 Determinação da Área de Aço Necessária
Tendo verificado e garantido que a ruptura da viga é do tipo dúctil, você pode então 
determinar a área de aço necessária para resistir às tensões de tração geradas pelo 
momento atuante Md. Nos casos de concretos até 50 MPa, a área de aço pode ser 
estimada pela seguinte equação:
10.7 Verificação da Fadiga da Armadura
Este item é o único exclusivo para o dimensionamento de lajes e vigas das pontes. Isso 
por causa do tipo de carregamento dessas estruturas. As cargas móveis, caracterizam-
se por cargas cíclicas que geram grandes variações nas solicitações atuantes. Desse 
modo, elas podem causar uma ruptura por fadiga do material que significa que este 
pode romper a uma tensão inferior a dita como resistência do material, obtida por 
meio de um ensaio de ruptura estático. 
As armaduras das vigas devem ser verificadas quanto a fadiga pela equação abaixo:
onde ∆σS representa a variação de tensões calculada para a combinação frequente 
de cargas;
∆fsd,fad é a variação de tensões admissíveis pela norma na tabela 2.
Nos casos em que a condição descrita acima não é satisfeita, a área de aço calculada 
no item anterior deverá ser multiplicada pelo fator de fadiga k, dado por:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 119
Caso 
∅
mm
10 12,5 16 20 22 25 32 40
Barras retas ou dobradas com 
D≥25∅
190 190 190 185 180 175 165 150
Barras retas ou dobradas com 
D>25∅D=5∅<20 mm
D=8∅≥20 mm
105 105 105 105 100 95 90 85
Estribos
D=3∅≤10 mm
85 85 85 - - - - -
Ambiente marinho classe IV 65 65 65 65 65 65 65 65
Barras soldadas (incluindo solda 
por ponto ou das extremidades) 
e conectores mecânicos
85 85 85 85 85 85 85 85
Tabela 2 – Valores limites para verificação da fadiga – Armadura passiva de aço CA-50
Fonte: NBR 6118:2014 – pg 197
10.8 Verificação das Áreas Limites Segundo a NBR 6118
Após a determinação da área de aço necessária, você deverá verificar se a mesma 
se enquadra dentro dos limites mínimo e máximo de armadura especificados pela 
norma. 
Nos casos em que a área de aço necessária é menor que a mínima basta apenas 
adotar a mínima como a necessária. Entretanto, caso a área de aço seja maior que o 
limite máximo deve-se aumentar a seção transversal da viga e redimensioná-la. 
'
De acordo com a NBR 6118 (2014) as vigas devem ser armadas com uma área de 
aço mínima dada por:
As,min=ρmin.Ac
onde Ac é a área da seção transversal do concreto (Ac=h.bw)
ρmin é a taxa de armadura mínima para flexão determinada pela tabela 3.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 120
fck 20 25 30 35 40 45 50
ρmin(%) 0,150 0,150 0,150 0,164 0,179 0,194 0,208
Tabela 3 – Taxas mínimas de armadura para concretos de classe I 
Fonte: Adaptado NBR 6118:2014 – pg 130
10.8.2 Área de Aço Máxima
Além do limite mínimo, as vigas devem respeitar uma taxa de armadura transversal 
máxima de 4%. Isso significa que a soma da área de aço de tração e compressão 
(caso tenha) devem ser inferiores a:
10.9 Determinação da Armadura Longitudinal Efetiva
Após determinar a área de aço necessária para resistir ao momento atuante e garantir 
que essa está dentro dos limites estabelecidos pela norma, você deverá especificar o 
número de barras e a bitola que atendem essa especificação. 
Primeiramente você definirá o diâmetro da barra que deseja usar e com a ária de 
uma barra ( ) determina o número de barras por: 
Atenção após a definição do número de barrasvocê deve dispor as mesmas na 
seção transversal respeitando os distanciamentos mínimos determinados pela norma. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 121
CAPÍTULO 11
DIMENSIONAMENTO 
DAS VIGAS PRINCIPAIS: 
ARMADURA CISALHANTE
Na aula passada revisamos o dimensionamento das armaduras longitudinais, 
responsáveis por suportar o esforço de momento fletor das vigas principais. Na aula 
de hoje, continuamos falando sobre o dimensionamento das vigas de concreto armado 
das pontes e viadutos, mas agora falaremos da armadura responsável por resistir aos 
esforços cortantes, chamadas de armaduras transversais.
As vigas de concreto armado ao serem carregadas passam por estádios de 
carregamentos de acordo com as fases que a seção de concreto passa ao ser carregada. 
Na primeira fase, chamada de estádio I, o concreto resiste sozinho às solicitações de 
tração e compressão geradas pelo momento fletor. À medida que o carregamento 
aumenta, as solicitações de tração passam a ser superiores às tensões de tração 
resistidas pelo concreto, o que caracteriza a microfissuração desse material. 
Nesse momento a viga entra no estádio II, no qual as armaduras longitudinais 
passam a resistir às solicitações de tração e o concreto, responsável por resistir às 
solicitações de compressão, ainda se encontra no regime elástico. 
Entretanto, com o aumento do momento fletor atuante na seção o concreto passará 
para o seu regime plástico, o que caracteriza a entrada no estádio III de carregamento. 
Este estádio é a última etapa do carregamento e é para ele que dimensionamos as 
armaduras longitudinais, como comentamos na última aula. 
A passagem por todos os estágios de carregamento é esquematizada pela imagem 
abaixo, na qual é possível observar o aumento gradativo das fissuras de uma viga 
biapoiada até a sua ruptura. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 122
Título: Evolução da fissuração de uma viga de concreto armado
Fonte: Pinheiro (2007, p. 175)
Estudando esse comportamento de fissuração das vigas de concreto armado, Ritter 
e Mörsch idealizaram uma analogia de treliça responsável por resistir aos esforços 
cortantes atuantes na viga. 
Título: Treliça idealizada por Ritter e Mörsch
Fonte: Pinheiro (2007, p. 176)
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 123
Essa analogia, conhecida como treliça clássica considera que após a sua fissuração, 
a viga biapoiada se comporta como uma treliça isostática (figura acima) composta por:
• Banzo superior → cordão de concreto comprimido;
• Banzo inferior → armadura longitudinal de tração;
• Diagonais comprimidas → bielas de concreto entre as fissuras;
• Diagonais tracionadas → armadura transversal também conhecidas como 
estribos.
Originalmente a analogía parte de hipóteses básicas como que:
a) Os banzos são paralelos; 
b) Não há engastamento nos nós da treliça; 
c) As bielas de compressão possuem inclinação igual a 45°;
d) Os estribos podem ter inclinações variável entre 45° e 90°.
Entretanto, estudos apontam para imperfeições dessa analogia em relação ao 
comportamento real das vigas. Dentre essas imperfeições, Pinheiro (2007) destaca:
a) As inclinações das fissuras são inferiores a 45°, o que significa que as bielas 
comprimidas apresentam inclinações inferiores;
b) Há um arqueamento do banzo comprimido próximo aos apoios, o que faz com 
que os banzos não sejam paralelos;
c) A treliça é altamente hiperestática, principalmente nas ligações das bielas ao 
banzo comprimido.
Esses erros não impedem o uso da analogia, todavia, devido a essas inconsistências 
foram desenvolvidos modelos teóricos padrões que foram corrigidos de acordo com 
as imprecisões verificadas.
A NBR 6118 (2014) apresenta dois modelos de cálculo para a armadura transversal 
das vigas de concreto armado. Ambos os modelos partem da consideração de que 
os banzos são paralelos e que são responsáveis por resistir a uma força cortante . 
As diferenças apresentadas pelos modelos são apresentadas abaixo:
• Modelo de cálculo I: pressupõe que as bielas comprimidas possuem inclinação 
igual 45° e que a parcela da força cortante resistida pelo concreto independe 
do esforço cortante atuante 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 124
• Modelo de cálculo II: pressupõe que as bielas comprimidas podem ter inclinação 
entre 30° a 45° e que a parcela da força cortante resistida pelo concreto varia 
com o esforço cortante atuante Sendo menor a medida que aumenta.
Independentemente do método de cálculo utilizado, podemos resumir a determinação 
da armadura transversal de uma viga nos seguintes passos:
1. Determinação dos esforços de cálculo
2. Determinação das propriedades dos materiais 
3. Determinação da altura útil da viga
4. Verificação do esmagamento da biela de concreto
5. Determinação da força cortante absorvida pelo concreto
6. Determinação da força cortante resistida pelos estribos
7. Determinação da taxa de armadura transversal 
8. Verificação da taxa de armadura e espaçamentos limites
9. Detalhamento da armadura transversal efetiva
Perceba que os três primeiros passos são exatamente iguais aos três primeiros 
passos para o dimensionamento das armaduras longitudinais. Isso acontece, 
porque qualquer avaliação estrutural depende de informações relacionadas ao seu 
carregamento, geometria, e material. 
Uma vez que os três primeiros itens já foram discutidos e comentados na aula 
anterior, comentaremos na aula de hoje apenas os passos exclusivamente relacionados 
ao dimensionamento das armaduras transversais, isto é, a partir do passo 4. 
É importante mencionar que as equações nos próximos itens aqui descritas se 
referem ao modelo de cálculo I descrito pela NBR 6118 (2014).
11.1 Verificação do Esmagamento da Biela de Concreto
Iniciamos o dimensionamento dos estribos por meio da verificação das bielas 
comprimidas. Isto acontece, pois nestas bielas apenas o concreto resistirá à força 
cortante atuante na viga. Logo, caso ele não seja capaz de resistir a força solicitante, 
alterações deverão ser realizadas. 
Uma vez que queremos avaliar a ruptura de um determinado elemento, voltamos 
a famosa expressão:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 125
na qual temos que as forças solicitantes (Vsd ) devem ser inferiores a força cortante 
resistida pela biela (VRd,2). Caso contrário, haverá ruptura. 
Como vocês já sabem a força cortante Vsd equivale a máxima cortante atuante na 
viga para uma combinação última de ações. 
Já a força resistida pela biela é estimada pela equação:
onde fck é a resistência característica do concreto em MPa;
fcd é a resistência a compressão de cálculo do concreto;
bw é a largura da viga;
d é a altura útil da viga.
11.2 Determinação da Força Cortante Absorvida pelo Concreto
Uma vez verificada a biela comprimida passamos para a determinação da armadura 
transversal, para isso temos consideramos na analogia da treliça que a força cortante 
será resistida em parte pelos estribos e em parte pelo concreto como mostra a 
expressão abaixo:
 
sendo Vsw a parcela da força cortante resistida pela armadura transversal;
Vc a parcela da força cortante resistida pelo concreto;
Vsd a força cortante atuante na seção avaliada.
A princípio determinamos a parcela da força cortante resistida pelo concreto por 
mecanismos complementares ao de treliça, a qual é estimada pela equação:
onde fctd é a resistência a tração de cálculo do concreto dada por fctd=
bw é a largura da viga;
d é a altura útil da viga.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 126
Como já falamos na última aula, as vigas das pontes podem sofrem com fadiga 
do material causada pelas cargas móveis atuantes. Dessa forma, a norma prevê uma 
redução da força cortante resistida pelo concreto na treliça. Para o modelo de cálculo 
I, a força cortantecorrigida é dada pelo produto da força Vc por um fator redutor igual 
a 0,5.
