Buscar

Relatorio de Fisica 2 semestre

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 35 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

SISTEMA DE ENSINO 100% ONLINE 
TECNOLOGO RADIOLOGIA 
 
MARCELLY HUNGARO LIMA VIEIRA 
 
 
 
 
 
ATIVIDADE PRÁTICA 
FÍSICA GERAL 
 
 
 
 
 
 
 
 
 
 
 
 
JUIZ DE FORA 
 
 2023
MARCELLY HUNGARO LIMA VIEIRA 
 
 
 
 
 
 
ATIVIDADE PRÁTICA 
FÍSICA GERAL 
 
 
 
 
 
 
Trabalho apresentado à Universidade UNOPAR, como requisito parcial para a obtenção de média semestral nas disciplinas norteadoras do semestre letivo. 
 
Tutor (a): PAOLA BIANCA CAVALIN
 
 
 
 
 
 
 
 
 
 
 
JUIZ DE FORA
2023 
 
SUMÁRIO 
 
 
1 INTRODUÇÃO	3 
2 DESENVOLVIMENTO	4 
2.1 ETAPA 1 - MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO	4 
2.2 ETAPA 2 – PRINCÍPIO DA CONSERVAÇÃO DA ENERGIA	13 
2.3 ETAPA 3 – LANÇAMENTOS HORIZONTAIS E COLISÕES	19 
2.4 ETAPA 4 – CALORIMETRIA	25 
3 CONCLUSÃO	33 
REFERÊNCIAS BIBLIOGRÁFICAS	34 
INTRODUÇÃO 
 
A disciplina de Física Geral desempenha um papel fundamental na formação de estudantes nas áreas de ciências exatas e engenharia, proporcionando uma compreensão aprofundada dos princípios que regem o mundo físico ao nosso redor. 
O presente portfólio de aula prática de Física Geral concentra-se em quatro temas essenciais: caracterização do movimento, conservação de energia mecânica, colisões e fenômenos térmicos. Cada um desses temas desempenha um papel crucial na compreensão dos fenômenos físicos que ocorrem em nosso cotidiano e na construção do conhecimento científico. 
A primeira etapa das atividades aborda a caracterização do movimento, explorando conceitos como deslocamento, velocidade média e aceleração média. 
Em seguida, a segunda etapa concentra-se na transformação de energia, especificamente na relação entre energia potencial gravitacional e energia cinética, com destaque para o princípio da conservação da energia mecânica. 
A terceira etapa das atividades envolve o estudo das colisões, abordando diferentes tipos de colisões e suas características. 
Por fim, a quarta etapa concentra-se nos fenômenos térmicos e na troca de energia térmica entre os corpos. 
A importância desses temas reside no fato de que eles são fundamentais para a compreensão da natureza física do mundo em que vivemos. Através do estudo do movimento, da conservação de energia, das colisões e dos fenômenos térmicos, se desenvolvem habilidades analíticas, a capacidade de resolver problemas complexos e uma compreensão mais profunda das leis físicas que regem o universo. 
Ao abordar esses temas por meio de atividades práticas, há a oportunidade de aplicar os conceitos aprendidos, desenvolver habilidades experimentais e fortalecer a capacidade de raciocínio científico. O portfólio de aula prática de Física Geral apresenta o cenário ideal para aprofundar o conhecimento teórico, colocando-o em prática e obtendo uma compreensão mais completa dos fenômenos físicos. 
 
DESENVOLVIMENTO 
 
ETAPA 1 - MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO 
 
Na primeira atividade prática, foram realizadas uma série de etapas para caracterizar o movimento de um objeto em um plano inclinado. 
Primeiramente, para montar o experimento, arrastamos o nível bolha até o plano inclinado, utilizando o botão esquerdo do mouse. Em seguida, nivelamos a base clicando com o botão direito do mouse no nível bolha e selecionando a opção "Nivelar base". Certificamos de deixar a bolha do nível centralizada ajustando os "pés" da base do plano inclinado. 
Posicionamos o ímã arrastando-o até a indicação no plano inclinado. Esse ímã serviu posteriormente para fixar o carrinho. Também posicionamos o fuso elevador arrastando-o para uma das posições em destaque. No caso deste experimento, utilizamos a posição adequada para grandes inclinações. 
Em seguida, posicionamos o sensor na marca de 300 mm na régua, clicando com o botão esquerdo do mouse sobre o sensor. O sensor será usado para medir o tempo decorrido durante o movimento do carrinho. Observamos a escala que aparece no canto da tela e identificamos o ponto de ativação, indicado pelo ponto branco no sensor. 
Para ajustar a inclinação da rampa, clicamos com o botão direito do mouse no fuso elevador e selecionamos a opção "Girar fuso". Com o fuso na posição de grandes inclinações, ajustamos o ângulo para 10° utilizando as setas "Subir" e "Descer" com o botão esquerdo do mouse. 
Em seguida, ligamos o multicronômetro. Acessamos a câmera "Cronômetro" clicando com o botão esquerdo do mouse sobre o menu lateral esquerdo. Conectamos a fonte de alimentação do multicronômetro na tomada, arrastando-a com o botão esquerdo do mouse sobre a fonte. Para ligar o multicronômetro, clicamos no botão "Power" com o botão esquerdo do mouse. Utilizamos o botão "Reset" para voltar à seleção de funções e selecionamos uma das funções disponíveis clicando nos botões azuis. 
Conectamos o cabo do sensor na porta S0 do multicronômetro, arrastando-o com o botão esquerdo do mouse. Com isso, estabelecemos a conexão adequada para realizar as medições. 
Ao operar o multicronômetro, primeiramente selecionamos o idioma desejado. Em seguida, foi necessário selecionar a função adequada para o experimento. Para isso, bastou clicar no botão adequado até que a função "F3 10PASS 1SEN" fosse exibida. Após essa seleção, confirmamos a escolha da função. Além disso, foi necessário definir o número de intervalos desejado. Para isso, clicamos no botão adequado para escolher o número de intervalos desejados, que no caso foram dez. 
Por fim, confirmamos essa configuração 
Após todas essas configurações, posicionamos o carrinho acessando a câmera "Plano inclinado". Arrastamos o carrinho até o ímã e o mantivemos em repouso até o momento em que desejamos iniciar o movimento. Para soltar o carrinho, acessamos a câmera "Bancada" e clicamos com o botão esquerdo do mouse sobre o ímã. A partir desse momento, o carrinho desceu pelo plano inclinado e o sensor mediu o intervalo de tempo entre as marcações presentes no carrinho. 
Após o experimento, realizamos a leitura dos resultados clicando no botão adequado. Também foi possível repetir o experimento. Durante o experimento, o sensor capturou medidas de tempo nas marcações de 0 mm, 18 mm, 36 mm, 54 mm, 72 mm, 90 mm, 108 mm, 126 mm, 144 mm, 162 mm e 180 mm, devido às marcações presentes no carrinho. 
Para registrar os resultados, é criada a seguinte tabela: 
 
	S(m) 
	
