218 pág.

Pré-visualização | Página 6 de 49
de um conjunto de placas dielétricas de mica alternadas por folhas metálicas condutoras. O conjunto é entao encapsulado em um molde de resina fenólica. O capacitor de vidro é caracterizado por camadas alternadas de folhas de alumínio e tiras de vidros, agrupadas até que seja obtida a estrutura do capacitor desejado. A construção é então fundida em um bloco monolítico com a mesma composição do vidro usado como dielétrico. O capacitor eletrolítico consiste de duas placas separadas por um eletrólito e um dielétrico. Este tipo de capacitor possui altos valores de capacitância, na faixa de aproximadamente 1 � F até milhares de � F. As correntes de fuga são geralmente maiores do que aos demais tipos de capacitores. Aplicações de Capacitores: Capacitores são utilizados em circuitos de potência de CA para a correção de fator de potência e como defasadores para circuitos de partida em motores de indução monofásicos. Em circuitos de CC, são utilizados em fontes de alimentação para a filtragem e em circuitos osciladores ou temporizadores. Também encontram aplicações em circuitos digitais. Existem ainda aplicações especiais que exploram as propriedades da capacitância. Por exemplo, a característica de armazenar energia faz do capacitor um dispositivo muito útil para a geração de uma corrente elevada num intervalo de tempo extremamente curto. A capacidade de um capacitor se opor a qualquer variação de tensão o torna muito útil como supressores de arcos ou ruídos. Normalmente, quando uma chave é aberta, existe uma formação de arco nos contatos das chaves. Um capacitor conectado em paralelo com o contato, como na Figura ao lado, absorve a energia que causa o arco. O resistor R é necessário para evitar a soldagem dos contatos quando a chave for fechada e a descarga do capacitor. Indutor: Considere a bobina da Figura (a)abaixo. Quando a chave é fechada, a corrente tende a crescer, causando o 20 aumento do fluxo. O crescimento da corrente não é instantâneo. Em outras palavras, uma força-contra- eletromotriz, fcem, _e induzida de forma a se opor ao crescimento da corrente. Considerando-se o núcleo de ar, ou outros materiais não-magnéticos, a característica N_ x i é linear. O produto de N por � é denominado fluxo concatenado (representado por � ). A constante de proporcionalidadeque relaciona o fluxo concatenado e a corrente, isto é, a inclinação da reta, é defiida como indutância (L): A unidade de indutância é weber por ampere, que é definida como um henry. Para o núcleo de material magnético a característica N_ x i deixa de ser linear e na prática esta curva é representada em função da densidade de fluxo (B) e intensidade de campo (H). As grandezas N e i se relacionam respectivamente com as grandezas B e H, conforme as Equações abaixo: Sendo que: Assim sendo, temos finalmente que: 21 Aplicações de indutores: São várias, mas podemos destacar bobinas de válvulas solenóides, contatores, relés, reatores de lâmpada, enrolamento de motores e geradores, transformadores, etc.. Praticamente tudo o que envolve campo magnético, envolve de alguma forma indutores. O chaveamento de indutores é o responsável pelo aparecimento dos arcos elétricos que danificam os contatos dos contatores e dos relés. Transitórios Quando energizamos um circuito contento indutores ou capacitores, durante os primeiros instantes de tempo a corrente e a tensão podem variar significativamente, buscando uma condição de equilíbrio. O tempo necessário para que esta condição de equilíbrio é chamado de Transitório. Encerrada a fase do transitório temos a fase do regime permanente, ou seja, a fase onde o circuito exibe o comportamento esperado do ponto de vista de tensão e corrente. Circuitos RL(Resistor e Indutor) em CC: Num circuito RL como abaixo, temos que a corrente não pode subir instantaneamente ao ligar a chave do circuito. Isto ocorre porque a indutância se opõe a variações bruscas de corrente, gerando uma tensão nos terminais da bobina que se opõe a tensão da fonte, limitando a corrente. Esta tensão é a força- contra eletromotriz, e que na corrente contínua somente ocorre no transitório. Na fase de regime o indutor exibe apenas a resistência dos fios da bobina. Abaixo e à direita temos a evolução da corrente ao longo do tempo. Circuitos RC(Resistor e Capacitor) em CC: Num circuito RC como o da figura abaixo, a tensão sobre o capacitor não pode subir abruptamente quando a chave do circuito é fechada. Isto ocorre porque a capacitância se opõe a variações abruptas de tensão. Assim sendo, a tensão deve subir de forma gradual, até atingir a tensão da fonte, que é quando termina o transitório. Neste caso a corrente é impulsiva, isto é, elevada no início mas com decaimento gradual. Encerrado o transitório, a corrente será nula. Abaixo e à direita, temos a evolução da tensão sobre 22 o capacitor ao longo do tempo. Circuitos RL em CA: Num circuito como abaixo, temos que no instante inicial da energização do circuito, surge uma corrente senoidal com um valor de pico um pouco mais elevada que a normal, e que retoma o valor correto após o transitório inicial. Encerrada o período do transitório, percebemos que se estabelece uma corrente senoidal com amplitude menor que a da tensão e com uma certa defasagem entre elas, sendo que a corrente está atrasada em relação à tensão. O valor da corrente e a defasagem dependem de R e de L. Assim, temos que a o valor corrente e a defasagem são dadas por: Circuitos RC em CA: Num circuito como abaixo, temos que no instante inicial da energização do circuito, surge uma corrente senoidal com um valor de pico um pouco mais elevada que a normal, e que retoma o valor correto após o transitório inicial. 23 Encerrada o período do transitório, percebemos que se estabelece uma corrente senoidal com amplitude menor que a da tensão e com uma certa defasagem entre elas, sendo que a corrente está adiantada em relação à tensão. O valor da corrente e a defasagem dependem de R e de C. Assim, temos que a o valor corrente e a defasagem são dadas por: Impedância: Em CC, tinhamos que a Lei de Ohm relacionava a tensão e a corrente pelo valor da resistência do circuito, sendo que o capacitor e o indutor tinham participações especiais apenas nas fases de transitório. Entretanto em CA, temos que a Lei de Ohm somente relaciona a tensão e a corrente pelo valor da resistência quando o circuito é puramente resistivo, ou seja, quando não há indutâncias e nem capacitâncias. Quando se trata de um circuito RL ou RC, temos que as correntes devem ser calculadas pelas fórmulas apresentadas. Podemos verificar que as tensões e as correntes se relacionam segundo constantes que envolvem os valores da resistencia, da indutãncia e da capacitância. A constante que relaciona a tensão e a corrente em CA é chamada de impedância, simbolizada pela letra Z e medida em Ohms: No nosso caso, temos para o circuito RL e RC as seguintes impedâncias: Note que a impedância compõem-se da soma da resitência ao quadrado mais um outro termo que depende da frequência e depende de L e de C respectivamente. Estes termos são chamados de reatância indutiva XL e reatância capacitiva XC respectivamente, sendo que ambas são medidas em Ohms e definidas pelas fórmulas abaixo: Pela fórmula, percebe-se que a reatância indutiva aumenta com a frequência enquanto que a reatância capacitiva diminui com a frequência. Do ponto de vista fasorial, pode-se verificar que a capacitância adianta a corrente enquanto que a indutância atrasa a corrente, como verifica-se no gráfico abaixo: Circuito RL Circuito RC Observe ainda, que caso a indutância L e a capacitância C fossem nulas, ou seja, o circuito fosse puramente resisitivo, a impedância