11.3 Determinação da Força Cortante Resistida pelos Estribos
Conhecendo a força cortante atuante na seção avaliada e a parcela da força resistida 
pelo concreto, podemos determinar a força que será resistida pela armadura transversal 
pela expressão:
onde Vsw é a parcela da força cortante resistida pela armadura transversal;
Vc é a parcela da força cortante resistida pelo concreto por mecanismos 
complementares ao de treliça;
Vsd é a força cortante atuante na seção avaliada.
11.4 Determinação da Taxa de Armadura Transversal
No dimensionamento da armadura longitudinal nós determinamos uma área de 
aço para a seção transversal da viga analisada, entretanto, as armaduras transversais 
deverão ser distribuídas ao longo de toda a viga. Sendo assim, calcula-se uma área 
de aço para cada metro de viga, razão esta que recebe o nome de taxa de armadura. 
Essa taxa pode ser determinada por meio da parcela da força cortante resistida 
pelo estribo e da resistência do aço como mostra a equação a seguir:
sendo a taxa de armadura da viga dada em m²/m;
Vsw a parcela da força cortante resistida pela armadura transversal;
fyd a resistência de cálculo à tração da armadura;
d a altura útil da viga;
∝ o ângulo da armadura transversal.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 127
Os estribos podem ser projetados para diferentes inclinações, variando de 45° a 
90°. Entretanto, é comum o dimensionamento dos estribos verticais (∝=90°) devido 
a facilidade da execução dos mesmos. 
11.5 Verificação da Taxa de Armadura e Espaçamentos Limites
11.5.1 Taxa de Armadura Mínima
Assim como nas armaduras longitudinais, devemos verificar se a armadura transversal 
encontrada está de acordo com os limites estabelecidos pela NBR 6118 (2014). De 
acordo com a norma a viga deve possuir uma taxa de armadura transversal mínima 
que garanta a ductilidade da ruína por cisalhamento. 
Para o modelo de cálculo I, a taxa de armadura mínima pode determinada pela 
equação: 
onde fctm é a resistência média à tração do concreto, dada por 
fyk é a resistência característica de escoamento da armadura transversal;
bw é a largura da viga
Observe que a relação depende apenas das características dos materiais 
utilizados. Essa relação é definida pela norma como taxa geométrica mínima e é 
representada por . 
Com essa taxa é possível determinar a cortante resistida pela armadura mínima 
pela fórmula a seguir:
Uma vez que a taxa de armadura calculada no item anterior for inferior à taxa de 
armadura mínima, deve-se adotar a taxa de armadura efetiva igual à mínima. Caso 
contrário, a taxa de armadura efetiva permanece como a taxa de armadura calculada. 
11.5.2 Espaçamentos Limites
Além da taxa de armadura transversal mínima, o dimensionamento dos estribos 
deve respeitar um espaçamento máximo responsável por garantir que as hipóteses 
adotadas no modelo de cálculo sejam satisfeitas. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 128
De acordo com a norma, para a determinação do espaçamento máximo deve-se 
comparar o carregamento da viga () com a força resistida pelas bielas comprimidas 
(). Nesse caso as vigas são divididas em dois grupos com limites máximos distintos, 
como mostrado a seguir:
• Para as vigas em que Vsd≤0,67.VRd,2
Nesse caso o espaçamento máximo entre os estribos deve ser o menor valor entre: 
smax≤{0,6.d 300 mm 
• Para as vigas em que Vsd>0,67.VRd,2
Nesse caso o espaçamento máximo entre os estribos deve ser o menor valor entre: 
smax≤{0,3.d 200 mm
Os estribos também devem respeitar um espaçamento mínimo de 5 cm, o qual 
garante a passagem do vibrador, garantindo um bom adensamento da massa.
11.6 Detalhamento da Armadura Transversal Efetiva
Para o detalhamento da armadura transversal é necessário que se adote um diâmetro 
para o mesmo. A NBR 6118 (2014) recomenda que se utilize para as armaduras 
transversais de vigas, barras de diâmetro acima de 5 mm e não superior a 1/10 da 
largura bw da viga. 
Título: Exemplos de configurações de estribos
Fonte: Autor
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 129
Deve-se também determinar o número de ramos que constituirão os estribos da 
viga. Comumente utilizam-se estribos simples compostos por dois ramos, como 
mostra a figura apresentada acima. Entretanto, quando a estrutura apresenta grandes 
carregamentos e/ou seção muito larga pode ser interessante o emprego de mais 
ramos por meio de estribos duplos. Essa necessidade pode ser verificada em função 
do espaçamento transversal máximo entre ramos sucessivos, dados por:
• Para as vigas em que Vsd≤0,20.VRd,2
Nesse caso o espaçamento máximo entre os ramos deve ser igual a 800 mm.
• Para as vigas em que Vsd>0,20.VRd,2
Nesse caso o espaçamento máximo entre os ramos deve ser o menor valor entre: 
st,max≤{0,6.d 350 mm 
Uma vez definido o diâmetro do estribo e o número de ramos, pode-se determinar 
o espaçamento entre eles por meio da equação:
onde representa a área de aço por estribo;
 é a taxa de armadura transversal efetiva. 
Observe que a área de aço do estribo depende além da área transversal da barra, do 
número de ramos que o constitui. Para uma viga armada com estribos simples, temos 
que a área de aço será o produto do número de ramos e a área transversal da barra.
Sendo o número de ramos, e ∅ é o diâmetro do estribo.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 130
ISTO ACONTECE NA PRÁTICA
Se você já teve a oportunidade de analisar um projeto estrutural e até mesmo 
executar a armadura de uma viga, você deve ter observado que é muito comum a 
utilização de espaçamentos diferentes entre os estribos ao longo da viga. 
De modo geral, os estribos possuem um espaçamento menor próximo aos apoios 
onde encontram-se os maiores esforços cortantes, enquanto que na região central 
eles são mais espaçados garantindo apenas a armadura mínima exigida pela 
norma. 
Como já comentamos, nós devemos dimensionar a armadura transversal para o 
maior esforço cortante da viga, o qual se encontra próximo aos apoios. Entretanto, 
armar toda a viga para resistir a um cortante que se encontra apenas em uma 
região é antieconômico. 
Dessa forma, na prática costuma-se determinar a força cortante resistida pela taxa 
de armadura mínima exigida pela NBR 6118 e descrita no item 11.5.1. Essa força é 
calculada por:
VSd,min=VSw,min+VC
Sendo assim, adota-se a armadura mínima para a região da viga que possui 
esforços cortantes de cálculo inferiores a VSd,min. Observe a figura a seguir: 
Título: Esquema da distribuição dos estribos ao longo da viga
Fonte: Autor
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 131
Na aula de hoje encerramos o dimensionamento das vigas principais de uma 
ponte. Entretanto, como falamos nos capítulos anteriores, o projeto de uma estrutura 
contempla duas análises: a dos limites últimos e a dos limites de serviço. Nas últimas 
duas aulas nós utilizamos os estados limites últimos para determinar a armadura 
necessária para que a viga resista aos esforços atuantes sem entrar em colapso. 
Agora, precisaremos verificar os limites de serviço dessa estrutura já dimensionada. 
Esse será o assunto abordado no próximo capítulo. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 132
CAPÍTULO 12
VERIFICAÇÃO DO ESTADO 
LIMITE DE SERVIÇO DAS 
VIGAS PRINCIPAIS
Nas últimas aulas discutimos sobre as verificações de estado limite último das 
vigas principais, responsáveis pelo dimensionamento das armaduras. Na aula de hoje, 
falaremos sobre a verificação do estado limite de serviço dessas vigas. 
Segundo a NBR 6118 (2014) às estruturas de concreto armado devem ser avaliadas 
quanto a quatro estados de serviço:
• Formação de fissuras 
• Abertura das fissuras, caso ocorram
• Deslocamentos• Vibrações 
Na aula de hoje falaremos especificamente sobre o estado de deformação dessas 
vigas. 
11.1 Estado de Deformação 
Antes de falar sobre a determinação das deformações da viga, é importante lembrar 
que para essa avaliação deve-se considerar a combinação quase-permanente de ações 
e a rigidez efetiva das seções.
11.1.1 Flecha Imediata
A flecha imediata representa a deformação apresentada pela viga quando submetida 
a um determinado carregamento. Ela é descrita por meio da linha elástica da estrutura, 
a qual você estudou em resistência dos materiais. 
Uma vez que a estrutura não pode apresentar deformações maiores do que as 
flechas limites estabelecidos pela NBR 6118 (2014) nos interessamos apenas em 
obter as flechas máximas apresentadas pela viga. Logo, é possível obter a equação 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 133
da flecha máxima de acordo com a vinculação e o carregamento da viga por meio 
da tabela 1. 
Vinculação e 
carregamento
Flecha
Linha elástica
wmax x
0
0
0
Tabela 1 – Flechas elásticas máximas para vigas
Fonte: Adaptado de Pinheiro (2010)
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 134
Como você pôde observar pelas equações da tabela 1, as deformações dependem 
da rigidez estrutural, proveniente das propriedades geométricas e dos materiais que 
constituem a mesma. Sendo assim, falaremos sobre estas características adiante. 
11.1.1.1 Módulo de Elasticidade do Concreto
Para a determinação da flecha imediata, necessitamos determinar a rigidez da 
viga analisada. A NBR 6118 (2014) sugere que ela seja calculada com o módulo de 
elasticidade secante do concreto, o qual pode ser estimado a partir da sua resistência 
característica (fck) pela expressão:
onde Ecs é o módulo de deformação secante do concreto 
Eci é o módulo de deformação tangente inicial dado por:
11.1.1.2 Momento de Inércia Equivalente
Devido ao comportamento dos elementos de concreto armado quando submetidos 
a um determinado carregamento, a norma recomenda a utilização de um momento de 
inércia equivalente para a determinação da deformação de uma estrutura. O momento 
de inércia equivalente pode ser obtido por: 
sendo Mr o momento de fissuração;
Md,ser o momento fletor atuante na seção crítica, para uma combinação de serviço 
quase-permanente;
IC o momento de inercia da seção bruta de concreto;
III o momento de inércia da seção no estádio II de carregamento.
O momento de fissuração é determinado pela equação: 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 135
onde ∝ é um fator de forma igual a {1,5 →seção retangular 1,2→seções T ou 
duplo T ;
IC o momento de inércia da seção bruta de concreto;
yt é a distância entre o centro geométrico da seção e a fibra mais comprimida;
fctd é resistência a tração de cálculo do concreto, considerada como:
ANOTE ISSO
A verificação da formação de fissuras nos elementos de concreto armado utiliza-se 
da mesma equação apresentada acima. Todavia, para a formação de fissuras deve-
se considerar .
Haverá formação de fissuras quando o momento de serviço em combinação rara 
for superior ao momento de fissuração. Nesse caso deve-se determinar a abertura 
dessas fissuras, para que não superem os limites estabelecidos pela NBR 6118. 