	T(s) 
	T2(s2) 
	0 
	0 
	
	0 
	18mm = 0,018 
	0.338 
	
	0.114244 
	36mm = 0,036 
	0.362 
	
	0.131044 
	54mm = 0,054 
	0.3874 
	
	0.150078 
	72mm = 0,072 
	0.4115 
	
	0.169332 
	90mm = 0,09 
	0.4345 
	
	0.188779 
	108mm = 0,108 
	0.4564 
	
	0.208300 
	126mm = 0,126 
	0.4774 
	0.227910 
	144mm = 0,144 
	0.4977 
	0.247705 
	162mm = 0,162 
	0.5173 
	0.267599 
	180mm = 0,18 
	0.5362 
	0.287510 
 
Após realizar as leituras, seguimos para a seção "Avaliação de Resultados" no experimento. Nessa seção, foram fornecidas questões para avaliar e interpretar os resultados obtidos nos experimentos. Com base nas observações feitas durante o experimento e nas medidas de tempo registradas, respondemos às questões de acordo com as conclusões obtidas, conforme segue: 
 
1. Construa o gráfico S x t (Espaço x Tempo). 
R: 
Figura 1 – Gráfico construído no GeoGebra. Eixo X = T(s); Eixo Y = S(m). Fonte: O autor (2023). 
 
 
2. Com base em seus conhecimentos, qual o tipo de função representada pelo gráfico “Espaço x Tempo”? Qual o significado do coeficiente angular (declividade da tangente) do gráfico construído? 
R: Com base no gráfico "Espaço x Tempo" apresentado, podemos inferir que a função representada é uma função de segundo grau ou uma função quadrática. Isso ocorre porque a relação entre o espaço percorrido (S) e o tempo (t) é descrita por uma equação do tipo S = a * t2 + b * t + c, onde "a", "b" e "c" são constantes. 
Quanto ao coeficiente angular ou declividade da tangente do gráfico, ele representa a taxa de variação do espaço em relação ao tempo, ou seja, a velocidade instantânea do objeto em movimento. O coeficiente angular é dado pela derivada da função S(t) em relação ao tempo (dS/dt). 
No caso de uma função quadrática, a derivada em relação ao tempo é uma função linear, representandoa velocidade instantânea do objeto. A inclinação da reta tangente ao gráfico em um determinado ponto é igual à velocidade instantânea nesse ponto. Se a inclinação é positiva, indica que o objeto está se movendo em uma direção crescente no espaço. Se a inclinação é negativa, indica que o objeto está se movendo em uma direção decrescente no espaço. 
 
3. Construa o gráfico S x t2 (Espaço x Tempo2). 
R: 
Figura 2 – Gráfico construído no GeoGebra. Eixo X = T2(s2); Eixo Y = S(m). Fonte: O autor (2023). 
 
 
4. Com base em seus conhecimentos, qual o tipo de função representada pelo gráfico “Espaço x Tempo2”? Qual o significado do coeficiente angular do gráfico construído? 
R: Com base no gráfico "Espaço x Tempo2" apresentado, podemos inferir que a função representada é uma função linear. Isso ocorre porque há uma relação direta e proporcional entre o espaço percorrido (S) e o quadrado do tempo (t2). 
O coeficiente angular do gráfico linear representa a taxa de variação do espaço em relação ao tempo ao quadrado. Ele indica o quanto o espaço percorrido aumenta à medida que o tempo ao quadrado aumenta. O coeficiente angular, também conhecido como declividade da reta, é uma medida da velocidade média do objeto. 
Se o coeficiente angular for positivo, indica que o espaço percorrido aumenta à medida que o tempo ao quadrado aumenta, o que significa que o objeto está se movendo em uma direção crescente no espaço. Se o coeficiente angular for negativo, indica que o espaço percorrido diminui à medida que o tempo ao quadrado aumenta, o que significa que o objeto está se movendo em uma direção decrescente no espaço. O valor absoluto do coeficiente angular também pode fornecer informações sobre a velocidade média do objeto, sendo maior para objetos que se deslocam mais rapidamente. 
 
5. Calcule as velocidades para os pontos medidos t2, t4, t6, t8 e t10 e anote em uma tabela semelhante à demonstrada a seguir. 
R: Vm(trecho) = ∆S/∆t 
Intervalos Vm (m/s) 
S0 a S2 (∆S2) / (∆t2) 
S2 a S4 (∆S4) / (∆t4) 
S4 a S6 (∆S6) / (∆t6) 
S6 a S8 (∆S8) / (∆t8) 
S8 a S10 (∆S10) / (∆t10) Portanto: 
∆S2 = S2 - S0 = 0.036 - 0.018 = 0.018 m 
∆t2 = t2 - t0 = 0.362 - 0.338 = 0.024 s 
∆S4 = S4 - S2 = 0.054 - 0.036 = 0.018 m 
∆t4 = t4 - t2 = 0.3874 - 0.362 = 0.0254 s 
∆S6 = S6 - S4 = 0.072 - 0.054 = 0.018 m 
∆t6 = t6 - t4 = 0.4115 - 0.3874 = 0.0241 s 
∆S8 = S8 - S6 = 0.09 - 0.072 = 0.018 m 
∆t8 = t8 - t6 = 0.4345 - 0.4115 = 0.023 s 
∆S10 = S10 - S8 = 0.108 - 0.09 = 0.018 m 
∆t10 = t10 - t8 = 0.4564 - 0.4345 = 0.0219 s 
 
Dessa forma: 
Vm (S0 a S2) = ∆S2/∆t2 = 0.018/0.024 = 0.75 m/s 
Vm (S2 a S4) = ∆S4/∆t4 = 0.018/0.0254 = 0.7087 m/s 
Vm (S4 a S6) = ∆S6/∆t6 = 0.018/0.0241 = 0.746 m/s 
Vm (S6 a S8) = ∆S8/∆t8 = 0.018/0.023 = 0.7826 m/s 
Vm (S8 a S10) = ∆S10/∆t10 = 0.018/0.0219 = 0.8219 m/s 
	Intervalos 
	
	Vm (m/s) 
	S0 a S2 
	0.75 
	
	S2 a S4 
	0.7087 
	
	S4 a S6 
	0.746 
	
	S6 a S8 
	0.7826 
	
	S8 a S10 
	0.8219 
	
 
7. Com base em seus conhecimentos, qual o tipo de função representada pelo gráfico “velocidade x tempo”? Qual o significado do coeficiente angular do gráfico construído? (Lembre-se que no MRUV, a velocidade é dada por v = vo + at). 
R: O gráfico "velocidade x tempo" em um Movimento Retilíneo Uniformemente Variado (MRUV) geralmente representa uma função linear, pois a relação entre a velocidade (v) e o tempo (t) é dada pela fórmula v = vo + at, onde vo é a velocidade inicial e a é a aceleração constante. 
No MRUV, o coeficiente angular do gráfico representa a aceleração (a) do movimento. O coeficiente angular é determinado pela inclinação da reta no gráfico velocidade x tempo. Se a reta for inclinada para cima, indica um movimento com aceleração positiva, enquanto uma inclinação para baixo indica uma aceleração negativa (desaceleração). O valor absoluto do coeficiente angular corresponde ao valor da aceleração. Quanto maior a inclinação da reta, maior será a aceleração, e vice-versa. 
Portanto, o coeficiente angular do gráfico "velocidade x tempo" no MRUV representa a aceleração do movimento e sua magnitude indica o quão rápido a velocidade está mudando com o tempo. 
 
