Buscar

eBook Completo_Sistemas Estruturais III_DIGITAL PAGES_ORIGINAL_SER (Versão Digital)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 112 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 112 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 112 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

SISTEMAS 
ESTRUTURAIS III
SISTEMAS 
ESTRUTURAIS III
Sistem
as Estruturais III
Luriane Zago Perondi Luriane Zago Perondi 
GRUPO SER EDUCACIONAL
gente criando o futuro
Esta obra elucida os conceitos essenciais em linguagem simples, clara, objetiva e 
ilustrativa para facilitar sua compreensão e sua aplicação. O leitor encontrará neste 
texto conceitos estruturais expressos com clareza e abordados por meio do uso de 
analogias e de exemplos, singulares e demasiadamente necessários, que contribuirão 
para enfatizar a relevância do conteúdo apresentado. 
Ademais, será apresentado o concreto, um breve histórico e sua relevância, suas 
vantagens, aplicações e restrições, evidenciando a contribuição da tecnologia para 
o desenvolvimento e evolução das estruturas. Destacaremos as características fun-
damentais que os materiais da construção civil devem apresentar; identi� caremos e 
compreenderemos os fundamentos dos materiais constituintes do concreto armado, 
no tocante aos fundamentos necessários ao projeto estrutural, desde seu lançamen-
to, até o pré-dimensionamento e seu detalhamento. 
Queremos habilitá-lo, estudante, a compreender, projetar e detalhar os projetos de 
estruturas de concreto armado conforme as normas. Assim, serão abordados tópicos 
essenciais, além de exempli� cações detalhadas e aprofundadas, bem como estudos 
de casos, a � m de subsidiar toda e qualquer dúvida durante sua caminhada na discipli-
na, tornando-o apto a compreender quaisquer prerrogativas do cotidiano pro� ssional 
de um arquiteto.
SER_ARQURB_SEIII_CAPA.indd 1,3 30/08/2021 16:30:55
© Ser Educacional 2021
Rua Treze de Maio, nº 254, Santo Amaro 
Recife-PE – CEP 50100-160
*Todos os gráficos, tabelas e esquemas são creditados à autoria, salvo quando indicada a referência.
Informamos que é de inteira responsabilidade da autoria a emissão de conceitos. 
Nenhuma parte desta publicação poderá ser reproduzida por qualquer meio 
ou forma sem autorização. 
A violação dos direitos autorais é crime estabelecido pela Lei n.º 9.610/98 e punido pelo 
artigo 184 do Código Penal.
Imagens de ícones/capa: © Shutterstock
Presidente do Conselho de Administração 
Diretor-presidente
Diretoria Executiva de Ensino
Diretoria Executiva de Serviços Corporativos
Diretoria de Ensino a Distância
Autoria
Projeto Gráfico e Capa
Janguiê Diniz
Jânyo Diniz 
Adriano Azevedo
Joaldo Diniz
Enzo Moreira
Luriane Zago Perondi 
DP Content
DADOS DO FORNECEDOR
Análise de Qualidade, Edição de Texto, Design Instrucional, 
Edição de Arte, Diagramação, Design Gráfico e Revisão.
SER_ARQURB_SEIII_UNID1.indd 2 30/08/2021 16:21:20
Boxes
ASSISTA
Indicação de filmes, vídeos ou similares que trazem informações comple-
mentares ou aprofundadas sobre o conteúdo estudado.
CITANDO
Dados essenciais e pertinentes sobre a vida de uma determinada pessoa 
relevante para o estudo do conteúdo abordado.
CONTEXTUALIZANDO
Dados que retratam onde e quando aconteceu determinado fato;
demonstra-se a situação histórica do assunto.
CURIOSIDADE
Informação que revela algo desconhecido e interessante sobre o assunto 
tratado.
DICA
Um detalhe específico da informação, um breve conselho, um alerta, uma 
informação privilegiada sobre o conteúdo trabalhado.
EXEMPLIFICANDO
Informação que retrata de forma objetiva determinado assunto.
EXPLICANDO
Explicação, elucidação sobre uma palavra ou expressão específica da 
área de conhecimento trabalhada.
SER_ARQURB_SEIII_UNID1.indd 3 30/08/2021 16:21:21
Unidade 1 - Estruturas de concreto
Objetivos da unidade ........................................................................................................... 12
As estruturas de concreto e suas aplicações .............................................................. 13
Histórico ............................................................................................................................ 15
Propriedades e aplicações do concreto e do aço ..................................................... 17
Qualidade das estruturas ............................................................................................... 20
Sistemas de estruturas verticais: estruturas de edifícios .......................................... 22
Estruturas de edifícios ................................................................................................... 23
Durabilidade das estruturas .......................................................................................... 27
Domínios da ABNT NBR 6118 ........................................................................................ 28
Sintetizando ........................................................................................................................... 33
Referências bibliográficas ................................................................................................. 34
Sumário
SER_ARQURB_SEIII_UNID1.indd 4 30/08/2021 16:21:21
Sumário
Unidade 2 - Lançamento das estruturas e critérios
Objetivos da unidade ........................................................................................................... 36
Lançamentos estruturais em Arquitetura ........................................................................ 37
Dados iniciais ................................................................................................................... 38
Posição dos elementos .................................................................................................. 40
Desenho das formas ....................................................................................................... 46
Critério para escolha de sistema estrutural ................................................................... 53
Ações ................................................................................................................................. 57
Pré-dimensionamento .................................................................................................... 59
Sintetizando ........................................................................................................................... 62
Referências bibliográficas ................................................................................................. 63
SER_ARQURB_SEIII_UNID1.indd 5 30/08/2021 16:21:21
Sumário
Unidade 3 - Lançamento das estruturas e critérios
Objetivos da unidade ........................................................................................................... 65
Sistemas estruturais: definições de estrutura em edificações ................................... 66
Definições e histórico ..................................................................................................... 68
Estruturas arquitetônicas ............................................................................................... 71
Compatibilização entre sistema estrutural e arquitetônico ..................................... 73
Anteprojeto e pré-dimensionamento das estruturas ..................................................... 76
Pré-dimensionamento .................................................................................................... 77
Exemplos ........................................................................................................................... 84
Sintetizando ........................................................................................................................... 86
Referências bibliográficas ................................................................................................. 87
SER_ARQURB_SEIII_UNID1.indd 6 30/08/2021 16:21:21
Sumário
Unidade 4 - Pavimentos de edifícios e análises 
Objetivos da unidade ........................................................................................................... 89
Pavimentos de edifícios ...................................................................................................... 90
Definições da execuçãodas atividades ...................................................................... 91
Cálculos de um edifício .................................................................................................. 92
Análises de viabilidade para os tipos de estrutura ..................................................... 107
Sintetizando ......................................................................................................................... 111
Referências bibliográficas ............................................................................................... 112
SER_ARQURB_SEIII_UNID1.indd 7 30/08/2021 16:21:21
SER_ARQURB_SEIII_UNID1.indd 8 30/08/2021 16:21:21
Esta obra elucida os conceitos essenciais em linguagem simples, clara, obje-
tiva e ilustrativa para facilitar sua compreensão e sua aplicação. O leitor encon-
trará neste texto conceitos estruturais expressos com clareza e abordados por 
meio do uso de analogias e de exemplos, singulares e demasiadamente neces-
sários, que contribuirão para enfatizar a relevância do conteúdo apresentado. 
Ademais, será apresentado o concreto, um breve histórico e sua relevância, 
suas vantagens, aplicações e restrições, evidenciando a contribuição da tec-
nologia para o desenvolvimento e evolução das estruturas. Destacaremos as 
características fundamentais que os materiais da construção civil devem apre-
sentar; identifi caremos e compreenderemos os fundamentos dos materiais 
constituintes do concreto armado, no tocante aos fundamentos necessários ao 
projeto estrutural, desde seu lançamento, até o pré-dimensionamento e seu 
detalhamento. 
Queremos habilitá-lo, estudante, a compreender, projetar e detalhar os 
projetos de estruturas de concreto armado conforme as normas. Assim, serão 
abordados tópicos essenciais, além de exemplifi cações detalhadas e aprofun-
dadas, bem como estudos de casos, a fi m de subsidiar toda e qualquer dúvida 
durante sua caminhada na disciplina, tornando-o apto a compreender quais-
quer prerrogativas do cotidiano profi ssional de um arquiteto.