O momento fletor de serviço e o momento de inércia da seção bruta já foram 
estudados anteriormente. O primeiro vimos na aula 9 dessa disciplina, enquanto a 
segunda você aprendeu em resistência dos materiais. 
Já o momento de inércia do estádio de carregamento II deve ser obtido por meio 
de uma homogeneização da seção. Como já mencionamos a seção das vigas de 
concreto armado são constituídas por dois materiais distintos, aço e concreto, como 
mostra a figura abaixo:
Título: Seção transversal da viga de concreto armado após fissuração do concreto
Fonte: Autor
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 136
Podemos aplicar o conceito de homogeneização juntamente com o teorema de 
Steiner como mostra a equação abaixo:
sendo IC o momento de inércia do concreto
AC a área da seção do concreto
z1 a distância do centro geométrico da seção de concreto a linha neutra da 
viga
Isi o momento de inércia da armadura
Asi a área da seção da armadura
z2 a distância do centro geométrico da armadura a linha neutra da viga
αe é o coeficiente de homogeneização αe=Eaço/Econcreto
Para uma viga de seção transversal retangular a expressão acima pode ser reescrita 
como:
onde: b é a largura da viga
d é a altura útil da viga
x é a altura da linha neutra
Asi é a área de aço efetiva da viga
αe é o coeficiente de homogeneização αe=Eaço/Econcreto
11.1.2 Flecha Diferida
Além da flecha imediata causada imediatamente após o carregamento da estrutura, 
ocorrerá também a chamada flecha diferida. Esta provém da fluência do concreto, 
a qual resultará em uma deformação por “acomodação” do material após longos 
períodos sob a ação de um determinado carregamento. Muitas vezes, as deformações 
decorrentes dessa característica são superiores a flecha imediata. 
Segundo a norma, a flecha diferida pode ser estimada proporcionalmente a flecha 
imediata por meio de um fator de fluência, determinado por:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 137
onde αf é o fator de fluência;
ρ’ é taxa de armadura comprimida dada por ρ’=As’/(b.d);
Δξ é a variação do coeficiente do tempo igual a Δξ=ξ(t)-ξ(to) 
ξ(t) o coeficiente para o tempo, em meses, que se pretende avaliar a flecha;
ξ(to) o coeficiente do tempo, em meses, que a estrutura recebeu a aplicação 
da carga permanente, isto é, a idade da retirada do escoramento;
Os valores dos coeficientes de tempo ξ(t ) e ξ(to) podem ser obtidos pela tabela 2.
Tempo t
em meses
0 0,5 1 2 3 4 5 10 20 40 70
0 0,54 0,68 0,84 0,95 1,04 1,12 1,36 1,64 1,89 2,00
Tabela 2 – Valores do coeficiente em função do tempo
Fonte: NBR 6118 (2014, p.127)
Logo, a flecha diferida é dada por:
adiferida=αf .aimediata
11.1.3 Flecha Total
Sendo assim, a flecha total apresentada ao final da vida útil da viga será igual a 
somatória da flecha imediata a flecha diferida, para um tempo t >70 meses, como 
mostra a equação abaixo. 
atotal=aimediata+adiferida
A flecha obtida deve ser inferior aos deslocamentos limites permitidos pela NBR 
6118 e descritos na tabela 3. Quando esses limites não são respeitados é possível a 
adoção das seguintes soluções:
• Aumentar o tempo de escoramento da estrutura, de modo que a idade de 
aplicação da carga (to) seja aumentado; 
• Retardar a execução do nivelamento das lajes, revestimentos, paredes, etc. 
Fazendo com que o tempo to aumente;
• Adotar uma contra flecha (ac).
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 138
Tipo de efeito
Razão da 
limitação
Exemplo
Deslocamento a 
considerar
Deslocamento 
Limite
Aceitabilidade
sensorial
Visual
Deslocamentos 
visíveis em elementos 
estruturais
Total
Outro
Vibrações sentidas no 
piso
Devido a cargas 
acidentais
Efeitos 
estruturais em 
serviço
Superfícies que 
devem drenar 
água
Coberturas e varandas Total
Pavimentos 
que devem 
permanecer 
planos
Ginásios e pistas de
boliche
Total
Ocorrido após a
construção do piso
Elementos 
que suportam 
equipamentos 
sensíveis
Laboratórios
Ocorrido após
Nivelamento do 
equipamento
De acordo com 
recomendação 
do fabricante do 
equipamento
Tabela 3 – Deslocamentos Limites
Fonte: NBR 6118 (2014, p.77)
L corresponde ao vão da viga
a As superfícies devem ser suficientemente inclinadas ou o deslocamento previsto 
compensado por contra flechas, de modo a não se ter acúmulo de água.
b Os deslocamentos podem ser parcialmente compensados pela especificação de 
contra flechas. Entretanto, a atuação isolada da contra flecha não pode ocasionar um 
desvio do plano maior que l/350.
11.1.4 Contra Flecha
O uso de contra flechas nas construções é extremamente comum.Entretanto, 
essa solução é limitada maximamente pelo valor correspondente a soma da flecha 
imediata a metade da flecha diferida, como mostra a equação a seguir:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 139
Entretanto, é possível adotar valores inferiores ao obtido pela expressão acima, 
desde que a flecha total da viga seja inferior aos limites estabelecidos na tabela 3.
A flecha total das vigas com contra flecha é dado por:
Via de regra, adota-se valores de contra flecha múltiplos de 0,5 cm para facilitar 
o controle e execução das mesmas. Vale ressaltar que as contra flechas podem ser 
adotadas sempre que o projetista quiser, mesmo que os deslocamentos estimados 
estejam abaixo dos limites da norma. 
11.1.5 Exemplo
Passemos agora para a aplicação de tudo o que foi discutido na aula de hoje. 
Imagine que você está executando o projeto de uma viga biapoiada de vão de 4,5 
metros em concreto armado. 
Inicialmente você avaliou o estado limite último da viga, no qual definiu que ela 
possuirá dimensões transversais de 16 x 45 cm. Sendo executada com concreto C35 
e aço CA50, armada longitudinalmente por 3 barras de 20mm e transversalmente por 
um estribo de 5 mm a cada 16 cm. 
Agora você pretende avaliar o estado limite de deformação dessa viga. Para isso 
você obteve as seguintes informações do projeto:
• Taxa de armadura ρsi=4,13%
• Ambiente com classe de agressividade I
• Altura útil igual a 41 cm
• O escoramento foi retirado após 15 dias da concretagem (0,5 mês)
• A linha neutra a 15,1 cm da face comprimida da viga 
• Módulo de elasticidade do aço igual a 210 GPa
• A flecha limite é igual a 18 mm 
• A combinação quase permanente é igual a pd,ser=31,5 kN/m que resulta em um 
momento máximo de Md,ser=79,7 kN.m
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 140
Para avaliar as deformações da viga precisamos determinar as duas parcelas que 
constituem a flecha: a parcela imediata e a diferida. Iniciamos determinando a flecha 
imediata que depende das vinculações, carregamento e da rigidez da peça. 
Da tabela 1, obtemos que a máxima flecha para uma viga biapoiada, submetida a 
um carregamento linearmente distribuído é igual a:
Do enunciado sabemos que o vão da viga é igual a 4,5 m e que o seu carregamento 
equivale a 31,5 kN/m para a combinação quase permanente. Logo, nos resta apenas 
determinar a rigidez da estrutura. 
Primeiramente calculemos o módulo de elasticidade do concreto, dado por:
Sendo assim, falta apenas o momento de inércia da seção, como já comentamos 
devido a da fissuração e os efeitos da fluência do concreto, o momento de inércia da 
seção sofre uma redução sendo determinado pela expressão:
Para a qual precisamos das seguintes informações:
a) momento de inércia da seção cheia de concreto
b) momento de inércia para o estádio 2
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 141
c) momento de fissuração para deformação excessiva 
Dessa forma, temos que o momento de inércia equivalente para a viga é igual a:
Portanto a flecha imediata é igual a:
Calculada a flecha imediata podemos estimar a flecha diferida por meio da expressão:
Sendo que o fator de fluência é dado por:
Uma vez que a viga não possui armadura de compressão, temos que ρ'=0 e o fator 
de fluência pode ser reescrito como:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 142
Como queremos avaliar a flecha ao final da vida útil da estrutura da tabela 2 retiramos 
dois valores de ξ, para o tempo t=0,5 mês e t>70 meses. Logo, temos:
Portanto a flecha diferida é:
Sendo assim, a flecha total da viga será:
Para que o ELS-deformação seja satisfeito é necessário que a flecha total seja 
menor que a flecha limite. Do enunciado temos que alimite=18 mm, perceba que a flecha 
encontrada é superior ao limite e, portanto, não satisfaz ao exigido para a norma. 
Devemos então prescrever uma contra flecha para a viga. Adotando a máxima 
contra flecha possível. Temos: 
Logo, temos que a flecha total da viga é igual a:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 143
AULA 13
APARELHOS DE APOIO
Como mencionamos na aula 1, as pontes e viadutos podem ser divididas em três 
partes: superestrutura, mesoestrutura e infraestrutura. A ligação entre a superestrutura 
e a mesoestrutura acontece por meio de aparelhos de apoio, os quais garantem a 
vinculação adequada para essas estruturas. Portanto, podemos definir os aparelhos 
de apoio como as peças de transição dos vigamentos principais e dos pilares ou 
encontros, cujas principais funções resumem-se a:
• Transmitir as reações de apoio da superestrutura à mesoestrutura ou 
infraestrutura, no caso de pontes em pórtico ou arco; 
• Permitir os movimentos longitudinais da superestrutura, causado pela retração 
da superestrutura e pelos efeitos da temperatura; 
• Permitir as rotações da superestrutura, motivadas pelas deflexões geradas pela 
carga permanente e pela carga móvel.
No projeto de estruturas convencionais, como de uma residência usual em concreto 
armado, os aparelhos de apoio são dispensados, de modo que os esforços podem 
ser estimados assumindo articulações inexistentes entre os pilares e as vigas, uma 
vez que estes apresentam uma ligação monolítica. Segundo Debs e Kayeda (2010) 
essa simplificação de cálculo pode ser adotada apenas em estruturas com vãos e 
carregamentos pequenos, nas quais os esforços secundários gerados pela ausência 
dessas articulações podem ser desprezados.
Logo, podemos concluir que as estruturas das pontes e viadutos não se enquadram 
nessa situação dada a grandeza de seus vãos e carregamentos. Nesse caso, o projeto 
destas estruturas deve considerar hipóteses de cálculo semelhantes à situação real 
encontrada em campo. Sendo assim evidente a importância de se conhecer os 
diferentes tipos de apoio possíveis, para que se possa escolher o apoio que melhor 
se enquadre a situação esperada em projeto. 