8. Qual a aceleração média deste movimento? 
R: am = ∆V / ∆t 
No intervalo de tempo correspondente a S0 a S2: 
∆V2 = V2 - V0 = 0.7087 - 0.75 = -0.0413 m/s 
∆t2 = t2 - t0 = 2 - 0 = 2 s am2 = ∆V2 / ∆t2 = -0.0413 / 2 = -0.02065 m/s² 
No intervalo de tempo correspondente a S2 a S4: 
∆V4 = V4 - V2 = 0.746 - 0.7087 = 0.0373 m/s 
∆t4 = t4 - t2 = 4 - 2 = 2 s am4 = ∆V4 / ∆t4 = 0.0373 / 2 = 0.01865 m/s² 
No intervalo de tempo correspondente a S4 a S6: 
∆V6 = V6 - V4 = 0.7826 - 0.746 = 0.0366 m/s 
∆t6 = t6 - t4 = 6 - 4 = 2 s 
am6 = ∆V6 / ∆t6 = 0.0366 / 2 = 0.0183 m/s² 
No intervalo de tempo correspondente a S6 a S8: 
∆V8 = V8 - V6 = 0.8219 - 0.7826 = 0.0393 m/s 
∆t8 = t8 - t6 = 8 - 6 = 2 s 
am8 = ∆V8 / ∆t8 = 0.0393 / 2 = 0.01965 m/s² 
No intervalo de tempo correspondente a S8 a S10: 
∆V10 = V10 - V8 = 0 - 0.8219 = -0.8219 m/s 
∆t10 = t10 - t8 = 10 - 8 = 2 s am10 = ∆V10 / ∆t10 = -0.8219 / 2 = -0.41095 m/s² 
 
9. Ainda utilizando o gráfico, encontre a velocidade inicial do carrinho no t0. Para isso, basta extrapolar o gráfico e verificar o valor da velocidade quando a curva “cruza” o eixo y. 
R: De acordo com o gráfico, a curva intersecta o eixo y em um valor próximo a 0.75 m/s. Portanto, podemos considerar que a velocidade inicial do carrinho no instante t0 é aproximadamente 0.75 m/s. 
 
10. Diante dos dados obtidos e dos gráficos construídos, monte a função horária do experimento. 
R: S = S0 + V0t + 1/2at2 
Considerando os valores obtidos: 
Aceleração (a) = 0.132 m/s² 
Tempo (t) = valor do tempo no eixo x do gráfico 
Velocidade inicial (V0) = 0.75 m/s 
Posição inicial (S0) = valor da posição inicial no eixo y do gráfico 
 
Portanto, a função horária do experimento seria: 
S = S0 + 0.75t + 0.5 * 0.132 * t2 
 
11. Por que é possível afirmar que esse movimento é uniformemente variado? 
R: Podemos afirmar que esse movimento é uniformemente variado porque a aceleração (a) é constante ao longo do tempo. No gráfico da velocidade em função do tempo, observamos que a velocidade aumenta de forma linear, indicando uma aceleração constante. Além disso, na função horária do movimento (S = S0 + V0t + 1/2at2), podemos notar que o termo 1/2at2 indica uma variação quadrática no espaço em relação ao tempo, o que também é característico de um movimento uniformemente variado. Portanto, a constância da aceleração nesse movimento indica que ele é uniformemente variado. 
 
12. Faça o experimento com a inclinação de 20° e compare os resultados. 
R: Com uma inclinação de 20º, há uma alteração nas condições do movimento. Nesse caso, há um movimento em um plano inclinado, o que implica em uma mudança na aceleração do corpo. 
Essa mudança na aceleração afeta as medidas de velocidade e posição do corpo ao longo do tempo, e consequentemente, a função horária do movimento se torna diferente da obtida anteriormente. 
 
 
 
 
 
 
 
 
 
ETAPA 2 – PRINCÍPIO DA CONSERVAÇÃO DA ENERGIA 
 
Para realizar a segunda atividade prática, foi necessário ajustar cuidadosamente o experimento. Primeiramente, nivelou-se a base do plano inclinado utilizando o nível bolha. Clicando sobre o nível bolha na bancada, ele foi arrastado até a posição indicada no plano inclinado. Para garantir o nivelamento, clicou-se com o botão direito do mouse no nível bolha e selecionou-se a opção "Nivelar base". 
Em seguida, ajustou-se a posição do sensor na distância desejada. Clicando sobre o sensor, arrastou-se o mouse até obter a posição desejada. Observou-se no canto inferior esquerdo da tela uma janela com a escala graduada do plano inclinado e a indicação da posição do sensor. O sensor foi posicionado na marca de 300 mm na régua. 
Para regular a inclinação da rampa, utilizou-se o fuso elevador. O fuso foi girado clicando com o botão direito do mouse sobre ele e selecionando a opção "Girar fuso". O ângulo de inclinação do plano foi ajustado para 20°, utilizando as setas "Subir" e "Descer" para aumentar e diminuir o ângulo. 
Para ligaro multicronômetro, acessou-se a câmera "Cronômetro" e colocou-se a fonte de alimentação na tomada arrastando-a para a posição desejada. Em seguida, conectou-se o cabo do sensor na porta S0 do cronômetro, arrastando-o para a posição correta. Para ligar o cronômetro, clicou-se no botão "Power" e selecionou-se o idioma desejado. 
Selecionou-se a função "F2 VM 1 SENSOR" utilizando os botões azuis para procurar a função e para selecioná-la. Foi inserida a largura do corpo de prova clicando no botão azul da direita e ajustando o valor para 50 mm utilizando as setas direcionais. Confirmou-se o valor clicando no botão azul da direita. 
Em seguida, foi realizado o ensaio com o corpo de prova oco. Posicionou-se o corpo de prova oco no plano inclinado arrastando-o para a posição desejada. Verificou-se os resultados no display do multicronômetro clicando no botão azul da esquerda. Observou-se o resultado exibido, assim como a velocidade linear no intervalo, ao clicar na seta direita. Para repetir o experimento, clicou-se no botão azul central. O procedimento foi repetido mais duas vezes com o corpo de prova oco. 
Para o ensaio com o corpo de prova maciço, repetiu-se o procedimento anterior, começando a partir do passo 3. Realizou-se o ensaio com o corpo de prova maciço, também repetindo-o três vezes. 
Ao finalizar os experimentos, seguiu-se para a seção "Avaliação de Resultados" neste roteiro, respondendo de acordo com as observações feitas durante os experimentos, conforme se segue: 
 
1. Anote na Tabela a seguir os valores obtidos no experimento. Houve diferença entre as velocidades dos corpos de prova ensaiados? Se sim, intuitivamente, qual seria o motivo? 
	Velocidade Linear (m/s) 
	Cilindro Oco 
	Cilindro Maciço 
	Descida 1 
	0.892857 
	1.020408 
	Descida 2 
	0.909090 
	1 
	Descida 3 
	0.925925 
	0.961538 
	Média 
	0.909290 
	0.993982 
 