SISTEMAS ESTRUTURAIS III 9
Apresentação
SER_ARQURB_SEIII_UNID1.indd 9 30/08/2021 16:21:21
Dedico este trabalho a Deus, causa primordial de todas as coisas, autor do 
mеυ destino e mеυ guia. Aos meus avós paternos e maternos (in memoriam): 
suas lembranças me inspiram e me fazem persistir. Aos meus pais, à minha 
irmã e ao meu namorado, incentivadores das realizações dos meus sonhos. 
A professora Luriane Zago Perondi 
é especialista em Estruturas Metáli-
cas pela Faculdade Meridional - IMED 
(2018) e graduada em Engenharia Civil 
pela Universidade de Passo Fundo - UPF 
(2015). Tem experiência com projetos de 
engenharia e acompanhamento execu-
tivo de obras residenciais, comerciais e 
industriais, além de ter conhecimento 
sobre softwares primordiais na cons-
trução civil. Tem, ainda, experiência em 
análises físico-fi nanceiras e vivência em 
elaboração e análise de relatórios ge-
renciais e orçamentários, além de roti-
nas administrativas. 
Currículo Lattes:
http://lattes.cnpq.br/7643915271031616
SISTEMAS ESTRUTURAIS III 10
A autora
SER_ARQURB_SEIII_UNID1.indd 10 30/08/2021 16:21:21
ESTRUTURAS DE 
CONCRETO
1
UNIDADE
SER_ARQURB_SEIII_UNID1.indd 11 30/08/2021 16:21:37
Objetivos da unidade
Tópicos de estudo
 Apresentação e estudo do concreto como material estrutural;
 Apresentação das principais propriedades e características do concreto;
 Durabilidade do material e sua composição nas estruturas verticais.
 As estruturas de concreto e 
suas aplicações 
 Histórico
 Propriedades e aplicações do 
concreto e do aço
 Qualidade das estruturas
 Sistemas de estruturas verti-
cais: estruturas de edifícios 
 Estruturas de edifícios 
 Durabilidade das estruturas
 Domínios da ABNT NBR 6118
SISTEMAS ESTRUTURAIS III 12
SER_ARQURB_SEIII_UNID1.indd 12 30/08/2021 16:21:38
Asus
Realce
Asus
Realce
Asus
Realce
As estruturas de concreto e suas aplicações 
Um material de construção civil 
precisa apresentar duas característi-
cas fundamentais: resistência e du-
rabilidade. Tendo como exemplo a 
pedra, empregada desde a antiguida-
de em obras que até hoje são monu-
mentos, podemos dizer que ela tem 
alta durabilidade e elevada resistência 
à compressão, mas baixa resistência à tração. 
A madeira e o aço são materiais largamente utilizados na construção civil, 
embora também tenham defi ciências particulares. A madeira tem resistência à 
compressão e tração limitadas, além de baixa durabilidade. Já o aço, apesar de 
reagir de forma satisfatória aos esforços, está sujeito ao processo de deterio-
ração (ROMANO; CARDOSO; PILEGGI, 2011).
Pode-se presumir que o concreto armado tenha surgido do anseio de ge-
rar uma estrutura que apresentasse a durabilidade da pedra natural, tivesse a 
vantagem de ser moldada nas dimensões desejadas e associada ao aço, forne-
cendo alta resistência ao material e, ao mesmo tempo, protegendo-o, aumen-
tando sua durabilidade aos agentes de deterioração.
O concreto é um material de construção heterogêneo procedente da mis-
tura, em proporção adequada, de aglomerante hidráulico, materiais inertes e 
água. É possível adicionar componentes minoritários como adições (pozolanas, 
escória de alto forno, dentre outras) e aditivos químicos (plastifi cantes, retar-
dadores de pega e incorporadores de ar). O aglomerante comumente empre-
gado ao concreto é o cimento Portland, embora possam ser aplicados outros 
tipos de cimento (BATTAGIN, 2010).
Segundo a Sociedade Americana de Testes e Materiais (ASTM), o concreto 
é um material compósito e se constitui de um meio aglomerante no qual estão 
aglutinadas partículas de diferentes origens. Os materiais inertes adicionados ao 
concreto são titulados por agregados agrupados conforme sua granulometria e 
recebem a denominação de agregados miúdos ou graúdos. O agregado miúdo 
mais utilizado é a areia natural e o agregado graúdo mais frequente é a brita. 
SISTEMAS ESTRUTURAIS III 13
SER_ARQURB_SEIII_UNID1.indd 13 30/08/2021 16:21:39
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Segundo a ABNT NBR 7211 (2005), o agregado miúdo é aquele que provém 
da areia natural, da britagem de rochas ou da combinação de ambas, com seus 
grãos passantes pela peneira 4,8 mm, mas ficam retidos na peneira 0,075 mm. 
Já o agregado graúdo é o pedregulho ou a brita proveniente de rochas ou da 
combinação de ambos, com seus grãos passantes na peneira com abertura 
nominal de 152 mm e que ficam retidos na peneira de 4,8 mm.
O conhecimento da curva granulométrica do agregado, tanto graúdo quan-
to miúdo, é de fundamental importância para o estabelecimento da dosagem 
dos concretos e argamassas, influenciando na quantidade de água a ser adicio-
nada e na sua trabalhabilidade.
DIAGRAMA 1. FORMAÇÃO DO CONCRETO
ou
CONCRETO 
CONCRETO
CONCRETO 
AREIA 
CONCRETOS 
ESPECIAIS 
ADIÇÕES 
BRITA 
AÇO 
CONCRETOS 
ESPECIAIS 
CONCRETO 
CONCRETO 
ARMADO
Em função da construção de edifícios cada vez mais altos, há uma exigência 
cada vez maior quanto à qualidade do concreto para que ele atenda a todos os 
requisitos, a fim de garantir segurança e durabilidade. 
Desse modo, houve uma necessidade de evoluir o concreto comum, feito da 
mistura de cimento Portland com agregados, para que certos parâmetros fos-
sem atingidos. Como consequência, a construção civil desenvolveu inúmeras 
categorias de concreto, cada uma com um objetivo específico. 
Os tipos de concreto amplamente aplicados em projetos de construção civil são:
• Concreto convencional;
• Concreto usinado;
• Concreto armado;
• Concreto protendido;
SISTEMAS ESTRUTURAIS III 14
SER_ARQURB_SEIII_UNID1.indd 14 30/08/2021 16:21:39
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
• Concreto estrutural leve;
• Concreto de alta resistência;
• Concreto autoadensável;
• Concreto de alto desempenho (CAD);
• Concreto pesado para blindagem de radiação;
• Concreto rolado;
• Concreto colorido;
• Concreto celular.
Histórico
O concreto simples foi aplicado em centenas de quilômetros de rodovias e 
pavimentos no Império Romano. O atual, no entanto, teve início somente após 
a patente do cimento Portland, por John Aspdin, em 1824, na Inglaterra, tendo 
poucas aplicações signifi cativas no período, destacando-se apenas a patente 
de Joseph Monier para construir vasos, postes e vigas em 1878. 
A primeira ponte em argamassa armada foi feita por Monier em 1875. No 
mesmo ano, Gustav Afolf Wayss comprou a patente de Monier e desenvolveu o 
concreto armado propriamente dito. Em 1893, nos Estados Unidos, Thaddeus 
Hyatt construiu o primeiro edifício em concreto armado.
EXPLICANDO
Argamassa armada ou cimento armado eram denominações da época 
para o concreto armado atual.
No século XIX, vários pesquisadores trataram de tornar o concreto de ci-
mento Portland o material mais conhecido e o mais confi ável, resultando em 
um uso generalizado para estruturas. O concreto armado foi exportado para o 
Brasil, Argentina, Uruguai e outros países, sendo considerado o material mais 
importante na construção civil.
No ano de 1903, a Suíça e a Alemanha publicaram as duas primeiras normas 
de projeto e execução de estruturas de concreto armado, seguidas pela França, 
em 1906, Inglaterra, em 1907, e pelos Estados Unidos, em 1910. O Brasil publi-
cou sua primeira norma no ano de 1931.