Os aparelhos de apoio podem permitir diferentes tipos de movimento da 
superestrutura, de acordo com os quais podem ser classificados em:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 144
• Articulações fixas: são aquelas que impedem os movimentos de translação, 
tanto vertical quanto horizontal. Para que o movimento não ocorra surge no 
apoio forças de reação na direção do movimento e em sentido contrário. Nesse 
tipo de articulação os movimentos de rotação são permitidos;
• Articulações móveis: são aquelas que permitem além da rotação um movimento 
de translação horizontal do tabuleiro. Nesses apoios apenas a translação vertical 
é impedida. 
• Articulações elásticas: assim como os móveis, permitem a rotação e a translação 
horizontal da superestrutura. Entretanto, as articulações elásticas geram reações 
horizontais não desprezíveis. 
De modo geral, as articulações do tipo fixas ou móveis são constituídas por materiais 
metálicos ou concreto; enquanto que as articulações elásticas são de elastômeros, 
um tipo de borracha sintética chamada comercialmente de neoprene. Nos subitens 
a seguir, falaremos sobre os principais tipos de apoios usualmente encontrados. 
13.1 Principais Tipos
13.1.1 Aparelhos de Apoio Metálicos
Os aparelhos de apoio metálicos são formados pela combinação adequada de 
chapas e roletes metálicos. Com este material é possível a montagem de apoios 
fixos e móveis. 
O lado negativo dessas articulações é a exigência de manutenções periódicas, uma 
vez que a sujeira e a corrosão do metal podem prejudicar o seu correto funcionamento. 
Leonhardt (1979) ressalta a importância de se utilizar nos apoios somente peças 
metálicas com grande proteção a corrosão, como galvanização associada a pintura 
zinco-cromática. 
As articulações fixas são constituídas por chapas com cavidades usinadas e 
lubrificadas onde se encaixa o rolete. Podem, também, ser formadas por duas chapas 
metálicas,uma com a superfície plana e outra com a superfície curva é convexa. A 
figura abaixo ilustra alguns exemplos de apoios metálicos fixos. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 145
Título: Aparelhos de apoio metálicos do tipo fixo
Fonte: DEBS E TAKEYA (2010) – pg. 87
Já as articulações metálicas móveis possuem um ou mais roletes confinados entre 
chapas planas, os quais permitem o movimento longitudinal. Também, podem ser 
constituídas por pêndulos, que são roletes sem as partes não necessárias. A figura 
abaixo ilustra alguns exemplos de apoios metálicos móveis. 
Título: Aparelhos de apoio metálicos do tipo móvel
Fonte: DEBS E TAKEYA (2010) – pg. 87
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 146
13.1.2 Aparelhos de Apoio de Concreto
Leonhardt (1979) afirma que os aparelhos de apoio de concreto são os mais simples 
e baratos apoios centrados para pontes. Executados juntamente com a própria estrutura 
de concreto, esses apoios já foram utilizados com frequência na construção de grandes 
pontes. 
A ponte de Tacarville, por exemplo, foi executada com apoios de concreto possuindo 
reações de apoio maiores que 10 MN. 
Dentre os principais tipos de apoios de concreto, estão:
• Articulação de contato de superfícies; 
• Articulação Mesnager; 
• Articulação Freyssinet; 
• Pêndulo de concreto. 
Sendo os três primeiros articulações do tipo fixo, enquanto o último é uma articulação 
móvel. 
A articulação de contato de superfícies, apresentada na figura abaixo, resume-se 
a duas superfícies cilíndricas em contato entre si. Nesse caso uma das superfícies 
é convexa, sendo a outra côncava com raio de curvatura ligeiramente maior. Esse 
tipo de ligação necessita de um acabamento minucioso, de modo que haja uma 
adequada distribuição das tensões. Com o intuito de melhorar esse acabamento, Debs 
e Takeya (2010) sugerem o uso uma chapa delgada de chumbo de alguns milímetros 
de espessura entre as superfícies; ou revestir as superfícies com chapas finas de aço.
Título: Articulação de superfície em concreto 
Fonte: DEBS E TAKEYA (2010) – pg. 88
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 147
Já a articulação Mesnager é caracterizada pelo estrangulamento da seção do 
elemento de concreto. As reações de apoio dessas articulações são transmitidas 
por meio das armaduras que ligam as duas seções da estrutura, como mostra a 
figura abaixo. O trecho de concreto estrangulado que liga as duas seções tem função 
de proteção da armadura contra os agentes corrosivos, não sendo considerado um 
resistente.
Título: Articulação Mesnager 
Fonte: DEBS E TAKEYA (2010) – pg. 88
Outro tipo de articulação de concreto é a articulação Freyssinet, apresentada na 
figura abaixo. Esse tipo de apoio também apresenta um estrangulamento da seção 
do elemento de concreto, todavia, nesse caso é o concreto o responsável por suportar 
a reação transmitida pela articulação. 
O dimensionamento dessa articulação parte do princípio que o concreto pertencente 
ao trecho estrangulado está sujeito ao efeito de cintamento gerado pelo alargamento 
das seções vizinhas. Esse efeito gera um estado de tensão favorável que permite ao 
concreto resistir a tensões de compressão axial muito maiores que a sua resistência 
quando submetido a compressão simples (DEBS E TAKEYA, 2010). 
Recomenda-se que a seção estrangulada seja aramada quando a reação horizontal 
do apoio for superior a 1/8 da sua reação vertical, ou quando há a possibilidade de 
ocorrer reação vertical negativa, o que resultará em solicitação de tração no concreto.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 148
Título: Articulação Freyssinet
Fonte: DEBS E TAKEYA (2010) – pg. 89
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 149
Por último, temos os apoios de pêndulo de concreto. Esta articulação é do tipo móvel, 
permitindo, portanto, a translação horizontal do tabuleiro. Nesse caso, o elemento de 
concreto das superestruturas é vinculado a mesoestrutura através de um elemento 
intermediário, também de concreto, o qual é ligado a ambas por meio de uma das 
três articulações já descritas; ou por placas de chumbo; ou por elastômero como 
apresentado na figura abaixo.
Título: Pêndulos de concreto
Fonte: DEBS E TAKEYA (2010) – pg. 90
13.1.3 Aparelhos de Apoio Elastomérico
Os aparelhos de apoio elastoméricos referem-se aos aparelhos de apoio com 
materiais emborrachados com grande durabilidade, como é o caso das borrachas 
sintéticas conhecidas comercialmente como Neoprene (figura abaixo). Esse material 
tem como características:
• Pequeno Módulo de elasticidade transversal (G); 
• Pequeno Módulo de elasticidade longitudinal (E); 
• Grande resistência às intempéries. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 150
Título: Tipos de placa de Neoprene
Fonte: DEBS E TAKEYA (2010) – pg. 91
Quando utilizados como apoios entre a superestrutura e a mesoestrutura, eles 
permitem deslocamentos horizontais proporcionais à espessura do apoio, conforme 
mostra a figura abaixo. A deformabilidade do material também permite a rotação do 
mesmo. Todavia, o material apresenta uma resistência à rotação, sendo o ângulo de 
rotação dependente do comprimento da placa na direção avaliada e da sua espessura. 
Título: Comportamento do aparelho de apoio de Neoprene quando submetido a cargas.
Fonte: DEBS E TAKEYA (2010) – pg. 91
Devido a sua resistência às intempéries, os aparelhos de neoprene são amplamente 
empregados nas pontes e viadutos. Pois ao contrário dos aparelhos de apoio metálicos, 
os quais necessitam de manutenção rigorosa, os apoios de neoprene requerem cuidados 
de manutenção semelhantes aos necessários pelas estruturas de concreto armado.
Os aparelhos de apoio de Neoprene podem ser de dois tipos: 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 151
a) Neoprene simples: placa de neoprene simples de espessura h, utilizada na 
execução de apoios com reações pequenas;
b) Neoprene cintado ou fretado: consiste na sobreposição de placas neoprene, com 
espessura t, e chapas de aço de espessura e, resultando em um apoio final de 
altura h (observe a figura abaixo). Esse é sem dúvida um dos mais utilizados. 
As chapas de aço exercem um efeito de cintamento sobre o neoprene, o que 
aumenta a capacidade resistente dos apoios, reduzindo seu o achatamento. 
Título: Aparelho de apoio de neoprene.
Fonte: DEBS E TAKEYA (2010) – pg. 91
Comercialmente, os aparelhos de neoprene são disponibilizados em placas 
retangulares com dimensões variando de 50 em 50mm, iniciando nos 100 mm e 
chegando até 900 mm. As placas de neoprene podem ser encontradas com as seguintes 
espessuras: 8, 10, 12, ou 16 mm. Já as chapas de aço, usadas nos apoios cintados 
podem ter espessura de 2 a 4 mm. Em geral a espessura utilizada é 2 mm.
As dimensões adequadas para esses aparelhos de apoio dependem do seu 
dimensionamento que será visto em detalhes na próxima aula. 
Nos casos em que se faz necessário a redução das reações horizontais em 
determinado apoio ou uma maior mobilidade do tabuleiro, pode-se utilizar articulações 
elásticas deslizantes, chamadas de Neoflon. Esse apoio, apresentado na figura abaixo, 
é formada pela associação do neoprene com camadas teflon.
O teflon é uma resina constituída por politetrafluoretileno, cujo coeficiente de atrito 
é extremamente baixo. Para fins de segurança recomenda-se a consideração de um 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 152
atrito de 4%. Além disso, as superfícies de deslizamento são lubrificadas com graxas 
siliconadas, permitindo uma mobilidade do tabuleiro sem grandes desgastes. 
 
Título: Articulação elástica deslizante: Neoflon. Com movimentação apenas longitudinal. 
Fonte: LENHOARDT (1979) – pg. 219
Quando deseja-se permitir o movimentodo tabuleiro em apenas uma direção, 
emprega-se guias com superfície de deslizamento na placa retangular superior. Os 
aparelhos devem ser ancorados com parafusos em pinos embutidos no concreto. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 153
13.1.4 Aparelhos de Apoio Especial
Debs e Takeya (2010) classificam como aparelhos de apoio especial, aqueles 
aparelhos não empregados com grande frequência nas obras de arte. Nos casos em 
que as reações, os deslocamentos e as rotações nos apoios são de grande intensidade, 
ultrapassando a capacidade dos aparelhos convencionais, deve-se utilizar os apoios 
especiais. 
A figura abaixo, apresenta dois exemplos de aparelhos especiais: o aparelho de 
neoprene em panela e o apoio metálico com teflon. 
Título: Articulação de apoio especial 
Fonte: DEBS E TAKEYA (2010) – pg. 93
ISTO ACONTECE NA PRÁTICA
É comum pensarmos que o aparelho de apoio permanecerá a vida toda da 
estrutura no mesmo lugar. Todavia, é possível que seja necessário a troca deste 
aparelho, mesmo que ele tenha sido dimensionado adequadamente. Para a troca 
deste aparelho é necessário que seja realizado o alteamento das pontes, isto é, a 
elevação do tabuleiro por meio de macacos hidráulicos.
O alteamento das obras de arte pode ser realizado em três situações distintas: 
1. para reforçar, restaurar ou substituir o aparelho de apoio da estrutura; 
2. para elevar a cota do tabuleiro para permitir a passagem de veículos mais altos;
3. para nivelar uma estrutura já existente a uma nova obra. 