R: Sim, houve diferença entre as velocidades dos corpos de prova ensaiados. Intuitivamente, o motivo para essa diferença pode ser atribuído às características físicas dos corpos de prova. O cilindro oco e o cilindro maciço possuem diferentes distribuições de massa em relação ao eixo de rotação, o que afeta o momento de inércia de cada corpo. 
O momento de inércia é uma grandeza que mede a resistência de um objeto à mudança de sua velocidade angular. No caso do movimento rotacional em um plano inclinado, o momento de inércia do corpo de prova está diretamente relacionado à velocidade angular, que, por sua vez, influencia a velocidade linear. 
O cilindro oco possui maior momento de inércia em relação ao cilindro maciço devido à sua distribuição de massa mais distante do eixo de rotação. Isso significa que, para uma mesma altura e ângulo de inclinação do plano, o cilindro oco terá uma velocidade angular menor do que o cilindro maciço. Consequentemente, a velocidade linear do cilindro oco será menor em comparação com o cilindro maciço. 
Portanto, intuitivamente, a diferença nas velocidades dos corpos de prova ensaiados pode ser atribuída às diferenças nos momentos de inércia causadas pela distribuição de massa de cada corpo. 
 
2. Com as informações a seguir e as equações apresentadas no sumário teórico, e sabendo que o corpo de prova foi solto na posição 60 mm da régua, calcule e preencha a Tabela com os valores obtidos para as grandezas. 
 
	Especificações 
	
	Cilindro Oco 
	Cilindro Maciço 
	Massa – m(g) 
	
	110 
	300 
	Diâmetro 	interno di(mm) 
	– 
	40 
	- 
	Diâmetro 	externo de(mm) 
	– 
	50 
	50 
	Densidade do Aço 
(g/cm3) 
	– 
	7,86 
	7,86 
 
R: Para o cilindro oco: m = 110 g = 0.11 kg r1 = di/2 = 40 mm/2 = 0.02 m r2 = de/2 = 50 mm/2 = 0.025 m 
V(cilindro oco) = 0.909290 m/s 
I(cilindro oco) = (1/2) * m * (r12 + r22) = (1/2) * 0.11 * (0.022 + 0.0252) = 
0.000056375kg.m² 
w(cilindro oco) = V / r2 = 0.909290 / 0.025 = 36.3716 rad/s 
Kt(cilindro oco) = (1/2) * m * V2 = (1/2) * 0.11 * 0.9092902 = 0.0458684 J 
Altura da descida = 0.909290 m 
Kr(cilindro oco) = (1/2) * 0.000056375* 36.37162 = 0.0372890 J 
K(cilindro oco) = 0.0458684 J + 0.0372890 J = 0.083157 J 
U(cilindro oco) = 0.11 kg * 9.8 m/s2 * 0.909290 m = 0.9896 J 
ER%(cilindro oco) = ((0.833157 J - 0.9896 J) / 0. 0.9896 J) * 100 = 91.6737%. 
 
Para o cilindro maciço: m = 300 g = 0.3 kg r = de/2 = 50 mm/2 = 0.025 m 
V(cilindro maciço) = 0.993982 m/s 
I(cilindro maciço) = (1/2) * m * r2 = (1/2) * 0.3 * 0.0252 = 0.00009375 kg.m² w(cilindro maciço) = V / r = 0.993982 / 0.025 = 39.7593 rad/s 
Kt(cilindro maciço) = (1/2) * m * V2 = (1/2) * 0.3 * 0.9939822 = 0.148457 J 
Altura da descida = 0.993982 m 
Kr(cilindro maciço) = (1/2) * 0.00009375 * 39.75932 = 0.1482 J 
K(cilindro maciço) = 0.148457 J + 0.1482 J = 0.296657 J 
U(cilindro maciço) = 0.3 kg * 9.8 m/s2 * 0.993982 m = 2.9356 J 
ER%(cilindro maciço) = [(2.9356 - 0.296657) / 2.9356] * 100 = 89.8681% 
 
	Grandezas 
	Cilindro Oco 
	Cilindro Maciço 
	Momento de Inércia – I (kg.m2) 
	0.000056375 
	0.00009375 
	Velocidade linear média – V (m/s) 
	0.909290 
	0.993982 
	Velocidade angular – w 
(rad/s) 
	36.3716 
	39.7593 
	Energia cinética de translação – Kt (J = Kg m2/s2) 
	0.0458684 
	0.148457 
	Energia cinética de rotação – Kr (J = Kg 
m2/s2) 
	0.0372890 
	0.1482 
	Energia cinética total – K (J = Kg m2/s2) 
	0.083157 
	0.296657 
	Energia 	potencial gravitacional – U (J = Kg m2/s2) 
	0.9896 
	2.9356 
	Erro relativo percentual em relação à energia inicial do cilindro – ER% (%) 
	91.6737 
	89.8681 
3. É certo afirmar que a energia potencial gravitacional é igual a soma das energias cinéticas de translação e rotação? Por quê? 
R: Não, não é correto afirmar que a energia potencial gravitacional é igual à soma das energias cinéticas de translação e rotação. A energia potencial gravitacional e as energias cinéticas de translação e rotação são formas diferentes de energia e não podem ser diretamente somadas entre si. 
A energia potencial gravitacional está relacionada à altura de um objeto em relação a um ponto de referência e é determinada pela massa do objeto, a aceleração da gravidade e a altura em que se encontra. É a energia associada à posição do objeto em um campo gravitacional. 
Por outro lado, as energias cinéticas de translação e rotação estão relacionadas ao movimento do objeto. A energia cinética de translação está associada ao movimento linear do objeto, enquanto a energia cinética de rotação está associada ao movimento rotacional do objeto em torno de um eixo. Ambas as energias são determinadas pela massa do objeto e sua velocidade linear ou angular, respectivamente. 
Portanto, a energia potencial gravitacional e as energias cinéticas de translação e rotação são grandezas distintas e não podem ser diretamente somadas. Cada uma delas descreve um aspecto diferente do comportamento energético do objeto. 
 
4. Calcule o erro relativo entre a energia envolvida quando o corpo de prova está no topo do plano e a energia quando ele passa pelo sensor. Caso o erro seja maior que zero, qual seria o motivo para isto? 
R: ER% = |(K - U)/U| * 100% 
ER% = |(0.083157 J - 0.9896 J)/0.9896 J| * 100% 
ER% = |-0.906443 J/0.9896 J| * 100% 
ER% = 0.9161 * 100% 
ER% = 91.61% 
 
Se o valor do erro for maior que zero, significa que a energia não foi conservada durante a descida do corpo pelo plano, o que pode ter ocorrido devido a diversos fatores, como o atrito entre o corpo e o plano, a resistência do ar, a deformação do corpo durante a descida, entre outros. 
 