SISTEMAS ESTRUTURAIS III 15
SER_ARQURB_SEIII_UNID1.indd 15 30/08/2021 16:21:39
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Patente cimento Portland 
Ponte em argamassa armada 
1º Edifício em concreto armado 
Joseph Monier - 1875
Construção de barcos
Joseph-Louis Lambot – 1855
Compra da patente e sua grande difusão
Gustav Adolf Wayss – 1875
John Aspdin - 1824
Thaddeus Hyatt – 1893
Figura 1. Linha do tempo de acontecimentos importante sobre o concreto.
A construção civil de edificações nos países desenvolvidos fazia uso intensi-
vo do aço estrutural. Era notável o enorme desenvolvimento da engenharia de 
estrutura metálica, que inaugurava, em 1931, um surpreendente edifício metá-
lico, o Empire State Building.
CONTEXTUALIZANDO
O Empire State Building foi construído em Nova York e tem 383 me-
tros de altura. Ele surpreendeu a engenharia e a arquitetura mundial, 
colocando-se como grande marco de poder e de desenvolvimento da 
população americana.
Ao longo dos primeiros 90 anos do século XX, as estruturas metálicas para 
edifícios altos prevaleceram sobre as de concreto. Alterações notáveis, entre-
tanto, passaram a ocorrer apenas no fim da década de 90, conforme mostrado 
no Quadro 1.
SISTEMAS ESTRUTURAIS III 16
SER_ARQURB_SEIII_UNID1.indd 16 30/08/2021 16:21:39
MUDANÇA - PERÍODO PROJETISTA OBRA OBSERVAÇÕES
1º Revolução – 2.800 a 
2.500 a.C.
Arquiteto: 
Imhotep, Egito.
Pirâmide 
escalonada de 
Djeser, Egito.
A engenharia e a arquitetura 
de estruturas podiam 
construir obras duráveis, 
majestosas e de grandes 
proporções.
2º Revolução - 1779
Arquiteto: T. M. 
Pritchard, com 
aço produzido por 
Abraham Darby 
III, Inglaterra.
Iron Bridge, em 
Coalbrookdale, 
Inglaterra.
A engenharia estrutural e a 
arquitetura podiam projetar 
obras antes inimagináveis, 
com muito mais velocidade, 
segurança e em alturas 
nunca antes vistas.
3º Revolução - 1901
Construtor: 
François 
Hennebique, 
França.
Edifício 
Hennebique, 
Paris, França.
A engenharia e a arquitetura 
estrutural podiam 
ousar muito mais, pois 
descobriram como combinar 
dois materiais fantásticos. O 
concreto tinha durabilidade 
da rocha, era compatível 
com o aço e ainda o protegia.
4º Revolução - 1997
Arquiteto: Cesar 
Pelli. Argentina. 
Projeto 
estrutural: 
Thornton 
Tomasetti, 
Estados Unidos.
Edifício Petronas 
Tower, Kuala 
Lumpur, 
Malásia.
A engenharia estrutural e 
a arquitetura descobrem 
as vantagens da rigidez 
do concreto de alto 
desempenho, além de 
seus benefícios para 
a sustentabilidade da 
construção civil.
QUADRO 1. SÍNTESE DAS GRANDES REVOLUÇÕES NA ARTE DE 
PROJETAR E CONSTRUIR ESTRUTURAS
Propriedades e aplicações do concreto e do aço
O concreto de cimento Portland é o material estrutural mais valorizado da 
construção civil, sendo considerado o mais utilizado para realização das cons-
truções no Brasil (90%) e no mundo. Seu consumo anual é da ordem de 1,9 
toneladas por habitante. 
Além disso, entre os materiais utilizados pelo homem, o concreto perde 
apenas para a água (PEDROSO, 2009). Outros materiais como madeira, alve-
naria e aço também são de uso popular, entretanto suas aplicações são bem 
mais limitadas. 
Algumas aplicações do concreto estão relacionadas a seguir:
• Estradas: pavimentação de concreto, rodovias, pontes, viadutos, passare-
las, túneis, galerias, obras de contenção etc.; 
SISTEMAS ESTRUTURAIS III 17
SER_ARQURB_SEIII_UNID1.indd 17 30/08/2021 16:21:39
• Edifícios: mesmo que a estrutura principal não seja de concreto, alguns 
elementos do edifício são; 
• Obras de saneamentos: estações de tratamento, tubos, canais etc.;
• Obras hidráulicas: reservatórios, barragens etc.;
• Fundações: de edifícios, de silos, fundações de máquinas etc.; 
• Pavilhões e pisos industriais ou para fins diversos; 
• Estruturas diversas: elementos de cobertura, chaminés, postes, torres, 
mourões, dormentes, muros de arrimo, muros em geral, piscinas, silos, cais etc.
É importante pontuar que, como material estrutural, o concreto apresenta 
várias vantagens em relação a outros materiais, que estão mostradas no Qua-
dro 2.
QUADRO 2. VANTAGEM DO CONCRETO
Moldável Permite grande variabilidade de formas e de concepções arquitetônicas.
Versátil Facilidade na produção e no manejo, substância plástica.
Durável Resistente à água e protege a armação contra a corrosão.
Estrutura 
monolítica Todo o conjunto trabalha quando a peça é solicitada.
Resistência Boa resistência à maioria das solicitações.
Baixo custo Material barato e disponível em todo o mundo e baixo custo de mão de obra.
Rapidez de 
execução Facilidade de execução; processos construtivos bem difundidos.
Resistência ao 
fogo Alta resistência ao fogo.
Resistência ao 
desgate Alta resistência ao desgate mecânico (choque e vibrações).
Manutenção 
reduzida Permite grande variabilidade de formas e de concepções arquitetônicas.
SISTEMAS ESTRUTURAIS III 18
SER_ARQURB_SEIII_UNID1.indd 18 30/08/2021 16:21:39
Como é possível perceber, trata-se de um material que apresenta algumas 
restrições e requerem cuidados. Por isso, algumas providências adequadas de-
vem ser tomadas para atenuar suas consequências. As fundamentais são:
• Peso próprio elevado 2.500 kg/m³ (pode ser reduzido com utilização de 
agregados leves;
• Baixa resistência à tração; 
• Fragilidade; 
• Fissuração; 
• Custo alto de formas para moldagem;
• Corrosão das armaduras.
Com a finalidade de suprir as defi-
ciências do concreto, há inúmeras op-
ções. A baixa resistência à tração pode 
ser revertida com o uso de armadura. 
Além de resistência à tração, o aço 
assegura ductilidade e eleva a resis-
tência à compressão. A fissuração 
pode ser sitiada com armação correta 
e limitação do diâmetro das barras e 
da tensão na armadura. Também é co-
mum a associação de armadura ativa, 
gerando o concreto pretendido. Sua 
utilização tem como principal objetivo 
aumentar a resistência da peça, o que 
possibilita a execução de grandes vãos 
ou elementos de seções menores, ob-
tendo melhorias na peça ou estrutura 
com relação à fissuração.
CURIOSIDADE
O concreto de alto desempenho apresenta características melhores do 
que o concreto tradicional, tais como elevadas resistências mecânicas, 
seja ela inicial ou final, baixa permeabilidade, alta durabilidade, baixa 
segregação, boa trabalhabilidade, altaaderência, reduzida exsudação e 
menor deformabilidade por retração e fluência.
SISTEMAS ESTRUTURAIS III 19
SER_ARQURB_SEIII_UNID1.indd 19 30/08/2021 16:21:40
Qualidade das estruturas
A maior parte das avarias identifi cadas em elementos estruturais é de or-
dem evolutiva. Isso signifi ca que em um período mais ou menos curto elas 
poderão comprometer sua estabilidade. Diante disso, Bauer (2009) instrui que 
a deterioração de uma estrutura poderá estar vinculada com as seguintes cau-
sas, relacionadas em grupos: 
• G I: erros de projeto estrutural; 
• G II: emprego de materiais inadequados; 
• G III: erros de execução; 
• G IV: agressividade do meio ambiente.
Ainda segundo Bauer (2009), as principais causas de deterioração de estru-
turas de concreto decorrentes de erro de projeto estrutural são: 
• Falta de detalhamento; 
• Cargas ou tensões não levadas em consideração no cálculo estrutural;
• Variações bruscas de seção em elementos estruturais; 
• Falta ou projeto defi ciente de drenagem; 
• Efeitos da fl uência do concreto não levados em consideração.