A elevação do tabuleiro deve ser realizada sincronizada e lentamente para que não 
haja danos à estrutura da ponte. É possível elevar o tabuleiro mais de 1 metro, 
desde que se atenda corretamente as etapas do procedimento. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 154
Na aula de hoje você aprendeu sobre os diversos tipos de aparelhos de apoio, 
utilizados nas estruturas de pontes e viadutos. Nos dias de hoje, um dos aparelhos 
mais empregados nas obras de arte do nosso país são os apoios de Neoprene, por 
esse motivo, falaremos na próxima aula sobre o dimensionamento desses aparelhos. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 155
CAPÍTULO 14
DIMENSIONAMENTO 
DE APARELHOS DE 
APOIO DE NEOPRENE
Como estudado na aula passada, os aparelhos de apoio são definidos como o 
elemento disposto entre a superestrutura e seu suporte, cuja finalidade se resume a 
transferência adequada das reações, permitindo as rotações e translações horizontais 
quando estas forem consideradas em projeto. 
Estes aparelhos podem ser de diferentes materiais como aço, concreto e elastômeros. 
Na aula de hoje, falaremos mais especificamente sobre o dimensionamento dos apoios 
de elastômeros, os quais são muito empregados nas construções de pontes e viadutos 
no nosso país. 
Você deve se recordar, que o elastômero é um material elástico a base de 
policloropreno, conhecido popularmente como Neoprene. Seus apoios podem ser 
de dois tipos: os apoios simples, constituídos apenas por uma placa de Neoprene 
com espessura ; ou os apoios fretados, formados pelo empilhamento alternado de 
camadas de neoprene e chapas de aço, como mostra a figura abaixo.
Título: Comportamento do aparelho de apoio de Neoprene quando submetido a cargas.
Fonte: MARCHETTI (2008) – pg. 219
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 156
O Neoprene é um material elástico com propriedades iguais a:
• Dureza: de acordo com a ASTM-D-676 sua dureza é igual a 60±5 pontos
• Resistência a ruptura mínima: equivale a 17,5 MPa
• Alongamento à ruptura mínima: igual a 350°
• Módulo de elasticidade transversal (G): determinado entre os ângulos de 
distorção 15° e 30°, sendo respectivamente igual a 1,0±0,2MPa
O dimensionamento dos aparelhos pode ser dividido em duas etapas: na primeira 
estima-se às dimensões dos aparelhos de apoio por meio de um pré-dimensionamento; 
em seguida se avalia as condições de segurança, de modo que se garanta que o apoio 
irá se comportar adequadamente. 
As condições de segurança para os apoios são listadas a seguir, sendo descritas 
nos subitens subsequentes. 
1. pressão de contato 
2. deformação de compressão (afundamento do apoio) 
3. deformação de cisalhamento (limite de distorção) 
4. limitação da tensão de cisalhamento 
5. segurança ao deslizamento 
6. condição de não levantamento da borda menos carregada 
7. condição de estabilidade 
8. resistência das chapas de aço. 
11.1 Pré-dimensionamento
Como já mencionado iniciamos o dimensionamento, definindo as dimensões dos 
apoios que em seguida serão verificadas quanto às condições de segurança. Nos 
casos em que as condições não forem satisfeitas, são adotadas novas dimensões e 
em seguida avalia-se a segurança novamente.
11.1.1 Dimensões em Planta
Primeiramente devemos determinar as dimensões em planta do apoio. Para isso, 
partimos da tensão normal admissível para apoio, a qual pode ser adotada como 
7,0 MPa para apoios de Neoprene simples e 11,0 MPa para apoios cintados (DEBS 
E TAKEYA, 2010). 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 157
Logo, sabendo que a tensão de solicitação do apoio deve ser inferior a tensão 
admissível ao material, temos que a área do apoio é dada por:
onde Nmax é o valor máximo estimado para a reação de apoio
σadm é a tensão admissível 
a e b são respectivamente a largura e comprimento do apoio.
A escolha adequada das dimensões devem ser adotadas de acordo com as 
dimensões geométricas das estruturas ligadas por esse aparelho de apoio. Sendo 
assim, a equação apresentada serve apenas de auxílio para a escolha das dimensões 
em planta do apoio. 
ANOTE ISSO
Nos apoios cintados, ao redor da chapa de aço há uma espessura ‘c’ de Neoprene, 
cuja função é proteger a chapa das intempéries. Esta espessura é executiva e, 
portanto, não deve ser considerada no dimensionamento do apoio.
Dessa forma, para os apoios fretados as dimensões obtidas no pré-
dimensionamento são chamadas de a' e b', as quais adiciona-se duas espessuras 
de ‘c’ para obter as dimensões finais do apoio. 
Nas verificações das condições de segurança dos apoios cintados, no lugar de a e 
b, deve-se utilizar a' e b^' dados por: a'=a-2.c, b'=b-2.c.
11.1.2 Altura do Neoprene
Definida as dimensões em planta, deve-se estimar a altura do aparelho de apoio, 
por meio da seguinte expressão:
h=2.ah1
sendo ah1 o deslocamento horizontal (figura abaixo) causado pela ação de cargas 
lentas como a retração, a fluência e a temperatura. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 158
Título: Dimensões do aparelho de apoio de Neoprene.
Fonte: DEBS E TAKEYA (2010) – pg. 3 do Anexo 6
A espessura do aparelho de apoio de Neoprene também deve respeitar limites 
quanto a sua esbeltez, de modo que a altura do apoio deve ser superior a 10% da 
largura, não ultrapassando os 20%.
11.2 Verificações 
Uma vez realizado o pré-dimensionamento do apoio, passemos para as verificações 
das condições de segurança. 
11.2.1 Pressão de Contato 
Primeiramente, devemos avaliar as tensões de contato, transferidas do apoio a 
mesoestrutura. Segundo Marchetti (2008) essa tensão é limitada por:
11.2.2 Limite da Deformação por Compressão 
Ao ser submetida a cargas verticais, os apoios de Neoprene apresentam 
deslocamentos verticais, chamados de recalques, observe a figura abaixo. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 159
Título: Deformação de apoio de Neoprene submetido a forças normais
Fonte: MARCHETTI (2008) – pg. 220
Estes podem ser estimados pela seguinte equação:
onde ∆h é o deslocamento vertical causado pela força normal
n equivale ao número de placas de Neoprene do apoio
t é a espessura de cada placa
c é o cobrimento
G é o módulo de deformação transversal do Neoprene
B é o fator de forma
O fator de forma doapoio é determinado pela seguinte expressão:
Os deslocamentos verticais são ditos como dentro da segurança, quando seus 
valores não ultrapassam mais que 15% da altura do apoio. Sendo assim, podemos 
limitar o recalque do apoio pela expressão:
∆h<0,15.h
11.2.3 Limite da Deformação por Cisalhamento
Ao serem solicitados por forças horizontais, os aparelhos de Neoprene sofrem 
distorções conforme a imagem abaixo. Essas devem ser limitadas para evitar problemas. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 160
Título: Deformação de apoio de Neoprene submetido a forças horizontais
Fonte: MARCHETTI (2008) – pg. 221
Para estimar a distorção sofrida pelo aparelho, deve-se primeiro determinar a força 
horizontal resultante. Sendo ela calculada por:
onde Hr é a força horizontal total resultante 
Hll é a força horizontal longitudinal de longa duração
Hlc é a força horizontal longitudinal de curta duração
Htl é a força horizontal transversal de longa duração
Htc é a força horizontal transversal de curta duração
Com o carregamento horizontal resultante, estima-se os deslocamentos horizontais 
do apoio pela seguinte fórmula:
Portanto, temos que a distorção do apoio causada pelas forças horizontais são 
iguais a razão entre o deslocamento horizontal e sua altura, não podendo ser superior 
a 0,5, como mostra a expressão:
11.2.4 Limite da Tensão Cisalhante
As tensões de cisalhamento atuantes nos aparelhos de apoio de Neoprene devem ser 
inferiores a cinco vezes o seu módulo de elasticidade transversal. Desse modo, temos que:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 161
Todavia, o cisalhamento atuante no apoio é composto por parcelas provenientes 
de cargas distintas: carga normal, a cisalhante e a rotação. Falaremos sobre cada 
uma delas:
a) Tensão de cisalhamento da força norma
As reações de apoio verticais geram tensões cisalhantes de valor igual a:
b) Tensão de cisalhamento da força horizontal
As reações horizontais atuantes nos apoios causam uma tensão cisalhante horizontal 
resultante, equivalente a soma das tensões cisalhantes provocadas por cada uma das 
forças como mostra a equação abaixo: 
Cada uma das parcelas deve possuir valor inferior a .
c) Tensão de cisalhamento na rotação
As cargas atuantes nos apoios geram sobre a aparelho de apoio uma rotação 
como a apresentada na figura abaixo. Entretanto, é possível que devido a uma falta de 
paralelismo inicial entre as superfícies de contato com o Neoprene haja uma rotação 
inicial no apoio. Por isso, Marchetti (2008) recomenda a adoção de uma rotação inicial 
igual a θ0=3.10
-3 rad para as ligações de estruturas moldadas in loco ou metálicas; 
e igual a θ0=1.10
-2 rad para as de pré-moldadas. 
Título: Deformação de apoio de Neoprene submetido a rotação
Fonte: MARCHETTI (2008) – pg. 222
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 162
O cisalhamento causado pela rotação do apoio é determinado por:
onde θt é a rotação total gerada pelas ações das cargas e θ0 representa a rotação 
residual permanente, proveniente das imperfeições da montagem.
Sendo assim temos que a tensão de cisalhamento total é igual a:
11.2.5 Segurança Contra o Deslizamento
Para garantir que não ocorra escorregamento do aparelho de apoio, deve-se verificar 
a expressão a seguir:
sendo Hr a força horizontal total resultante, definido no item 11.2.3, dada em kN;
Nmin a menor reação normal dada em kN;
σc,min a tensão de contato mínima, dada em MPa.
11.2.6 Condição de Não Levantamento da Borda menos Carregada
Além do escorregamento, deve-se verificar se a rotação gerada pela ação dos 
carregamentos no apoio não levantará os bordos do mesmo. Para isso a expressão 
a seguir deve ser verdadeira:
11.2.7 Verificação da Estabilidade
Para os aparelhos de apoio de Neoprene cuja altura é superior a h>a/5, é necessário 
que se verifique a estabilidade da almofada como mostra a expressão a seguir: 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 163
11.2.8 Verificação das Chapas de Aço
Quando dimensionamos aparelho de apoio cintado necessitamos verificar a 
espessura das chapas de aço que o constituem. Para a segurança dos apoios as 
chapas devem apresentar espessura superiores a relação abaixo:
na qual hs é a espessura da chapa de aço;
σs é a tensão admissível do aço igual a 150 MPa
Em geral, as chapas de aço dos apoios apresentam uma espessura de 2mm. 
11.3 Exemplo 
Agora que já vimos todos os passos para o dimensionamento de um aparelho de 
apoio de Neoprene, vamos fazer um exemplo. 