5. Como você definiria a conservação da energia em termos das energias envolvidas neste experimento? 
R: A conservação da energia, no contexto deste experimento, pode ser definida como a manutenção da quantidade total de energia ao longo do movimento do corpo de prova. Durante o experimento, diferentes formas de energia estão envolvidas, como a energia potencial gravitacional, a energia cinética de translação e a energia cinética de rotação. 
A energia potencial gravitacional está presente no início do movimento, quando o corpo de prova está no topo do plano inclinado. Conforme o corpo desce, essa energia é convertidaem energia cinética de translação e energia cinética de rotação. 
A energia cinética de translação está relacionada ao movimento do corpo como um todo, considerando sua velocidade linear. Já a energia cinética de rotação está associada à rotação do corpo em torno do seu eixo. 
A conservação da energia ocorre quando a quantidade total de energia se mantém constante durante todo o movimento. No caso deste experimento, a energia potencial gravitacional é convertida em energia cinética de translação e energia cinética de rotação à medida que o corpo de prova desce pelo plano inclinado. Embora haja perdas de energia devido a fatores como atrito e dissipação térmica, a soma das energias cinéticas e a energia potencial gravitacional inicial devem ser constantes ao longo do movimento, de acordo com o princípio da conservação da energia. 
 
 
ETAPA 3 – LANÇAMENTOS HORIZONTAIS E COLISÕES 
 
Parte 1 – lançamentos horizontais: 
Para realizar o experimento, assegurou-se a segurança do ambiente. Acessouse a câmera "EPIs" ao clicar com o botão esquerdo do mouse no menu superior esquerdo, permitindo a visualização do armário de Equipamentos de Proteção Individual (EPIs). Em seguida, clicou-se com o botão esquerdo do mouse nas portas do armário para abri-las e conferiu-se os EPIs disponíveis. No caso desse experimento, foi necessário utilizar o jaleco, então selecionou-se o ao clicar com o botão esquerdo do mouse. 
Para preparar o experimento, moveu-se um papel ofício para colocá-lo sob o lançador. Clicou-se com o botão direito do mouse nos papéis e selecionou-se a opção "Colocar sob o lançador". Utilizou-se o prumo de centro para marcar a projeção ortogonal do final da rampa sobre o papel. Para isso, clicou-se com o botão direito do mouse no prumo e selecionou-se a opção "Marcar origem". Essa ação resultou em uma linha no papel, indicando a posição inicial para a medida do alcance horizontal. Em seguida, posicionou-se o papel carbono sobre a folha de papel ofício. Clicou-se com o botão direito do mouse no papel carbono e selecionou-se a opção "Colocar sobre o papel" para fixá-lo no lugar. 
Para promover os lançamentos horizontais, colocou-se a esfera metálica 2 no lançador horizontal. Clicou-se com o botão direito do mouse sobre a esfera metálica e selecionou-se a opção "Colocar no lançador". Uma nova janela foi exibida com as opções de altura, onde escolheu-se a opção de posicionar a esfera metálica a uma altura de 100 mm. 
Ao realizar o lançamento, observou-se que a esfera entrava em contato com o papel carbono, deixando uma marca na folha de papel ofício, e retornava à sua posição inicial. Repetiu-se esse procedimento até que a esfera fosse lançada 5 vezes da altura indicada. 
Após obter os dados, procedeu-se ao tratamento dos mesmos. Removeu-se o papel carbono posicionado sobre a folha de papel, clicando com o botão direito do mouse no papel carbono e selecionando a opção "Remover de cima do papel". Utilizou-se o compasso para fazer uma circunferência que envolvia todas as marcações feitas na folha. Clicou-se com o botão direito do mouse no compasso e selecionou-se a opção "Circular marcações". Em seguida, assinalou-se o centro da circunferência com a caneta, clicando com o botão direito do mouse na caneta e selecionando a opção "Assinalar centros das marcações". 
Para medir o alcance e calcular a velocidade, acessou-se a janela de opções da régua, clicando com o botão direito do mouse nela. Em seguida, abriu-se uma janela com a graduação detalhada da régua ao clicar com o botão esquerdo do mouse sobre o instrumento. Utilizou-se a régua para medir a primeira marcação, clicando com o botão direito do mouse na régua e selecionando a opção "Medir primeira marcação". 
Foi possível visualizar a escala da régua e, caso necessário, deslocou-se o ponto de vista sobre a régua clicando e arrastando o botão para cima ou para baixo. Fechou-se a janela clicando com o botão esquerdo do mouse no "X". Também foi possível alterar o modo de visualização para "Região sobre a rampa", permitindo um outro ponto de vista para a medição. 
Utilizando a régua, encontrou-se o valor médio do alcance horizontal para os lançamentos realizados. Em seguida, calculou-se a velocidade da esfera metálica no momento em que ela deixou a rampa utilizando as equações apresentadas no sumário teórico deste laboratório virtual. 
Por fim, descartou-se a folha de papel utilizada, clicando com o botão direito do mouse no papel e selecionando a opção "Descartar objeto". Dessa forma, finalizou-se o experimento, garantindo a correta manipulação dos equipamentos e a realização das etapas conforme descrito nas instruções. 
Parte 2 – Encontrando as massas (Colisões): 
Primeiramente, assegurou-se que a balança estivesse ligada, pressionando-se o botão em destaque com o botão esquerdo do mouse. Em seguida, a esfera metálica 1 foi movida para a balança, clicando com o botão direito do mouse sobre a esfera e selecionando a opção "Colocar na balança". A massa da esfera foi verificada em gramas. 
Posteriormente, a esfera metálica 1 foi retornada para sua posição inicial, clicando com o botão direito do mouse sobre a esfera e selecionando a opção "Colocar na posição inicial". Em seguida, a esfera metálica 2 foi movida para a balança da mesma forma, verificando-se sua massa em gramas. Após isso, a esfera metálica 2 também foi retornada para sua posição inicial e a balança foi desligada. 
Para preparar o experimento, o papel ofício foi posicionado sob o lançador, clicando com o botão direito do mouse sobre o papel e selecionando a opção "Colocar sob o lançador". O prumo de centro foi utilizado para marcar a projeção ortogonal do final da rampa sobre o papel, clicando com o botão direito sobre o prumo e selecionando a opção "Marcar origem". Isso resultou em uma linha no papel, indicando a posição inicial para a medida do alcance horizontal. 
Em seguida, o papel carbono foi posicionado sobre a folha de papel ofício, clicando com o botão direito do mouse sobre o papel carbono e selecionando a opção "Colocar sobre o papel". 
Para promover as colisões, a esfera foi colocada no lançador, clicando com o botão direito do mouse sobre a esfera e selecionando a opção "Colocar no lançador". A esfera metálica 1 foi posicionada na altura de 0 mm, observando que ela permaneceu parada no final da rampa. A esfera metálica 2 foi posicionada na altura de 100 mm. 
O procedimento de colisões foi repetido até que as esferas colidissem e fossem lançadas 5 vezes a partir das alturas indicadas. 
Após obter os dados, o papel carbono foi removido da folha de papel, clicando com o botão direito do mouse sobre o papel carbono e selecionando a opção "Remover de cima do papel". Utilizou-se o compasso para fazer duas circunferências envolvendo todas as marcações causadas por uma mesma esfera na folha de papel ofício, clicando com o botão direito do mouse sobre o compasso e selecionando a opção "Circular marcações". Os centros das circunferências foram assinalados com a caneta, clicando com o botão direito sobre a caneta e selecionando a opção "Assinalar centros das marcações". 
Para medir os alcances e calcular as velocidades, acessou-se a janela de opções da régua, clicando com o botão direito do mouse nela. Uma janela com a graduação detalhada da régua foi aberta ao clicar com o botão esquerdo do mouse sobre o instrumento. A primeira marca ção foi medida com a régua, clicando com o botão direito do mouse na régua e selecionando a opção "Medir primeira marcação". Foi possível visualizar a escala da régua, e caso necessário, deslocou-se o ponto de vista sobre a régua clicando e arrastando o botão para cima ou para baixo. A janela foi fechada ao clicar com o botão esquerdo do mouse no "X". 
Também foi possível alterar o modo de visualização para "Região sobre a rampa", permitindo um outro ponto de vista para a medição. Utilizando a régua, encontrou-se o valor médio do alcance horizontal da esfera que produziu as marcações no papel. Em seguida, calculou-se o valor da velocidade para cada esfera metálicaimediatamente após a colisão, utilizando as equações apresentadas no sumário teórico do laboratório virtual. 
Para finalizar o experimento, descartou-se a folha de papel utilizada, clicando com o botão direito do mouse sobre o papel e selecionando a opção "Descartar objeto". Dessa forma, todas as etapas foram concluídas de acordo com as instruções, mantendo-se a abordagem impessoal e utilizando a linguagem formal durante todo o procedimento. 
Por fim, após analisar todos os resultados, seguiu-se para a seção "Avaliação de Resultados" presente no roteiro do experimento, respondendo de acordo com as observações realizadas durante o experimento, conforme se segue: 
 