Em geral, a maior parte das falhas verifi cadas nas construções civis decor-
re de erros de projeto, sendo essencial que seja direcionada mais atenção no 
sentido de melhorar sua qualidade. Isso acontece porque quem solicita um 
projeto, muitas vezes, se preocupa demais com o preço, deixando a qualidade 
em segundo plano. Outro fator condicionante é o prazo, que acaba sendo o 
objetivo primordial, resultando em relevantes prejuízos para a efi ciência das 
estruturas, pois prazos curtos impossibilitam a busca para uma melhor solu-
ção ou compatibilização de projeto.
Isso posto, uma das formas encontradas para conseguir a evolução da qua-
lidade dos projetos estruturais é um sistema de garantia da qualidade atuan-
do em todas as fases do processo construtivo, ou seja, desde o planejamento, 
projeto, produção de materiais e componentes, execução, utilização e manu-
tenção. Um projeto devidamente elaborado, dessa maneira, deve transmitir 
segurança às estruturas e garantir um desempenho satisfatório em serviço, 
além de ter uma aparência desejável.
SISTEMAS ESTRUTURAIS III 20
SER_ARQURB_SEIII_UNID1.indd 20 30/08/2021 16:21:40
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Segundo Diez (2012), a funcionalidade e estética são de extrema impor-
tância, entretanto o equilíbrio, a estabilidade, a resistência e a economia 
são requisitos básicos que qualificam uma estrutura. Assim, devem ser 
observadas as exigências com relação à capacidade resistente, às condi-
ções em uso normal e excepcional da obra e aos critérios referentes à 
durabilidade.
Frequentemente os requisitos de segurança são seguidos e as exigências 
de desempenho em serviço e durabilidade são deixadas em segundo plano. 
No entanto, cabe salientar que a durabilidade está relacionada à qualidade 
das estruturas, sendo, portanto, imprescindível a adoção de medidas miti-
gadoras e especificações apropriadas ainda na fase de projeto, 
de modo a garantir, com grau apropriado de confiabilidade, que 
as estruturas apresentem desempenho satisfatório em serviço e 
resistam adequadamente aos agentes externos sem mostrar si-
nais precoces de deterioração na estrutura (PRADO FILHO, 2014).
Ainda, é possível verificar uma nítida relação entre os seguintes aspec-
tos: agressividade, durabilidade e qualidade das estruturas. 
A agressividade diz respeito ao comportamento das estruturas e de 
seus materiais componentes (concreto e aço) diante dos ataques por agen-
tes externos e internos, presentes no meio ambiente e nos próprios mate-
riais, de modo que possam ser tomadas medidas preventivas de proteção 
com o intuito de assegurar que as estruturas apresentem du-
rabilidade. Assim, observa-se que a garantia da durabilidade 
contribui de forma considerável para garantir a qualidade 
das estruturas, visto que ambos os parâmetros estão dire-
tamente relacionados.
Ao longo de muito tempo, o concreto foi considerado um ma-
terial extremamente durável, uma vez que pode ser 
visto em obras muito antigas e que ainda apresen-
tam bom estado de conservação. Contudo, a de-
terioração relativamente precoce de estruturas 
recentes remete aos porquês das patologias do 
concreto, resultantes de uma somatória de fato-
res: erros de projeto, de execução, uso inadequado 
SISTEMAS ESTRUTURAIS III 21
SER_ARQURB_SEIII_UNID1.indd 21 30/08/2021 16:21:40
Asus
Realce
Asus
Realce
dos materiais ou materiais com baixa qualidade, má utilização 
da obra, agressividade do meio ambiente, falta de manuten-
ção e inefi ciência ou ausência de controle da qualidade no 
processo da construção civil.
Tendo isso em mente, qual a melhor solução estrutural que 
atenderia a todos os requisitos básicos apontados? Segundo Rebello (2001), “a 
melhor estrutura na efetividade não existe. Existe, sim, uma boa solução que 
resolve bem alguns pré-requisitos”. O papel fundamental do profi ssional, por-
tanto, diz respeito às decisões inerentes do projeto arquitetônico, que guarda 
características únicas, e não soluções genéricas.
Sistemas de estruturas verticais: estruturas de edifícios 
Os sistemas estruturais verticais são formados por elementos sólidos 
rígidos que se estendem em sentido vertical, são estabilizados contra 
esforços laterais e firmemente ancorados ao solo, podendo absorver car-
gas de planos horizontais, em grandes elevações do solo e transmitindo 
as fundações. 
Devido à sua extensão em altura, esse sistema fi ca vulnerável a forças 
horizontais, tornando a estabilização lateral essencial para as estruturas 
verticais. Sendo assim, a partir de uma certa altura acima do solo, a reo-
rientação das forças horizontais pode se tornar um fator determinante da 
forma do projeto.
Os sistemas estruturais verticais requerem continuidade dos elementos 
que transportam as cargas até a base, portanto necessitam da congruência 
das pontas de agrupamento de carga para cada planta. A distribuição dos 
pontos de carga deve ser determinada não apenas por consideração de efi -
ciência estrutural, mas também pela utilização do pavimento. 
Nas construções esbeltas, o sistema de absorção de cargas está relacio-
nado à confi guração e à organização da planta. Com o objetivo de propor-
cionar condições adequadas para uma planta fl exível e possibilidades de 
reorganização de compartimentos individuais, o projeto de sistemas estru-
turais verticais tem como intuito uma maior redução de elementos de trans-
missão de carga, seja em seção ou seja em número de elementos.
SISTEMAS ESTRUTURAIS III 22
SER_ARQURB_SEIII_UNID1.indd 22 30/08/2021 16:21:40
Asus
Realce
Asus
Realce
Asus
Realce
Estruturas de edifícios 
Estrutura é a parte componente resistente da construção e tem a função 
de resistir às ações, transmitindo-as para o solo. A Figura 2 exemplifi ca como 
ocorre esse caminho das forças na estrutura.
Figura 2. Caminho das forças. Fonte: DIEZ, 2012. (Adaptado).
Os principais elementos estruturais dos edifícios são:
• Fundação: essa estrutura é responsável por transmitir as cargas das cons-
truções ao solo e, por isso, deve apresentar resistência adequada para supor-
tar todas as tensões. Existem diferentes tipos de fundações. As superfi ciais 
podem ser exemplifi cadas em: blocos, sapatas corridas, sapatas isoladas ou 
associadas, radier e viga de fundação. Já as fundações profundas são as esta-
cas, os tubulões e os caixões.
SISTEMAS ESTRUTURAIS III 23
SER_ARQURB_SEIII_UNID1.indd 23 30/08/2021 16:21:40
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
• Fundações superficiais: a carga é majoritariamente transmitida ao ter-
reno pelas pressões, ficando disposta sob a base dos elementos da fundação. 
Assim, a profundidade de escavação é inferior ou igual a três metros, sendo 
caracterizada como uma fundação para cargas modestas. Um dos exemplos 
mais frequentesem construções com uso de fundações superficiais são as re-
sidências térreas em solo estável. 
• Fundações profundas: caracterizadas como elementos que podem tanto 
transmitir a carga por atrito lateral quanto pelo fuste. Geralmente são utiliza-
das em projetos de porte maior, como edifícios nos quais os esforços do vento 
são significativos e, nestes casos, o solo atinge resistência, suprida devido à 
elevada profundidade. 
• Pilares: definidos pela forma de barras verticais, receptoras das ações de ou-
tros elementos estruturais, como as vigas, as lajes, e dos andares superiores, que 
transmitem a ação para os elementos inferiores, principalmente para a fundação.
Os formatos mais realizados em obras são: retangulares, circulares, seção 
no formato de cruz, seção U, seção L, seção retangular vazada, seção I e seção 
T. Em síntese, o elemento pilar tem a função de:
• Transmitir as solicitações da superestrutura aos elementos de fundação;
• Contribuir com a estabilidade global da estrutura;
• Resistir às solicitações provenientes das ações horizontais.
Pilar
Viga
Figura 3. Pilar. 