Imagine que você é o responsável por um projeto de uma ponte. A respeito do pilar 
P1 você possui as seguintes informações:
• Cargas normais:
Combinação máxima →Nmax=2250 kN
Combinação mínima →Nmin=888 kN
• Esforços horizontais longitudinais:
Retração e da temperatura →Hll=20,1 kN
Frenagem e impacto diferencial acidental →Hlc=52,6 kN
• Esforços horizontais transversais:
Vento transversal →Htc=40,8 kN
• Rotações do apoio:
Residual permanente (imperfeições) →Ao=3.10-3 rad
Rotação das ações permanentes →Ag=2,61.10-3 rad
Rotação das ações acidentais →Aq=3,80.10-3 rad
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 164
Você pretende fazer um apoio de Neoprene entre a superestrutura e o pilar P1. Para 
isso, você selecionou um aparelho de apoio cintado de dimensões iguais a: a=30 cm 
e b=80 cm, feito em três camadas de elastômero com espessura de 12 mm e chapas 
metálicas de espessura igual a 3mm. O cobrimento do aparelho é de 3 mm. 
Verifique se o aparelho selecionado atende as condições de segurança necessárias 
para o aparelho. Considere que o Neoprene possui um módulo de elasticidade transversal 
igual a 1,0 MPa.
Nós sabemos que os aparelhos de apoios devem ser verificados em relação a oito 
itens listados a seguir: 
1. pressão de contato 
2. deformação de compressão (afundamento do apoio) 
3. deformação de cisalhamento (limite de distorção) 
4. limitação da tensão de cisalhamento 
5. segurança ao deslizamento 
6. condição de não levantamento da borda menos carregada 
7. condição de estabilidade 
8. resistência das chapas de aço. 
Iniciamos pela verificação da pressão de contato, sabemos que essa pressão é 
dada pela razão entre a carga normal e área do apoio, devendo respeitar os limites 
máximo de 10 MPa e mínimo de 3MPa. Para o pilar P1, temos:
Perceba que as pressões máximas e mínimas estão dentro dos limites, portanto o 
aparelho é aprovado em relação às pressões de contato. 
Assim, passamos para a verificação da deformação de compressão, temos que 
para o pilar P1 a deformação do apoio é dada por:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 165
Para que possamos determinar essa deformação precisamos do fator de forma 
do apoio dado por:
Sendo assim, temos:
Temos que o recalque do apoio não pode ser inferior a 15% da altura do apoio, 
portanto:
Logo temos que 0,1161 cm é menor que 0,8100 cm, sendo satisfeito os requisitos 
para deformação por compressão do apoio. 
'Agora passamos para a verificação das deformações por cisalhamento. Temos 
que essas deformações serão causadas por uma combinação das forças horizontais 
atuantes no P1, dada por:
Assim, temos que a deformação causada por essas ações é igual a: 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 166
A distorção máxima causada por ah não pode ser superior a 0,5, logo:
Dessa forma, o aparelho de apoio também está dentro dos requisitos para as 
deformações cisalhantes. 
Passemos para a avaliação das tensões cisalhantes: 
a) Tensão de cisalhamento da força norma
Temos que esta deve respeitar a seguinte expressão:
Logo, para pilar P1 temos:
b) Tensão de cisalhamento da força horizontal
Temos que o cisalhamento das forças horizontais deve respeitar a seguinte expressão:
Portanto para o pilar P1 temos:
ESTRUTURAS DE PONTESPROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 167
c) Tensão de cisalhamento na rotação
A parcela do cisalhamento proveniente da rotação deve satisfazer a seguinte 
expressão:
Sendo assim, para o pilar P1 temos:
Perceba que o aparelho satisfez todas as parcelas das tensões cisalhantes. Portanto, 
podemos passar para a verificação do apoio contra o deslizamento. Para isso, temos 
que o pilar P1 deve satisfazer a expressão abaixo:
Passemos então para a verificação do levantamento das bordas do apoio. Como 
vimos, para que não haja levantamento dos bordos do apoio, é necessário que a 
seguinte condição aconteça:
Para o pilar P1, temos:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 168
Por último devemos verificar a espessura das chapas de aço por meio de
Uma vez que a espessura das chapas adotada é 3 mm, a espessura também satisfaz 
ao mínimo exigido. Dessa forma, podemos dizer que o aparelho de apoio selecionado 
satisfaz as condições de segurança, podendo ser utilizado na ponte em questão. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 169
CAPÍTULO 15
MANUTENÇÃO DAS PONTES
Ao longo das últimas catorze aulas abordamos assuntos relacionados ao projeto 
de pontes e viadutos. Todavia, muito além de se projetar, devemos saber mantê-las 
uma vez que estas são obras de alto custo financeiro cuja falha pode levar a grandes 
prejuízos econômicos e sociais. Por isso, dedicaremos o nosso último capítulo para 
falar dos cuidados necessários ao longo da vida útil dessas obras.
Infelizmente, no nosso país não há uma cultura de manutenção das construções 
incluindo também as nossas obras de arte. Apesar da existência de normas e manuais 
que descrevem procedimentos para a manutenção dessas obras, os nossos órgãos 
de todos os níveis (federal, estadual e municipal) negligenciam as pontes após sua 
execução. Isto é demonstrado por Silva e Melo (2021) em seu artigo Condições de 
Pontes Rodoviárias: Cenário, Diagnóstico e Manutenção, o qual apresenta uma análise 
das condições de 188 pontes cadastradas no Sistema de Gerência de Obras de Artes 
Especiais do DNIT.
Silva e Melo (2021) afirmam que das 188 pontes avaliadas apenas 23,4% não 
apresentam problemas importantes, ou seja, apenas 44 pontes de 188 não apresentam 
condições funcionais deficientes. Sendo assim é fundamental que você, futuro 
engenheiro civil, compreenda os procedimentos necessários para a manutenção 
dessas obras. 
Nos itens subsequentes falaremos sobre os procedimentos de manutenção 
estabelecidos pelo Manual de Manutenção de Obras de Arte Especiais do DNIT e 
pela NBR 9452 (2016) para as pontes e viadutos de concreto armado e protendido.
15.1 Tipos de Inspeções
Após a sua conclusão, a obra de arte passará ao longo de sua vida útil por uma 
série de inspeções que auxiliarão no processo de manutenção. Segundo a NBR 9452 
(2016), a qual estabelece os procedimentos de manutenção das pontes e viadutos 
de concreto, as inspeções podem ser classificadas em quatro tipos:
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 170
1. Cadastral;
2. Rotineira;
3. Especial;
4. Extraordinária.
 
15.1.1 Inspeção Cadastral
Logo após a conclusão da obra, é necessário que haja uma inspeção na qual se 
possa averiguar as condições de uso da ponte imediatamente após a sua execução. 
Registrando-se qualquer anomalia encontrada. Ao final dessa inspeção deve-se obter 
a ficha cadastral da obra de arte que deve conter:
a) Informações básicas como identificação e localização;
b) Informações referente as características da estrutura como sua tipologia e 
comprimento, vãos, números de apoios;
c) As características funcionais como a região onde a ponte está inserida, seu 
traçado tangente ou curvo, presença de rampas e esconsidade;
d) As características da pista como número de faixas, acostamentos, existência 
de passarelas ou ciclovias; 
e) Deve-se registra a presença de anomalias, quando presentes;
f) A nota de classificação da ponte. 
Todas essas informações devem ser comprovadas por meio de registros fotográficos 
de modo que se possa ter uma visualização da situação, aspecto geral e esquema 
estrutural. A norma recomenda que se tenha fotos das vistas superior, lateral e inferior 
do tabuleiro, dos elementos da mesoestrutura e da infraestrutura, quando aparentes, 
assim como das anomalias, quando presentes.
Juntamente com a ficha e os registros fotográficos deve-se anexar os desenhos 
esquemáticos da planta do tabuleiro, e das seções típicas transversal e longitudinal, 
com suas respectivas medidas principais.
15.1.2 Inspeção Rotineira
Após a inspeção cadastral, de tempos em tempos as obras de arte devem passar 
por um acompanhamento periódico para acompanhar o seu estado de conservação. 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 171
Segundo a NBR 9452 dentro de um prazo não superior a 1 ano, a ponte ou viaduto 
devem passar por uma inspeção rotineira. Durante essa inspeção são Verifica-se 
também reparos e/ou recuperações efetuadas no período entre inspeções. 
Cada inspeção rotineira deve apresentar uma ficha de inspeção contendo:
a) Informações básicas da ponte como identificação e localização;
b) O histórico das inspeções aobservados o aparecimento de anomalias, assim 
como o crescimento das já constatadas em inspeções anteriores.nteriores;
c) Observações relacionadas a eventuais alterações do estado geral da construção 
quando comparadas à inspeção anterior; 
d) Registro de novas observações patológicas, quando existirem;
e) Informações consideradas importantes para a inspeção;
f) A nota de classificação da obra de arte após avaliação;
Como a inspeção cadastral, deve-se anexar registros fotográficos da situação atual 
da obra de arte, para ajudar nas futuras observações.
ISTO ACONTECE NA PRÁTICA
Os avanços tecnológicos têm mudado gradativamente o dia o dia das nossas 
obras. O advento dos drones veio facilitar os processos de manutenção das 
grandes obras de arte, as quais apresentam áreas de difícil acesso que causavam 
dificuldades e altos custos para execução de suas inspeções. 
Hoje em dia é comum a presença de empresas especialistas em inspeções e 
manutenções de pontes e viadutos que utilizam câmeras acopladas aos drones 
para avaliar as condições das estruturas e ligações das pontes e se necessário 
enviar equipes para reparos. No vídeo do link abaixo você consegue visualizar 
imagens da inspeção da ponte Nazaré Paulista. 
https://www.youtube.com/watch?v=aG8ET6ZMydo
15.1.3 Inspeção Especial
Além das inspeções rotineiras, as pontes e viadutos devem passar por uma inspeção 
especial a cada cinco anos. A norma permite que esse intervalo seja estendido para 
oito anos quando a ponte se enquadrar concomitantemente aos seguintes casos:
https://www.youtube.com/watch?v=aG8ET6ZMydo
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 172
a) Estar classificada com notas 4 ou 5 por longo prazo, segundo as inspeções 
rotineiras;
b) Possuir total acesso a seus elementos constituintes na inspeção rotineira.
 
Há também casos em que as inspeções especiais devem ser realizadas antes do 
intervalo de cinco anos. Essa antecipação deve ocorrer quando:
a) A inspeção anterior indicar uma classificação de intervenção em curto prazo, com 
notas 1 ou 2 nos seus parâmetros de desempenho estrutural e de durabilidade; 
b) Foram previstas adequações de grande porte, como alargamentos, prolongamentos, 
reforços e elevação da classe da rodovia. 
A inspeção especial inicia-se com a coleta das informações relacionadas a obra de 
arte especiais, incluindo os relatórios de classificação e das inspeções rotineiras, bem 
como os relatórios das inspeções especiais anteriores. Após a primeira etapa, deve-
se realizar uma inspeção minuciosa sobre toda a ponte. Em alguns casos, pode ser 
necessário a utilização de equipamentos especiais para acesso a todos oscomponentes 
da estrutura, lateralmente e sob a obra. Os elementos submersos também devem ser 
vistoriados. 