1. Qual foi o valor médio do alcance horizontal para os lançamentos realizados? 
R: Valor médio do alcance horizontal para os lançamentos = 28,4cm 
 
2. Qual a velocidade da esfera metálica quando ela perde contato com a rampa? 
R: Tempo de queda (t): 
t = √(2H/g) t = √(2 * 0.1 / 9.8) 
t ≈ 0.14 segundos 
Velocidade na direção vertical (vy): vy = √(2gH) vy = √(2 * 9.8 * 0.1) vy ≈ 1.4 m/s 
Velocidade na direção horizontal (vx): 
vx = A / t vx = 0.284 / 0.14 vx ≈ 2.03 m/s 
 
3. No ensaio de colisão, duas circunferências são marcadas no papel ofício baseada nas marcações feitas pelas esferas. Identifique qual esfera metálica produziu cada circunferência. 
R: A primeira esfera produz a circunferência mais à direita da folha, uma vez que é lançada após a colisão. Já a segunda esfera produz a circunferência mais à esquerda da folha. 
 
4. Qual o alcance de cada esfera metálica no ensaio de colisão? 
R: Valor médio do alcance horizontal da segunda esfera = 3cm 
Valor médio do alcance horizontal da primeira esfera = 26,5cm 
 
5. Qual a velocidade de cada uma das esferas metálicas logo após a colisão? 
R: Coeficiente de restituição (e) = |𝑣𝑏' − 𝑣𝑎'| / |𝑣𝑎 − 𝑣𝑏| 
Massa da Esfera 1 = 24.1 g 
Massa da Esfera 2 = 24.3 g 
Valor médio do alcance horizontal da Esfera 1 = 26.5 cm 
Valor médio do alcance horizontal da Esfera 2 = 3 cm 
Valor médio do alcance horizontal da Esfera 1 = 26.5 cm = 0.265 m 
Para Esfera 1: 
t = A / 𝑣𝑥 t = 0.265 m / 𝑣𝑥 
H = 0 mm (altura em relação ao solo) vy = √(2gH) vy = 0 m/s 
vx = A / t vx = 0.265 m / t 
e = |𝑣𝑏' − 𝑣𝑎'| / |𝑣𝑎 − 𝑣𝑏| e = |v1 - 0| / |0 - 𝑣𝑥| 
Portanto, para a Esfera 1: e = 1 
|v1 - 0| / |0 - 𝑣𝑥| = 1 
|v1| / |𝑣𝑥| = 1 
|v1| = |𝑣𝑥| 
Portanto, a velocidade da Esfera 1 após a colisão é igual à sua velocidade na direção horizontal antes da colisão, que é o valor médio do alcance horizontal da Esfera 1: 
v1 = 0.265 m/s 
Para esfera 2: 
Valor médio do alcance horizontal da Esfera 2 = 3 cm = 0.03 m 
t = A / 𝑣𝑥 t = 0.03 m / 𝑣𝑥 vy = √(2gH) vy = √(2 * 9.8 m/s^2 * 0.1 m) vy = √(1.96 m^2/s^2) vy = 1.4 m/s vx = A / t vx = 0.03 m / t 
e = |𝑣𝑏' − 𝑣𝑎'| / |𝑣𝑎 − 𝑣𝑏| e = |v2 - 0| / |0 - 𝑣𝑥| 
e = 1 
|v2 - 0| / |0 - 𝑣𝑥| = 1 
|v2| / |𝑣𝑥| = 1 
|v2| = |𝑣𝑥| 
Assim, a velocidade da Esfera 2 após a colisão é igual à sua velocidade na direção horizontal antes da colisão, que é o valor médio do alcance horizontal da Esfera 2: 
v2 = 0.03 m/s 
 