SISTEMAS ESTRUTURAIS III 24
SER_ARQURB_SEIII_UNID1.indd 24 30/08/2021 16:21:40
Asus
Realce
Asus
Realce
Os pilares alinhados em projeto e executados, ligados por vigas, formam os 
chamados pórticos, que devem resistir às ações do vento e a outras ações que 
atuam no edifício, sendo o elemento mais utilizado como contraventamento e 
ajudando na estabilidade da estrutura. Em edificações esbeltas, o travamento 
também pode ser feito por paredes estruturais, pórticos treliçados ou núcleos. 
Esses elementos encontram-se, de modo geral, nas extremidades do edifício. 
Os núcleos envolvem a parte da escada ou da caixa de elevadores.
O elemento pilar geralmente está submetido a esforços de flexão composta 
oblíqua, ou seja, são solicitados por momentos fletores nas duas direções (x, y) 
e por esforço normal de compressão.
Algumas das principais variáveis que envolvem o cálculo de pilares são: o 
efeito de segunda ordem, o índice de esbeltez, o raio de giração, a excentricida-
de e o comprimento da flambagem.
Os primeiros elementos lançados são os pilares, que são contínuos ao lon-
go de toda a edificação. Desse modo, para que não ocupem o espaço de futuras 
vagas de garagem em um edifício, os vãos de passagem de pedestres devem 
ser observados, bem como os de portas e das janelas. A ideia principal é come-
çar posicionando os pilares nos cantos quando não houver balanço. 
Além disso, é interessante, sempre que possível, “esconder” o pilar na alvenaria, 
valorizando a edificação como um todo. Para isso, deve-se prever o pilar com uma di-
mensão provavelmente inferior. Por conta disso, é fundamental conhecer a espessura 
da parede. Nesse caso, a espessura do pilar deve ser igual à espessura da alvenaria 
(descontando o revestimento), pois esse revestimento deve revestir parede e pilar.
• Vigas: barras retas e horizontais que delimitam as lajes, suportam pare-
des, recebem ações das lajes ou de outras vigas (suportam peso perpendicu-
lar) e as transmitem para os apoios. O elemento considerado viga de concreto 
armado é dimensionado de tal maneira que sua armadura longitudinal possui 
capacidade de resistir aos esforços de tração, pois o concreto resiste pouco a 
esse esforço. O elemento, ao longo de sua seção, recebe armaduras secundá-
rias, transversalmente distribuídas, chamadas de estribos, que têm o objetivo 
de levar as formas cisalhantes até os apoios. No dimensionamento, as vigas de-
vem ser lançadas em cada pavimento, ao contrário dos pilares, que geralmente 
são contínuos ao longo de toda a altura da edificação. Deve-se ter atenção para 
a largura da viga e recomenda-se coincidir com a largura da parede.
SISTEMAS ESTRUTURAIS III 25
SER_ARQURB_SEIII_UNID1.indd 25 30/08/2021 16:21:40
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
• Lajes: realizam a interface entre pavimentos de uma edifi cação. Sua con-
cepção estrutural é de uma placa de superfície plana em que uma das dimen-
sões (espessura) é sensivelmente pequena em relação às demais e sujeitas a 
ações normais a seu plano. Além desse elemento suportar as cargas perma-
nentes, recebe as ações de uso e as transmitem para os apoios; trava os pilares 
e distribui as ações horizontais entre os elementos de contraventamento. Os 
principais tipos de lajes utilizados são: maciça, nervurada, cogumelo, nervura-
da em uma ou duas direções e a laje alveolar.
P 1 P 2V 100 
LAJE 1
A A
V 101 
V 
10
4 
V 
10
3
V 
10
2 
LAJE 2
P3P4
Figura 4. Planta de fôrma de uma laje maciça. 
No dimensionamento, as lajes são posicionadas após o lançamento de todas 
as vigas. Em princípio, em um modelo estrutural típico, as lajes descarregam 
suas cargas sobre as vigas. Além disso, elas não precisam necessariamente se 
apoiar sobre o limite de quatro vigas, como é o que ocorre com as sacadas. As 
lajes devem ser lançadas no projeto estrutural em cada pavimento.
SISTEMAS ESTRUTURAIS III 26
SER_ARQURB_SEIII_UNID1.indd 26 30/08/2021 16:21:41
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Durabilidade das estruturas
A durabilidade das estruturas é uma das premissas básicas do usuário, de-
fi nida no conceito de desempenho formulado pela ASTM E 632 e pela ISO 6241 
ainda nos anos 80. Trata-se de um conceito incorporado há muitos anos no âm-
bito das edifi cações, embora tenha sido incorporado tardiamente às normas 
de estruturas de concreto no Brasil pela ABNT NBR 6118. 
Resume-se o entendimento sobre a durabilidade da seguinte maneira: 
1) Interligação entre a estrutura de concreto;
2) Ambiente e as condições de uso;
3) Operação e de manutenção. 
Deste modo, considera-se que a durabilidade não é uma propriedade ine-
rente ou intrínseca à estrutura, à armadura ou ao concreto. Já para a ABNT NBR 
6118, no item 5.1.2.3, a defi nição de durabilidade consiste na “capacidade da 
estrutura resistir às infl uências ambientais previstas e defi nidas em conjunto 
pelo autor do projeto estrutural e o contratante, no início dos trabalhos de ela-
boração do projeto” (ABNT, 2014). Já o item 6.1 preconiza que 
as estruturas de concreto devem ser projetadas e construídas de 
modo que sob as condições ambientais previstas na época do proje-
to e quando utilizadas conforme projeto, conservem sua segurança, 
estabilidade e aptidão em serviço durante o período corresponden-
te à sua vida útil (ABNT, 2014). 
Segundo a ISO 13823 (2008), entende-se por vida útil “o período efetivo de 
tempo durante o qual uma estrutura ou qualquer um de seus componentes 
satisfazem os requisitos de desempenho do projeto, sem ações imprevistas de 
manutenção ou reparo”. Para a NBR 6118, no item 6.2, vida útil de projeto é o 
período de tempo durante o qual se mantêm as características das 
estruturas de concreto, desde que atendidos os requisitos de uso e 
manutenção prescritos pelo projetista e pelo construtor, conforme 
itens 7.8 e 25.4, bem como de execução dos reparos necessários 
decorrentes de danos acidentais (ABNT, 2014). 
O item 7.8 entende que “o conjunto de projetos relativos a uma obra deve 
orientar-se sob uma estratégia explícita que facilite todos os procedimentos de 
inspeção e manutenção preventiva da obra e que deve ser produzido um ma-
SISTEMAS ESTRUTURAIS III 27
SER_ARQURB_SEIII_UNID1.indd 27 30/08/2021 16:21:41
Asus
Realce
Asus
Realce
nual de manutenção da estrutura” (ABNT, 2014). Esse manual deve exemplifi car 
claramente os requisitos básicos para a utilização e a manutenção preventiva, 
necessárias para garantir a vida útil prevista a uma estrutura qualquer.
A vida útil também depende da explicitação dos requisitos de desempenho 
ou estados-limites de utilização ou de serviço (ELS) que não estão na ABNT 
NBR 6118, pois esta se dirige quantitativamente a fi ssuras de fl exão e fl echas 
máximas em vãos devigas e lajes. 
Não há limites diretos para fi ssuras de corrosão, expansões, lixiviação, 
fungos, manchas, carbonatação e outras formas de deterioração das estru-
turas de concreto. 
A metodologia à introdução da segurança no projeto das estruturas de con-
creto utiliza os seguintes termos e critérios de verifi cação da segurança e esta-
bilidade global da estrutura:
a) Estado limite de serviço (ELS ou SLS);
b) Estado limite de ruptura (ELU ou ULS).
Por fi m, a vida útil deve sempre ser analisada de um ponto de vista geral e 
amplo, que envolve o projeto, a execução, os materiais, o uso, a operação e a 
manutenção sob uma perspectiva de desempenho, qualidade e sustentabilida-
de. Sua aplicação, todavia, ainda esbarra em defi ciências graves da normaliza-
ção nacional em vigor. 
Domínios da ABNT NBR 6118
São frequentes os casos de estruturas de concreto armado que apresentam 
deterioração excessiva antes do término da vida útil prevista no dimensiona-
mento, segundo Thiebaut e colaboradores (2018). O ambiente de exposição, a 
não utilização de materiais adequados e, principalmente, a falta de cuidados na 
execução dos elementos estruturais interferem diretamente na durabilidade e 
no desempenho das estruturas de concreto. 