Quando for necessária a realização de ensaios para avaliação da obra de arte, a 
norma estabelece que sejam informados no relatório final da inspeção os seguintes 
itens:
a) Local da obra ensaiado e locado em croquis;
b) Os resultados obtidos juntamente com sua interpretação;
c) A metodologia utilizada, caso necessário;
d) As Normas Brasileiras (ou outras) de referência. 
15.1.4 Inspeção Extraordinária
Ao longo da sua vida útil, poderá ser necessário que ocorram avaliações não 
programadas. Essas são chamadas de inspeção extraordinária, as quais, segundo a 
norma, deverão ocorrer associadas ou não a:  
a) necessidade de avaliar com mais critério um elemento ou parte da ponte, podendo 
ou não ser gerada por inspeção anterior; 
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 173
b) ocorrência de impacto de veículo, trem ou embarcação na obra;  
c) ocorrência de eventos da natureza, como inundação, vendaval, sismo e outros.
Como resultado dessa vistoria, deve-se obter um relatório específico, no qual se 
apresenta a descrição da obra e identificação das anomalias, incluindo sua localização 
por meio de mapeamento, registros fotográficos e tratamento recomendado. Assim 
como nas inspeções especiais, pode ser necessário a utilização de equipamentos 
especiais para acesso a elementos ou parte da estrutura, nesses casos a identificação 
do equipamento usado deve estar presente no relatório. 
Como você pôde perceber até aqui a manutenção das pontes e viadutos exigem 
diversas vistorias para avaliação da deterioração e desgaste dessas estruturas, o que 
irá variar com as características do local de instalação e do uso da obra. Para auxiliar 
no gerenciamento dessas construções a NBR 9452 apresenta o fluxograma abaixo, o 
qual contém os passos decisórios para realizar as inspeções acima descritas.
Título: Fluxograma para o gerenciamento de obras de arte especiais.
Fonte: NBR 5492 (2016) – pg. 24
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 174
15.2 Classificação das Obras de Arte Especiais
As inspeções têm como finalidade a avaliação das condições das pontes e viadutos 
no que diz respeito aos parâmetros estrutural, funcional e de durabilidade, dando a 
cada um deles uma nota de acordo com os problemas detectados. 
A NBR 9452 estabelece um critério para essa avaliação, o qual consiste em notas de 
1 a 5 de acordo com as condições de conservação encontradas. Sendo 5 a nota para o 
melhor cenário possível e 1 para uma condição crítica, onde é necessário intervenção 
imediata para reparos. Na Tabela 1 apresentamos as características esperadas para 
cada parâmetro de acordo com a condição avaliada. 
Nota Condição Caracterização estrutural Caracterização funcional Caracterização de durabilidade
5 Excelente
A estrutura apresenta-se em 
condições satisfatórias, apresentando 
defeitos irrelevantes e isolados
A OAE apresenta 
segurança e conforto aos 
usuários.
OAE apresenta-se em perfeitas condições, 
devendo ser prevista manutenção de 
rotina.
4 Boa
A estrutura apresenta danos 
pequenos e em áreas, sem 
comprometer a segurança estrutural.
A OAE apresenta 
pequenos danos 
que não chegam a 
causar desconforto ou 
insegurança ao usuário.
A OAE apresenta pequenas e poucas 
anomalias, que comprometem sua vida 
útil, em região de baixa agressividade 
ambiental.
3 Regular
Há danos que podem vir a gerar 
alguma deficiência estrutural, mas 
não há sinais de comprometimento 
da estabilidade da obra. Recomenda-
se acompanhamento dos problemas. 
Intervenções podem ser necessárias 
a médio prazo.
A OAE apresenta 
desconforto ao usuário, 
com defeitos que 
requerem ações de 
médio prazo.
A OAE apresenta pequenas e poucas 
anomalias, que comprometem sua 
vida útil, em região de moderada a 
alta agressividade ambiental ou a OAE 
apresenta moderadas a muitas anomalias, 
que comprometem sua vida útil, em região 
de baixa agressividade ambiental.
2 Ruim
Há danos que comprometem 
a segurança estrutural da OAE, 
sem risco iminente. Sua evolução 
pode levar ao colapso estrutural. 
A OAE necessita de intervenções 
significativas a curto prazo.
OAE com funcionalidade 
visivelmente 
comprometida, com riscos 
de segurança ao usuário, 
requerendo intervenções 
de curto prazo.
A OAE apresenta anomalias moderadas 
a abundantes, que comprometem sua 
vida útil, em região de alta agressividade 
ambiental.
1 Crítica
Há danos que geram grave insuficiência 
estrutural na OAE. Há elementos 
estruturais em estado crítico, com 
risco tangível de colapso estrutural. A 
OAE necessita intervenção imediata, 
podendo ser necessária restrição de 
carga, interdição total ou parcial ao 
tráfego, escoramento provisório e 
associada instrumentação, ou não.
A OAE não apresenta 
condições funcionais de 
utilização
A OAE encontra-se em elevado grau de 
deterioração, apontando problema já de 
risco estrutural e/ou funcional.
Tabela 1 – Classificação da condição das obras de arte especiais (OAE) segundo os parâmetros estrutural, funcional e de durabilidade
Fonte: NBR 9452 (2016, p. 7)
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 175
Cada parâmetro recebe uma nota de acordo com a situação apresentada pela parte 
da ponte avaliada e o descrito na Tabela 1. As notas são colocadas em uma ficha 
de classificação, como mostrada na tabela 2, e a nota final será igual a menor nota 
atribuída ao parâmetro analisado.
Parâmetro
Super 
estrutura
Meso 
estrutura
Infra 
estrutura
Elementos 
complementares Pista Nota final
Estrutura Encontro
Estrutural
Funcional
Durabilidade
Tabela 2 – Modelo de ficha de classificação da Obra de Arte Especial
Fonte: NBR 9452 (2016, p. 9)
15.3 Atividades de Manutenção
Para prevenção da deterioração das obras de arte, mantendo suas condições de 
funcionalidade, recomenda-se que também sejam realizadas atividades de manutenção 
preventiva. Essas atividades resumem-se em limpezas, pequenos reparos e aplicação 
de materiais de proteção dos elementos, prevenindo o desgaste, a corrosão e a 
deterioração por forças mecânicas ou químicas.
Os serviços de manutenção devem ser autorizados previamente junto com a equipe 
responsável pela segurança do trabalho, sendo supervisionados por um profissional 
habilitado. Este é responsável pelos treinamentos dos operários que executarão as 
atividades de manutenção desenvolvidas; e também pela verificação dos equipamentos 
de segurança apropriados para atendimento das condições de segurança. 
ISTO ESTÁ NA REDE
Você se lembra da Ponte Rio-Niterói? Falamos sobre sua construção em nossa 
primeira aula. Essa ponte construída nos anos 70 necessita constantemente de 
manutenção e reparos. Na reportagem do Discovery Channel disponível no link 
abaixo você consegue acompanhar algumas dessas atividades. Aperte o play e 
acompanhe!
https://www.youtube.com/watch?v=vuIgiMEwHmE
https://www.youtube.com/watch?v=vuIgiMEwHmE
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 176
A camada asfáltica sobre o tabuleiro das pontes rodoviárias possui dupla função: 
de acabamento para o tráfego dos veículos e também como proteção dos elementos 
inferiores às intempéries. Logo, a superfície de rolamento deve ser mantida estanque 
e limpa para garantir sua funcionalidade. Da mesma forma, as juntas de dilatação 
devem manter a estanqueidade garantindo que a água não atinja as vigas e os apoios. 
Os sistemas de drenagem devem conduzir as águas pluviais para fora da área da 
estrutura de forma adequada e livre (DNIT, 2016). 
De modo geral o asfalto que compõe as superfícies de rolamento, sofrem facilmente 
quebra pelo envelhecimento e separação entre o pavimento e a laje. É comum que 
para correção da rotura pela idade seja realizado recapeamento da superfície, todavia, 
no caso de pontes e viadutos essa solução não é adequada uma vez que causarásobrecargas e o desaparecimento dos guarda-rodas, drenos e juntas de dilatação. 
Sendo assim, a manutenção dos pavimentos das pontes e viadutos consistem na 
selagem de fissuras e na aplicação de camadas finas a base de asfalto, responsáveis 
pela regeneração das características superficiais e melhoramento da impermeabilização 
das lajes. Em alguns casos é necessário a remoção total do pavimento existente para, 
posteriormente, refazer toda a camada asfáltica do tabuleiro. 
Dessa forma o DNIT (2016) prevê em seu manual de manutenção uma série de 
atividades programadas para manter os revestimentos de proteção e a limpeza dos 
elementos das pontes e viadutos. Dentre essas atividades destacamos as seguintes:
a) Limpeza do sistema de drenagem: realizadas com uma frequência mínima 
de uma vez ao ano. Ela tem por objetivo garantir o funcionamento adequado 
do sistema de drenagem da obra de arte, buscando diminuir a afetação das 
estruturas e possíveis acidentes por aquaplanagem;
b) Limpeza de juntas do tabuleiro: realizadas com uma frequência mínima de uma 
vez ao ano. Elas garantem a funcionalidade e impermeabilidade das juntas de 
dilatação, mantendo-as conforme o estabelecido no projeto da ponte;
c) Selagem de fissuras na superfície de rolamento: realizada a cada ano, essa 
atividade busca garantir a proteção da estrutura fornecida pela superfície de 
rolamento;
d) Limpeza de sinalização: programadas anualmente, para garantir a sinalização 
adequada permitindo uma visibilidade adequada que permita uma trafegabilidade 
segura;
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 177
e) Limpeza das superfícies expostas do tabuleiro: realizada a cada dois anos tem 
como finalidade garantir a limpeza do tabuleiro para conservação da superfície 
e continuidade do tráfego;
f) Selagem de trincas e fissuras em concreto: realizada a cada dois anos resume-
se na aplicação de material selante nas fissuras do tabuleiro para diminuição 
do ingresso de água através dessas descontinuidades;
g) Pintura de elementos metálicos: prevista a cada dois anos com o intuito de se 
prevenir a corrosão dos elementos estruturais metálicos;
h) Limpeza e manutenção de elementos de proteção: programada a cada dois 
anos. Tem por objetivo garantir a limpeza dos elementos de proteção como 
barreiras de concreto, defesas metálicas, guarda corpos e guarda rodas; a fim 
de proteger o tráfego dos veículos e pedestres sobre a obra de arte;
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 178
CONCLUSÃO
Chegamos ao final da disciplina de pontes e viadutos. No início da nossa disciplina 
eu perguntei se você conseguiria me dizer o que seria necessário para projetar uma 
ponte? Acredito que agora você consegue respondê-la, certo?
Para a execução do projeto de uma obra de arte, precisamos conhecer a sua 
finalidade e o local onde será implementada. Do local precisamos conhecer diferentes 
características que incluem o relevo, as distâncias a serem vencidas, o tipo de solo 
e sua resistência nas diferentes camadas do maciço. Quando a obra de arte em 
questão for uma ponte, isto é, ela cruza um corpo d’água, devemos obter informações 
hidrológicas desse corpo hídrico.