ETAPA 4 – CALORIMETRIA 
 
Inicialmente, assegurou-se a determinação da capacidade térmica de um calorímetro. Para isso, foi acessada a câmera "EPI", movendo o cursor e pressionando o botão esquerdo do mouse sobre o menu superior esquerdo da tela. 
O armário foi aberto, clicando com o botão esquerdo do mouse sobre as portas, permitindo o acesso aos Equipamentos de Proteção Individual (EPIs) necessários para o experimento. Os EPIs utilizados foram o jaleco e os óculos de proteção. Para utilizá-los, foi clicado com o botão direito do mouse sobre cada EPI desejado e selecionada a opção "Colocar EPI". 
A câmera "Bancada" foi acessada para prosseguir com o experimento. 
Para tarar a balança, o béquer foi posicionado sobre ela, clicando com o botão direito do mouse sobre o béquer e selecionando a opção "Colocar na balança". Em seguida, a câmera "Balança" foi acessada para visualizar o béquer na balança. 
A balança foi ligada, clicando com o botão esquerdo do mouse sobre o botão "Power". Verificou-se se a balança ligou corretamente. Para desprezar a massa do béquer, a balança foi tarada, clicando com o botão esquerdo do mouse sobre o botão "TARA". Observou-se que a balança foi zerada após a taragem. O béquer foi então retornado para a bancada, clicando com o botão direito do mouse sobre ele e selecionando a opção "Colocar na mesa". 
A câmera "Bancada" foi acessada novamente para retornar à tela inicial do experimento. 
Primeira Parte (Adicionando água no béquer): Para adicionar água no béquer, transferiu-se 100 mL de água, clicando com o botão direito do mouse na pisseta com água em destaque e selecionando a opção "Despejar no béquer". A pisseta foi pressionada para inserir água no béquer, e a quantidade de água adicionada foi observada através da escala exibida no canto da tela. Em seguida, a pisseta foi retornada para a bancada, clicando com o botão direito do mouse sobre ela e selecionando a opção "Colocar na mesa". 
Para medir a massa da água, o béquer com a água foi colocado sobre a balança, clicando com o botão direito do mouse sobre o béquer e selecionando a opção "Colocar na balança". A câmera "Balança" foi acessada para visualizar a medição da massa. O valor da massa exibido pela balança foi observado e anotado. Em seguida, o béquer foi retirado da balança, clicando com o botão direito do mouse sobre ele e selecionando a opção "Colocar na mesa". Retornou-se à tela inicial do experimento, acessando a câmera "Bancada". 
Para ajustar o aquecimento, o béquer foi posicionado sobre o sistema de aquecimento, clicando com o botão direito do mouse sobre o béquer e selecionando a opção "Posicionar no sistema de aquecimento". Verificou-se que o béquer se posicionou corretamente no sistema de aquecimento. A câmera "Aquecimento" foi acessada para visualizar o sistema em questão. 
O sistema de aquecimento foi ligado, clicando com o botão direito do mouse sobre o bico de Bunsen e selecionando a opção "Ligar chama". A chama do bico de Bunsen foi observada para garantir seu funcionamento adequado. 
A velocidade de aquecimento do fluido contido no béquer foi ajustada clicando e arrastando, com o botão esquerdo do mouse, sobre a janela "Acelerar troca térmica". Em seguida, a câmera "Bancada" foi acessada para retornar à tela inicial do experimento. 
Para medir a temperatura de aquecimento, foi necessário clicar com o botão direito do mouse sobre o termômetro e selecionar a opção "Medir béquer". A temperatura da água em aquecimento foi observada no canto da tela. 
O aquecimento da água foi aguardado até atingir aproximadamente 80°C. Em seguida, o sistema de aquecimento foi desligado, acessando a opção de câmera "Aquecimento", clicando com o botão direito do mouse sobre o bico de Bunsen e selecionando a opção "Desligar chama". Foi importante lembrar que era possível acelerar o aquecimento da água ajustando o aquecimento na janela "Acelerar troca térmica". 
Para retirar o béquer do sistema de aquecimento, clicou-se com o botão direito do mouse sobre o béquer e selecionou-se a opção "Colocar na mesa". Vale ressaltar que só foi possível remover o béquer do sistema de aquecimento se o bico de Bunsen estivesse desligado. Em seguida, a opção de câmera "Bancada" foi acessada para retornar à tela inicial do experimento. 
Para medir a temperatura inicial do calorímetro, clicou-se com o botão direito do mouse sobre o termômetro e selecionou-se a opção "Medir calorímetro". A temperatura inicial do calorímetro foi observada e anotada. 
Para adicionar água ao calorímetro, a água aquecida contida no béquer foi transferida para ele. Clicou-se com o botão direito do mouse sobre o béquer e selecionou-se a opção "Despejar no calorímetro". Observou-se que a água foi adicionada ao calorímetro. 
Para acelerar a troca térmica entre o calorímetro e a água aquecida, agitou-se o conteúdo do calorímetro clicando com o botão direito do mouse sobre ele e selecionando a opção "Agitar conteúdo". 
Em seguida,a temperatura no calorímetro foi medida clicando com o botão direito do mouse sobre o termômetro e selecionando a opção "Medir calorímetro". A temperatura do calorímetro foi observada, aguardando-se até que ela se estabilizasse, e seu valor foi anotado como Tc. 
Para desmontar o experimento, a água foi retirada do calorímetro clicando com o botão direito do mouse sobre ele e selecionando a opção "Descartar conteúdo". O termômetro foi desligado clicando com o botão direito do mouse sobre o termômetro e selecionando a opção "Desligar termômetro". 
Segunda Parte (Adicionando óleo no béquer): Inicialmente, transferiu-se 100 mL de óleo para um béquer, utilizando o botão direito do mouse na pisseta contendo o óleo destacado e selecionando a opção "Despejar no béquer". Em seguida, pressionou-se a pisseta para inserir o óleo no béquer, observando a quantidade adicionada por meio da escala exibida no canto da tela. Após essa etapa, retornou-se a pisseta para a bancada, clicando com o botão direito do mouse sobre ela e selecionando a opção "Colocar na mesa". 
Para medir a massa do óleo, acessou-se a câmera "Balança" e verificou-se se ela estava ajustada corretamente, apresentando um valor negativo equivalente à massa do béquer. Caso estivesse ajustada, colocou-se o béquer, com o óleo, sobre a balança, clicando com o botão direito do mouse sobre o béquer e selecionando a opção "Colocar na balança". Observou-se e anotou-se o valor da massa. Em seguida, retirou-se o béquer da balança, clicando com o botão direito do mouse sobre ele e selecionando a opção "Colocar na mesa". No caso de a balança não estar ajustada corretamente, repetiu-se o procedimento de tara da balança conforme demonstrado na parte I. 
Prosseguindo, posicionou-se o béquer sobre o sistema de aquecimento, clicando com o botão direito do mouse sobre o béquer e selecionando a opção "Posicionar no sistema de aquecimento". Acessou-se a câmera "Aquecimento" para visualizar o sistema em questão e, em seguida, ligou-se o sistema de aquecimento, clicando com o botão direito do mouse sobre o bico de Bunsen e selecionando a opção "Ligar chama". Observou-se a chama do bico de Bunsen para assegurar seu funcionamento adequado. 
Para medir a temperatura de aquecimento do óleo, utilizou-se o termômetro. Clicou-se com o botão direito do mouse sobre o termômetro e selecionou-se a opção "Medir béquer". A temperatura do óleo em aquecimento foi exibida no canto da tela. Aguardou-se o aquecimento do óleo até atingir aproximadamente 80°C e, então, desligou-se o sistema de aquecimento. Acessou-se novamente a câmera "Aquecimento", clicou-se com o botão direito do mouse sobre o bico de Bunsen e selecionou-se a opção "Desligar chama". Ressaltou-se a importância de garantir que o bico de Bunsen estivesse desligado antes de remover o béquer do sistema de aquecimento. Em seguida, clicou-se com o botão direito do mouse sobre o béquer e selecionou-se a opção "Colocar na mesa". 
Retornou-se à tela inicial do experimento, acessando a câmera "Bancada". Utilizou-se o termômetro para medir a temperatura inicial do calorímetro, clicando com o botão direito do mouse sobre o termômetro e selecionando a opção "Medir calorímetro". Observou-se e anotou-se a temperatura inicial do calorímetro. 
A próxima etapa consistiu em adicionar o óleo aquecido, contido no béquer, ao calorímetro. Para isso, clicou-se com o botão direito do mouse sobre o béquer e selecionou-se a opção "Despejar no calorímetro". Notou-se que a água foi adicionada ao calorímetro. 
Com o objetivo de acelerar a troca térmica entre o calorímetro e o óleo aquecido, agitou-se o conteúdo do calorímetro. Clicou-se com o botão direito do mouse sobre o calorímetro e selecionou-se a opção "Agitar conteúdo". 
Após aguardar a estabilização da temperatura do calorímetro, mediu-se a sua temperatura. Clicou-se com o botão direito do mouse sobre o termômetro e selecionou-se a opção "Medir calorímetro". Observou-se a temperatura do calorímetro, aguardou-se até que ela se estabilizasse e anotou-se o seu valor. 
Por fim, para desmontar o experimento, retirou-se o óleo do calorímetro, clicando com o botão direito do mouse sobre o calorímetro e selecionando a opção "Descartar conteúdo". Desligou-se o termômetro, clicando com o botão direito do mouse sobre o termômetro e selecionando a opção "Desligar termômetro". 
Após concluir essas etapas, seguiu-se para a seção "Avaliação de Resultados" e respondeu-se de acordo com as observações realizadas durante o experimento. 
 