Em relação à durabilidade, a ABNT NBR 6118 orienta o dimensionamento das 
estruturas de concreto e relaciona os principais mecanismos de deterioração 
do concreto, da armadura e da estrutura como um todo. A normativa técnica 
evidencia a importância do uso de medidas que previnem as manifestações pa-
tológicas, como a verifi cação da classe de agressividade ambiental, para dimen-
SISTEMAS ESTRUTURAIS III 28
SER_ARQURB_SEIII_UNID1.indd 28 30/08/2021 16:21:41
sionar adequadamente o cobrimento nominal da armadura, lixiviação, expansão 
por sulfato, reação álcali-agregado, despassivação da armadura por carbonata-
ção e ação de cloretos.
No caso dos projetos das estruturas correntes, é possível considerar as clas-
ses adotadas na Tabela 1.
Classe de
agressividade 
ambiental
Agressividade
Classificação geral 
do tipo
de ambiente para 
efeito de projeto
Risco de 
deterioração da 
estrutura
I Fraca Rural submersa Insignificante
II Moderada Urbana 
a, b
Marinha a Pequeno
III Forte Industrial 
a, b
Industrial a, c Grande
IV Muito forte Respingos de maré Elevado
aPode-se admitir um microclima com uma classe de agressividade mais branda (uma classe 
acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço 
de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com 
argamassa e pintura).
bPode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em 
regiões de clima seco, com umidade média relativa do ar menor ou igual a 65%, partes da 
estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde 
raramente chove.
cAmbientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em 
indústrias de celulose e papel, armazéns de fertilizantes e indústrias químicas.
TABELA 1. CLASSES DE AGRESSIVIDADE
No geral, a resistência do concreto aos diferentes meios agressivos depen-
de dos requisitos listados a seguir:
• Relação água/cimento; 
• Tipo e consumo de cimento; 
• Tipo e consumo de adições e de água; 
• Natureza e dimensão máxima do agregado.
O mais importante é a resistência da estrutura ao meio ambiente. Desse 
modo, para evitar envelhecimento precoce e satisfazer às exigências de durabi-
lidade, devem ser observados os seguintes critérios de projeto (HELENE, [s.d.]): 
Fonte: ABNT, 2014.
SISTEMAS ESTRUTURAIS III 29
SER_ARQURB_SEIII_UNID1.indd 29 30/08/2021 16:21:42
a) Prever drenagem eficiente; 
b) Evitar formas arquitetônicas e estruturais inadequadas; 
c) Garantir concreto de qualidade apropriada, particularmente nas 
regiões superficiais dos elementos estruturais (pilares e vigas prin-
cipalmente); 
d) Controlar a fissuração das peças; 
e) Garantir cobrimentos para gerar proteção às armaduras; 
f) Detalhar adequadamente as armaduras em projeto; 
g) Prever espessuras protetoras em regiões sob condições de expo-
sição ambiental muito agressivas; 
h) Definir um plano de inspeção e manutenção preventiva. 
Deve-se dar preferência a certos tipos de cimento Portland, como aque-
les resistentes a sulfatos (RS), a adições minerais e a aditivos mais adequados 
para resistir à agressividade ambiental. Além disso, uma diretriz geral e única 
encontrada na literatura técnica evidência que a durabilidade da estrutura de 
concreto é determinada por quatro fatores, identificados como regra dos 4C: 
• Composição do concreto; 
• Compactação efetiva do concreto na estrutura; 
• Cura efetiva do concreto na estrutura; 
• Cobrimento das armaduras. 
A ABNT NBR 6118:2014 também relaciona os principais mecanismos de de-
terioração das estruturas de concreto armado, classificando-os em: deteriora-
dores do concreto; deterioradores da armadura e deterioradores de estrutura 
como um todo.
Mecanismo Causa
Deterioradores 
do concreto
• Lixiviação: responsável por dissolver e carrear os compostos hidratados da 
pasta de cimento por ação de águas puras, carbônicas agressivas, ácidas e 
outras.
• Expansão por sulfatos devido à ação de águas ou solos contaminados, que 
causam reações expansivas e fissuram a matriz cimentícia.
• Reação álcali-agregado: uma reação expansiva decorrente da reação dos 
álcalis do concreto com agregados reativos, na presença de umidade.
QUADRO 3. MECANISMOS DE ENVELHECIMENTO E DETERIORAÇÃO 
DAS ESTRUTURAS DE CONCRETO
SISTEMAS ESTRUTURAIS III 30
SER_ARQURB_SEIII_UNID1.indd 30 30/08/2021 16:21:42
Deterioradores 
da armadura
• Corrosão iniciada por:
• Carbonatação: quando o CO2 presente na atmosfera penetra o 
concreto, despassivando a armadura;
• Ação de cloretos: quando o teor do íon-cloro está elevado e rompe a 
camada de passivação do aço.
Deterioradores 
da estrutura 
como um todo
• Ações mecânicas;
• Movimentações de origem térmica;
• Impactos;
• Ações cíclicas;
• Retração;
• Fluência;
• Relaxação, entre outros.
Fonte: ABNT, 2014. (Adaptado).
Para atender aos requisitos estabelecidos nesta norma, o cobrimento míni-
mo da armadura é o menor valor que deve ser respeitado ao longo de todo o 
elemento considerado.
Tipo de 
estrutura Elemento
Classe de agressividade ambiental
I II III IV c
Cobrimento nominal (mm)
Concreto 
armado
Laje b 20 25 35 45
Viga/pilar 25 30 40 50
Elementos 
estruturais em 
contato com o solo d
30 40 50
bPara a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, 
com revestimentos finais secos, tipo carpete e madeira, com argamassa de revestimento e 
acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, 
as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitado um cobrimento 
nominal ≥ 15 mm. 
cAs superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento 
de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes 
química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de 
agressividade IV. 
dNo trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura 
deve ter cobrimento nominal ≥ 45 mm.
TABELA 2. CORRESPONDÊNCIA ENTRE A CLASSE DE AGRESSIVIDADE 
AMBIENTAL E O COBRIMENTO NOMINAL PARA ΔC = 10 MM
Fonte: ABNT, 2014.
SISTEMAS ESTRUTURAIS III 31
SER_ARQURB_SEIII_UNID1.indd 31 30/08/2021 16:21:42
Chegando até aqui, passamos a nos questionar sobre o lançamento dos 
elementos estruturais. Sabemos que no momento do lançamento dos elemen-
tos estruturais, o projeto arquitetônico já deve ser completamente conhecido e 
explorado. Dessa forma, começamos a nos perguntar:
• As lajes apoiam-se sobre as vigas? 
• Quantas vigas são necessárias? 
• Qual o comprimento e a altura das vigas? 
• Qual a posição dos pilares?• Qual será as dimensões dos pilares, suas seções transversais e quantos 
pilares são necessários?
Figura 5. Lançamento de estrutura – programa: Eberick. 
SISTEMAS ESTRUTURAIS III 32
SER_ARQURB_SEIII_UNID1.indd 32 30/08/2021 16:21:42
Sintetizando
O concreto é de extrema importância por se tratar do material mais usado 
na construção civil. Ele é composto por diversos materiais, que são combina-
dos entre si. 
O concreto armado tem algumas vantagens, como a facilidade de modela-
gem, elevada resistência etc. No entanto, ele também pode ser desvantajoso 
devido ao seu elevado peso, que interfere nas reformas e demolições. 
Sua vida útil depende de diversos fatores que vão desde o projeto arquite-
tônico, passam pelo estrutural e dependem do processo executivo, do cobri-
mento das armaduras, dos materiais utilizados e do meio no qual o concreto 
está inserido. 
Vimos todos os elementos que compõem uma estrutura vertical em concre-
to armado (fundação, pilares, vigas e lajes), algumas de suas variações, funções 
e definições. Por fim, concluiu-se com algumas observações à norma de proje-
to de estruturas de concreto – Procedimento, a NBR 6118.
SISTEMAS ESTRUTURAIS III 33
SER_ARQURB_SEIII_UNID1.indd 33 30/08/2021 16:21:42
Referências bibliográficas
ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de 
estruturas de concreto – Procedimento. Rio de Janeiro: ABNT, 2014.
ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7211: Agregados 
para concreto – Especificações. Rio de Janeiro: ABNT, 2005.
BAUER, L. A. F. Materiais de construção: novos materiais para construção civil. 5. 
ed. Rio de Janeiro: LTC, 2009. v.1.
BATTAGIN, A. F. Materiais de construção civil e princípios de ciência e enge-
nharia de materiais. 2. ed. São Paulo: IBRACON, 2010.
DIEZ, G. Projeto estrutural na arquitetura. Porto Alegre: Masquatro Editora Ltda 
e Nobuko, 2012.
ISO - INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 13823: gene-
ral principles on the design of structures for durability. Genova: ISO, 2008.
PRADO FILHO, H. R. A qualidade nos projetos de estruturas de concreto. Portal 
BQualidade, [s.l.], 10 jun. 2014. Disponível em: <https://www.banasqualidade.
com.br/artigos/2014/06/a-qualidade-nos-projetos-de-estruturas-de-concreto.
php>. Acesso em: 13 mai. 2021. 
PEDROSO, F. L. Concreto: material construtivo mais consumido no mundo. Revista 
do Instituto Brasileiro de Concreto. Concreto e construções (IBRACON), [s.l.], 
v. 53, 2009.
REBELLO, Y.C.P. A concepção estrutural e a arquitetura. São Paulo: Zigurate Edi-
tora, 2001, 271p.
ROMANO, R. C. O.; CARDOSO, F. A.; PILEGGI, R. G. Propriedades do concreto no 
estado fresco. Concreto: ciência e tecnologia, [s.l.], v.1, p. 453-500, 2011.
THIEBAUT, Y. et al. Effects of stress on concrete expansion due to delayed ettringite 
formation. Construction and Building Materials, v. 183, p. 626-641, 2018.
SISTEMAS ESTRUTURAIS III 34
SER_ARQURB_SEIII_UNID1.indd 34 30/08/2021 16:21:42
LANÇAMENTO DAS 
ESTRUTURAS E 
CRITÉRIOS
2
UNIDADE
SER_ARQURB_SEIII_UNID2.indd 35 30/08/2021 17:07:26
Objetivos da unidade
Tópicos de estudo
 Apresentar as características introdutórias para o lançamento estrutural;
 Abordar os critérios de sistemas estruturais;
 Conhecer os tipos de sistemas estruturais.
 Lançamentos estruturais em 
Arquitetura
 Dados iniciais
 Posição dos elementos
 Desenho das formas
 Critério para escolha de sistema 
estrutural
 Ações
 Pré-dimensionamento
SISTEMAS ESTRUTURAIS III 36
SER_ARQURB_SEIII_UNID2.indd 36 30/08/2021 17:07:26
Lançamentos estruturais em Arquitetura
A concepção estrutural, ou como 
também podemos designar de uma 
estruturação ou lançamento da estru-
tura, corresponde à escolha de um dos 
sistemas estruturais para execução do 
edifício, denominado de parte resis-
tente. Essa etapa é considerada uma 
das mais importantes na fase do pro-
jeto estrutural e resume-se em esco-
lher e delimitar os elementos a serem 
utilizados, defi nindo suas posições, de 
maneira a formar um conjunto estru-
tural que seja efi caz, responsável por 
absorver os esforços atuantes no sis-
tema, as ações e transferi-los à fundação.
Segundo Torroja (1960), um dos primeiros a defender a ideia de que a 
concepção estrutural, enquanto objeto de um processo criativo, necessa-
riamente deve estabelecer a conexão entre processos técnicos e artísticos, 
a discussão conceitual da forma e da estrutura deve ser privilegiada, para 
que o modelo matemático seja o resultado e não a causa do projeto. Afi nal, 
para ele, a concepção de um sistema estrutural é essencial e antecede o 
cálculo, que tem a função de confi rmar ou testar aquilo que foi concebido 
pela mente humana.
O projeto estrutural deve adotar uma solução que respeite os requisitos 
mínimos estabelecidos pelas normas técnicas, referentes ao desempenho da 
estrutura em serviço, a sua resistência e durabilidade. Podemos utilizar inú-
meros sistemas estruturais. Em edifícios verticais comumente aplicamos nos 
modelos de lajes maciças, nervuras ou moldadas no local. Entretanto, quan-
do precisamos vencer grandes vãos, possuímos a opção de melhorar o de-
sempenho do elemento laje através da proteção. Esse melhor desempenho 
se dá em termos de resistência, controlando as deformações da estrutura e 
consequentemente sua fi ssuração.
SISTEMAS ESTRUTURAIS III 37
SER_ARQURB_SEIII_UNID2.indd 37 30/08/2021 17:07:27
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
CURIOSIDADE
Acesse o link para conhecer imagens de vários tipos de 
lajes, suas vantagens e desvantagens, como elas compõem 
os sistemas estruturais de um edifício e infl uenciam tecni-
camente o dimensionamento destes. O artigo vai elucidar e 
responder algumas dúvidas sobre esse elemento.
Dados iniciais
O primeiro ponto da concepção estrutural é identifi car a fi nalidade da edi-
fi cação e atender ou resolver todas as condições impostas pela arquitetura 
do projeto. O projeto arquitetônico é o ponto de partida para a elaboração do 
projeto estrutural. Um projeto arquitetônico desenvolvido em pensamento 
consoante ao projeto estrutural, de fato trará ótimos resultados e proporcio-
nará facilidade no dimensionamento. Ademais, é necessário pen-
sar no posicionamento dos elementos respeitando sua dispo-
sição nos diferentes cômodos dos pavimentos, devendo estar, 
contudo, em consonância com os demais projetos, permitindo a 
coexistência e a qualidade de todos os sistemas incorpora-
dos na edifi cação. São exemplos de projetos: instalações 
elétricas hidráulicas, telefonia, segurança, som, televi-
são e ar condicionado, sabendo que a estrutura pre-
cisa estar coerente com as condições e características 
do solo no qual ela irá se apoiar.
Outra alternativa de modelo estrutural, entretanto não muito recomenda-
das, é usar lajes sem vigas diretamente apoiadas sobre os pilares da estrutu-
ra, com ou sem capitéis, casos referenciados como lajes planas, lisas ou ainda 
lajes-cogumelos. Nessa solução no alinhamento dos pilares são consideradas 
as vigas embutidas, com altura igual à espessura das lajes, sendo também cha-
madas vigas-faixa. A escolha do sistema estrutural depende de infi nitos fatores 
técnicos e econômicos, dentre eles salientamos: a capacidade do meio profi s-
sional para desenvolver o projeto e executar a obra como um todo e, também, 
a disponibilidade de materiais para essa solução, mão de obra especializada e 
equipamentos necessários para a execução.
SISTEMAS ESTRUTURAIS III 38
SER_ARQURB_SEIII_UNID2.indd 38 30/08/2021 17:07:27
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
A composição dos edifícios comumente se procede pelos seguintes pavi-
mentos: subsolo, reservatório inferior, térreo, tipo (aqui podemos ter várias 
disposições de tipo, ou seja, tipo1, 2, 3, ou simplesmente um tipo), cobertura, 
casa de máquinas e reservatório superior. Na existência de pavimento-tipo 
ou vários pavimentos-tipos, a estruturação parte dessa etapa. Caso não haja 
pavimentos repetidos, a estruturação parte dos andares superiores, seguin-
do na direção dos pavimentos inferiores.
A designação de planta de forma estrutural é a localização dos elementos 
pilares, em sequência com o posicionamento dos elementos vigas e das lajes, 
geralmente nessa ordem, considerando como prerrogativa a compatibiliza-
ção com o projeto arquitetônico.
O sistema estrutural de um edifício deve ser projetado e dimensionado, de 
modo que seja capaz de resistir às ações verticais e às ações horizontais. Es-
sas ações precisam ser levadas em conta, pois resultam ou não em um longo 
período de vida útil da construção. 
As ações verticais são constituídas por: peso próprio dos elementos es-
truturais, revestimentos, paredes divisórias, peso de equipamento, ações 
permanentes e ações variáveis, decorrentes da utilização, cujos valores vão 
depender da utilidade do edifício. O trajeto das ações verticais inicia nas lajes, 
que suportam, além de seus pesos próprios, outras ações permanentes e 
as ações variáveis de uso, incluindo, peso de paredes que se apoiem direta-
mente sobre elas. As lajes transmitem essas ações para as vigas através das 
reações de apoio.