Todas essas informações te auxiliarão na escolha do método construtivo, do 
sistema estrutural e material a ser empregado. Algumas informações adicionais como 
disponibilidade de materiais na região, condições da via de acesso e mão de obra local 
também podem ajudar na tomada de decisão.
Entretanto, nunca haverá uma única escolha correta. Você como projetista deverá 
pensar em uma solução viável que, a seu ver, cumpra com os quesitos de segurança, 
economia, funcionalidade e estética necessários para uma construção. É importante 
salientar que no caso das pontes os quesitos de estética e funcionalidade são 
fundamentais, em alguns casos é possível justificar o aumento de custos dessas 
obras devido ao impacto visual causado pela estética de um determinado projeto.
Outro fator relevante nesses projetos é a manutenção requerida por estas obras 
após a sua conclusão. Deve-se pensar desde a concepção dos projetos nos cuidados 
necessários para atender as condições de uso da obra. Dessa forma, evita-se grandes 
transtornos por interrupções do tráfego.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 179
ELEMENTOS COMPLEMENTARES
LIVRO
Título: Pontes em Concreto Armado: Análise e 
Dimensionamento
Autor: Gustavo Henrique Ferreira Cavalcante 
Editora: Editora Blucher
Sinopse: Voltado para profissionais, docentes e 
estudantes de Engenharia e Arquitetura e Urbanismo, 
este livro aborda conceitos gerais e elementos do 
dimensionamento de concreto armado e pontes e 
desenvolve um roteiro de cálculo para pontes em 
viga.
A partir de exemplos detalhados, são realizados 
análise, dimensionamento e detalhamento de uma 
ponte, com explicações importantes a respeito dos 
resultados obtidos em cada uma das etapas, proporcionando ao leitor contato com 
situações teóricas e práticas. O livro segue as diretrizes das normas NBR-6118/2014 
e NBR-9062/2017 e também faz uso das tabelas de Leonhardt e de Rüsch.
https://www.amazon.com.br/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Gustavo+Henrique+Ferreira+Cavalcante&text=Gustavo+Henrique+Ferreira+Cavalcante&sort=relevancerank&search-alias=stripbooks
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 180
FILME
Título: A Ponte do Rio Kwai
Ano: 1957
Sinopse: Adaptação do romance de Pierre Bouelle 
sobre prisioneiros de guerra forçados a construírem 
uma ponte para ajudar seus inimigos. Os oficiais 
britânicos e americanos planejam explodir a 
estrutura, mas o comandante da construção da 
ponte tem outros planos.
WEB
Fundado em 2016 pelo engenheiro Gilberto Vieira, o Blog dos Engenheiros tem como 
objetivo ser um canal de compartilhamento de conteúdos relacionados às inovações 
e tecnologias da construção civil.
<http://blogdosengenheiros.com.br/>
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 181
REFERÊNCIAS BIBLIOGRÁFICAS
ARAÚJO, Daniel, L. Projeto de ponte em concreto armado com duas longarinas. 
Apostila para a disciplina de pontes. Universidade Federal de Goiás . Goiânia. 1999.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT NBR 6118: 2014 – Projeto 
de estruturas de concreto - Procedimento. Rio de Janeiro, 2014.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT NBR 6123: 1988 – Forças 
devidas ao vento em edificações. Rio de Janeiro, 1988.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT NBR 7187: 2003 – Projeto 
de pontes de concreto armado e de concreto protendido - Procedimento. Rio de Janeiro, 
2003.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT NBR 7188: 2013 – Carga 
móvel rodoviária e de pedestres em pontes, viadutos, passarelas e outras estruturas. 
Rio de Janeiro, 2013.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT NBR 8681: 2004 –Ações 
e segurança nas estruturas - Procedimento. Rio de Janeiro, 2004.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT NBR 9062: 2001 – Projeto 
e execução de estruturas de concreto pré-moldado. Rio de Janeiro, 2001.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS ABNT NBR 9452: 2016 – Inspeção 
de pontes, viadutos e passarelas de concreto ― Procedimento. Rio de Janeiro, 2016.
BRASIL. Departamento Nacional de Estradas de Rodagem (DNER). Diretoria de 
Desenvolvimento Tecnológico. Divisão de Capacitação Tecnológica. Manual de projeto 
de obras de arte especiais. Rio de Janeiro: DNER, 1996.
BRASIL. Departamento Nacional de Infraestrutura de Transportes (DNIT). Diretoria 
Geral. Diretoria de Planejamento e Pesquisa. Instituto de Pesquisas Rodoviárias. Manual 
de Manutenção de Obras de Arte Especiais. 1° edição. Brasília D.F. 2016.
ESTRUTURAS DE PONTES
PROF.a CAMILA BARELLA LUIZ
FACULDADE CATÓLICA PAULISTA | 182
DEBS, Mounir K.E.; TAKEYA, Toshiaki. Introdução às Pontes de Concreto Notas de 
aula – ESSC – USP. São Carlos.2010.
LEONHARDT, F. Construções de concreto - vol 6: Princípios básicos da construção 
de pontes de concreto. Editora Interciência. Rio de Janeiro. 1979. 
MARCHETTI, OSVALDEMAR. Pontes de Concreto Armado. Editora Blucher, 1° edição. 
São Paulo. 2008.
PFEIL, WALTER. Ponte Presidente Costa e Silva - Rio-Niterói: Métodos construtivos. 
Livros Técnicos e Científicos Editora SA. Rio de Janeiro. 1975.
PFEIL, WALTER. Pontes em Concreto Armado. Livros Técnicos e Científicos Editora 
SA. Rio de Janeiro. 1979.
SILVA, Maisa B.M.F. MELO, Ricardo A. Condições de Pontes Rodoviárias: Cenário, 
Diagnóstico e Manutenção. XII Congresso Brasileiro de Pontes e Estruturas. 2021. 
Disponível no link: http://www.abpe.org.br/trabalhos2021/ID_058.pdf
SUSSEKIND, José Carlos. Curso de Análise Estrutural – Vol. 1: Estruturas Isostáticas. 
Editora Globo. 6° Edição. Porto Alegre, 1981. 
STUCCHI, FERNANDO R. Pontes e Grandes Estruturas. Notas de aula. Escola 
Politécnica da Universidade de São Paulo. São Paulo. 2006.
http://www.abpe.org.br/trabalhos2021/ID_058.pdf
http://www.abpe.org.br/trabalhos2021/ID_058.pdf
	_heading=h.gjdgxs
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.gjdgxs
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.3znysh7
	_heading=h.nf5hi8t5x29a
	_heading=h.swu264h8sf1y
	_heading=h.s0nqskmqsws5
	_heading=h.rmjkhksaggk
	_GoBack
	_heading=h.mypzah57i13x
	_heading=h.30j0zll
	_heading=h.3znysh7
	_GoBack
	_heading=h.qkdzmgo0kf71
	_heading=h.3kfpjy45nb7r
	_heading=h.wtcyf2z3h9z
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.45emrdem1zoy
	_GoBack
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.5k2th1jm9eth
	_heading=h.3znysh7
	_heading=h.2et92p0
	_heading=h.tyjcwt
	_heading=h.twbuew66trsd
	_heading=h.3dy6vkm
	_heading=h.30j0zll
	_heading=h.qmopt6iuvkp4
	_heading=h.1fob9te
	_heading=h.3znysh7
	_heading=h.mziwoq8yrd67
	_heading=h.tyjcwt
	_heading=h.3dy6vkm
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.pl7l6v4yq61y
	_heading=h.s8dsbjgech2i
	_heading=h.rirclq3l89ev
	_heading=h.gn6awlbnf7fb
	_heading=h.3znysh7
	_heading=h.ms9u108jskbu
	_heading=h.np7n6y9nys2j
	_heading=h.tzk3jby7nesp
	_heading=h.tyjcwt
	_heading=h.30j0zll
	_heading=h.ohbvp4vnufz
	_heading=h.takib9ec4hui
	_heading=h.vrcd35g3abwy
	_heading=h.gboa0xot6ajb
	_heading=h.ofsqzmc2r98a
	_heading=h.3znysh7
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.7mh4wv95hwdt
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.3znysh7
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.3znysh7
	_heading=h.2et92p0
	_heading=h.tyjcwt
	_heading=h.3dy6vkm
	_heading=h.gjdgxs
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.3znysh7
	_heading=h.imkk3hjy0k3
	_heading=h.vfsyndc5fy25
	_heading=h.zeafmnld8sz8
	_heading=h.2et92p0
	_heading=h.tyjcwt
	_heading=h.3dy6vkm
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.3znysh7
	_heading=h.rodnkgq967ba
	_heading=h.flkfl7wpjuyv
	_heading=h.ayhvy843uqny
	_heading=h.2et92p0
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.dzvpy7qw5tyq
	_heading=h.3znysh7
	_heading=h.2et92p0
	_heading=h.tyjcwt
	_heading=h.gjdgxs
	_heading=h.gjdgxs
	_heading=h.albwhq1jt3ns
	_heading=h.68ddgl6tsss2
	_heading=h.crynuwr668hz
	_heading=h.jopc4vef7udy
	_heading=h.zf1iufey99j2
	_heading=h.jopc4vef7udy
	_heading=h.obzgr19xxgkx
	_heading=h.jopc4vef7udy
	_heading=h.e6ybp3bmxlpp
	_heading=h.jopc4vef7udy
	_heading=h.qkbmh8kez9lr
	_heading=h.jopc4vef7udy
	_heading=h.tpesnmtoe3um
	_heading=h.jopc4vef7udy
	_heading=h.czf7a96wgpf2
	_heading=h.jopc4vef7udy
	_heading=h.48c1dsd45088
	_heading=h.w6qowtovnx56
	_heading=h.5pyqtu814fcr
	_heading=h.w6qowtovnx56
	_heading=h.bf3ezw8vy6kd
	_heading=h.5tqsq6doiivm
	_heading=h.vv94n9lf55zf
	_heading=h.pxkq46cw5das
	_heading=h.5tqsq6doiivm
	_heading=h.iugba35pa4nv
	_heading=h.kq53rvdu7lwl
	_heading=h.iqtc33tbfap6
	_heading=h.93kvk5s7y136
	_heading=h.mjf9h1xow83a
	Conhecendo as Pontes e os Viadutos
	Classificação das Pontes quanto ao Sistema Estrutural
	Classificação das Pontes quanto ao Método Construtivo 
	Outras Classificações
	Considerações Preliminares ao Projeto
	Solicitações de Pontes I
	Solicitações de Pontes II
	Solicitações de Pontes III
	Combinação das Ações: Estados Limites
	Dimensionamento das Vigas Principais: Armadura Longitudinal
	Dimensionamento das Vigas Principais: Armadura Cisalhante
	Verificação do estado limite de serviço das vigas principais
	Aparelhos de Apoio
	Dimensionamento de Aparelhos de Apoio de Neoprene
	Manutenção das Pontes

Mais conteúdos dessa disciplina