 
Parte 1: 
A capacidade térmica C do calorímetro pode ser determinada pelo princípio da conservação de energia: 
QCEDIDO = QRECEBIDO 
QCEDIDO PELA ÁGUA QUENTE = QABSORVIDO PELO CALORÍMETRO 
m1c (T1 - Tf) = C (Tf - TC) C = m1c (T1 - Tf) / (Tf - TC) Onde: 
C = capacidade térmica do calorímetro; m1 = massa de água; 
c = calor específico da água (1cal/g °C); T1= temperatura da água quente; 
Tf = temperatura final de equilíbrio sistema; 
TC = temperatura no interior do calorímetro 
 
1. Com os dados obtidos, calcule a capacidade térmica do calorímetro: R: C = (m1 * c * (T1 - Tf)) / (Tf - TC) 
m1 = 102.42 g 
c = 1 cal/g °C 
T1 = temperatura inicial do calorímetro = 25.3 ºC 
Tf = temperatura final de equilíbrio do sistema = 75.8 ºC 
TC = temperatura no interior do calorímetro = 80.9 ºC 
C = (102.42 * 1 * (25.3 - 75.8)) / (75.8 - 80.9) 
C = (102.42 * 1 * (-50.5)) / (-5.1) 
C = (-5186.71) / (-5.1) 
C ≈ 1016.63 cal/°C Parte 2: 
A capacidade térmica C do calorímetro pode ser determinada pelo princípio da conservação de energia: 
QCEDIDO = QRECEBIDO 
QCEDIDO PELO ÓLEO QUENTE = QABSORVIDO PELO CALORÍMETRO 
m1c (T1 - Tf) = C (Tf - TC) c = C (Tf - TC) / m1 (T1 – Tf) 
Onde: 
C = capacidade térmica do calorímetro; m1 = massa de óleo; c = calor específico do óleo; 
T1= temperatura do óleo quente; 
Tf = temperatura final de equilíbrio sistema; 
TC = temperatura no interior do calorímetro. 
 
1. Com os dados obtidos, calcule o calor específico do óleo. Compare o valor obtido com valores de calor específico de óleos vegetais encontrados na internet. Justifique eventuais diferenças. 
R: Massa de óleo (m1) = 97.13 g 
Temperatura inicial do calorímetro (Tc) = 25.6ºC 
Temperatura final de equilíbrio do sistema (Tf) = 81ºC 
Temperatura no interior do calorímetro (TC) = 71.3ºC 
Capacidade térmica do calorímetro (C) ≈ 1016.63 cal/°C c = C * (Td - TC) / (m1 * (Tc - Td)) c = 1016.63 cal/°C * (81ºC - 71.3ºC) / (97.13 g * (25.6ºC - 81ºC)) c ≈ 1016.63 cal/°C * 9.7ºC / (-7568.6 g * -55.4ºC) 
c ≈ -10062.11 cal / (-417949.24 g * °C) c ≈ 0.024 cal/g°C 
Com base na literatura, os valores típicos de calor específico de óleos vegetais variam entre 1,9 a 2,8 cal/g°C. No entanto, é importante ressaltar que esses valores podem variar dependendo da fonte, da composição específica do óleo e das condições de medição. 
No experimento realizado, o valor obtido para o calor específico do óleo foi aproximadamente 0,024 cal/g°C. Esse valor é consideravelmente menor do que os valores típicos encontrados na literatura para óleos vegetais. Essa diferença pode ser atribuída a vários fatores, tais como: 
· Composição específica do óleo: O óleo utilizado no experimento pode ter uma composição diferente dos óleos vegetais utilizados nas referências encontradas. Diferentes ácidos graxos e outros componentes presentes no óleo podem influenciar o calor específico. 
· Erros de cálculo. 
· Erros experimentais: O experimento em si pode ter envolvido erros experimentais que afetaram a precisão dos resultados, como medições imprecisas de temperatura ou massa. 
 
 
 
 
 
 
 
 
 
CONCLUSÃO 
 
No decorrer dos quatro experimentos realizados, pudemos aprofundar nosso conhecimento e compreensão em diferentes conceitos da física. Através da caracterização do movimento de um objeto, exploramos o deslocamento, a velocidade média e a aceleração média, compreendendo a relação entre essas grandezas e a variação no tempo. Foi possível interpretar e analisar gráficos que representavam essas variáveis físicas, o que contribuiu para a nossa capacidadede visualizar e interpretar diferentes padrões de movimento. 
Na segunda etapa, concentramos nossa atenção nos processos de transformação de energia durante um movimento, levando em consideração o princípio da conservação de energia. Exploramos como a energia mecânica se transforma entre diferentes formas, como energia cinética e energia potencial, e como essa transformação afeta o movimento do objeto em questão. Compreender esse princípio nos permitiu reconhecer e analisar as diferentes formas de energia envolvidas em um sistema físico. 
No terceiro experimento, nos dedicamos ao estudo das colisões, identificando os diferentes tipos de colisões e suas características. Fomos capazes de analisar as propriedades e descrever o comportamento dos corpos antes e depois da colisão, aplicando o princípio da conservação de energia nesse contexto. Essa experiência nos proporcionou uma visão mais aprofundada sobre a conservação de energia em colisões e como ela influencia o movimento dos objetos envolvidos. 
Por fim, na quarta etapa, exploramos os fenômenos relacionados à troca de energia térmica entre corpos. Determinamos a capacidade térmica de um calorímetro e utilizamos esse dado para calcular o calor específico de diversas substâncias. Compreendemos como a energia térmica se transfere entre os corpos e como a quantidade de energia transferida está relacionada às propriedades específicas das substâncias. Essa etapa nos permitiu aplicar conceitos de termodinâmica e expandir nosso entendimento sobre a transferência de energia térmica. 
Em resumo, ao realizar esses quatro experimentos, tivemos a oportunidade de aprofundar nosso conhecimento em diferentes áreas da física, como cinemática, conservação de energia, colisões e termodinâmica. Cada etapa contribuiu para nossa compreensão dos princípios fundamentais que regem o comportamento dos corpos no espaço e as diferentes formas de energia envolvidas nesses processos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
REFERÊNCIAS BIBLIOGRÁFICAS 
 
GEOGEBRA. Disponível em: https://www.geogebra.org/calculator. 
 
HALLIDAY, D., RESNICK, R., & WALKER, J. (2017). Fundamentos de Física - Volume 2: Gravitação, Ondas e Termodinâmica. LTC Editora. 
 
YOUNG, H. D., & FREEDMAN, R. A. (2013). Física II: Termodinâmica e Ondas. Addison Wesley. 
2 
 
2

Continue navegando