As vigas possuem a capacidade de suportar seu peso próprio, as reações 
decorrentes das lajes, peso de paredes e as ações de outros elementos que 
nelas descarregam. Trabalham aos esforços de flexão e cisalhamento e trans-
mitem suas reações para os elementos verticais, que são os pilares e as pa-
redes estruturais.
Os pilares e as paredes estruturais, por sua vez, recebem as reações das 
vigas que neles se apoiam, juntamente com o peso próprio desses elementos 
verticais, transferindo para os andares inferiores e, finalmente, para o solo, 
através dos respectivos elementos de fundação.
 Já as ações horizontais constituem-se da ação do vento, empuxo ou aba-
los sísmicos onde há ocorrência. Elas são absorvidas pela estrutura e trans-
SISTEMAS ESTRUTURAIS III 39
SER_ARQURB_SEIII_UNID2.indd 39 30/08/2021 17:07:27
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Posição dos elementos
a) Fundações
A primeira decisão em um projeto é quanto ao tipo de fundações. A escolha 
do tipo implicará diretamente aos custos, entretanto, nem sempre a alterna-
tiva mais barata será a mais adequada à situação de projeto. O desempenho 
em serviço da fundação e a vida útil da estrutura deverão ser levados em con-
sideração, já que uma série de patologias das edifi cações estão relacionadas às 
falhas no seu sistema de fundações.
A escolha das fundações precisa ser uma decisão sempre com embasa-
mentos em sondagens do solo, caracterizando-se as propriedades geotécnicas 
como um guia para determinar a escolha. Normalmente, para obras de peque-
no porte, o uso de sapatas é bastante adequado em solos com boa capacidade 
de carga nas camadas superfi ciais, e essa informação é retirada da sondagem 
SPT. Mas em casos onde as condições superfi ciais do solo não são adequadas, 
as fundações profundas são uma boa solução ao projeto.
ASSISTA
Assista ao vídeo explicativo com todos os detalhes de 
um ensaio SPT, descrevendo como ele é feito, quais os 
elementos do ensaio, quais são as características que ele 
fornece. O ensaio SPT é o mais comum e o mais usado. 
Na Figura 1, segue um ensaio com o perfi l geológico e os dados de SPT.
mitidas para o solo de fundação. Na ação do vento, o caminho tem início nas 
paredes externas do edifício, onde o vento atua com maior incidência. Essa 
ação é resistida por elementos verticais de grande rigidez, como os pórticos, 
as paredes estruturais e núcleos em concreto, que formam a estrutura de 
contraventamento de um edifício.
“As lajes exercem importante papel na distribuição dos es-
forços decorrentes do vento entre os elementos de contra-
ventamento, pois possuem rigidez praticamente infi nita no 
seu plano, promovendo, assim, o travamento do conjunto”, 
segundo Pinheiro e colaboradores (2021, p.4.4). 
SISTEMAS ESTRUTURAIS III 40
SER_ARQURB_SEIII_UNID2.indd 40 30/08/2021 17:07:27
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Figura 1. Ensaio de SPT. Fonte: LONGO, 2021, n.p.
Já na Figura 2, apresenta-se um esquema de uma fundação profunda, o 
qual possui todas as informações de leitura de barras, dimensão e execução.
SISTEMAS ESTRUTURAIS III 41
SER_ARQURB_SEIII_UNID2.indd 41 30/08/2021 17:07:29
50
0
0.00
50 41
9 N3 Ø 10.0 C = 122
50
Figura 2. Fundação e sua seção.
b) Posição dos pilares
A localização usualmente inicia-se com os pilares, estes devem ser locados 
pelos cantos e seguir para as áreas que são comuns a todos os pavimentos, 
ou seja, escadarias, elevadores, garagem, reservatório, casa de máquinas, 
corredores, etc.
O próximo passo é posicionar os pilares do extremo e, em seguida, os pila-
res internos (do meio da estrutura), buscando sempre que possível embuti-los 
(escondê-los) nas paredes ou procurando respeitar as imposições apresenta-
das pelo projeto arquitetônico. A disposição mais correta e assertiva é a dos pi-
lares alinhados, entretanto, nem sempre isso é possível, mas deve ser previsto, 
a fim de formar pórticos que se unam diretamente com as vigas. Dessa forma, 
eles contribuem para a estabilidade global da estrutura.
SISTEMAS ESTRUTURAIS III 42
SER_ARQURB_SEIII_UNID2.indd 42 30/08/2021 17:07:29
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
As variáveis que compõem o lançamento e a estruturação dos pilares po-
dem ser resumidas em: dimensão, posição e direção. Essas três premissas ga-
rantem o dimensionamento da peça. Desse modo, o lançamento dos pilares na 
planta é um fator que irá influenciar todo o projeto e, por isso, é prudente ter 
muita atenção nessa etapa.
Resumindo:
• Dimensão: para edificações de pequeno porte, pode-se usar pilares de 
14x40 cm, entretanto o mais recomendado é 19x40 cm. Um ponto importante 
é que, às vezes, são necessários pilares com dimensões maiores para poder 
reduzir a taxa de armadura;
• Posição: geralmente está amarrada com as fundações, assim, o ideal é ter 
prumadas contínuas, da fundação ao topo da estrutura;
• Direção: está relacionada diretamente à posição do pilar. Sempre que 
possível, deve-se avaliar a direção do pilar, pois poderá ser necessário rota-
cionar para um sentido ou para outro. Essa direção vai influenciar no enrije-
cimento da estrutura.
É recomendado adotar como 19 cm, pelo menos, a menor dimensão do pilar 
e escolher a direção da maior dimensão de maneira a garantir rigidez à estrutu-
ra, nas suas duas direções (x, y).
A disposição dos pilares deve seguir uma distância usual entre seus eixos 
na ordem de 4 a 6 metros. Distâncias maiores geram vigas com dimensões 
elevadas ou, até mesmo, incompatíveis com o projeto, além de elevar os 
custos da obra. Seções transversais de pilares elevam a taxa de armadura e 
também dificultam a montagem da armação e formas. Entretanto, se os pi-
lares estiverem muito próximos, com vãos menores, isso pode interferir nos 
elementos de fundação, também aumentando os custos com o consumo de 
material e mão de obra.
Após posicionar os elementos das áreas comuns, recomenda-se seguir 
o posicionamento dos pilares no pavimento-tipo e, nessa etapa, é impor-
tante verificar sua interferência aos demais pavimentos que compõem a 
obra. Isso significa que se faz necessário verificar se o arranjo dos pilares 
permite a realização de manobras dos carros nos andares de garagem ou 
até mesmo se não haverá pilares no meio de um cômodo de outro pavi-mento, por exemplo.
SISTEMAS ESTRUTURAIS III 43
SER_ARQURB_SEIII_UNID2.indd 43 30/08/2021 17:07:29
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Na impossibilidade de compatibilizar a distribuição dos pilares entre os pa-
vimentos, pode haver a necessidade de um pilar de transição. Nesse caso, a 
prumada do pilar é alterada, empregando-se uma viga de transição, que recebe 
a carga do pilar superior e a transfere para o pilar inferior, em sua nova posi-
ção. Nos edifícios muito altos, devem ser evitadas grandes transições, pois elas 
provocam aumento significativo de custos. Quando acontece de o projeto estar 
com inúmeras vigas de transições, costuma-se dizer que ele não foi compatibi-
lizado e otimizado de forma correta.
A Figura 3 mostra a seção de um pilar em uma planta de baldrame, com todas 
as informações de leitura de barras, dimensão, execução de estribo e gancho.
P2 = P3
Baldrame - L1
30
15
24
VAR
38
20
VA
R
VA
R
6 
N9
 o
 1
0.
0 
C 
= 
VA
R
0
N2
9
Seção 
Esc 1:20
4 N1 o 5.0 C = 77 
4 N2 o 5.0 C = 24
4 
N1
 c/
 1
2 
Es
c 1
:2
5
Figura 3. Seção de Pilar e suas informações.
c) Posição das vigas
Após o posicionamento dos pilares, a estruturação passa para a etapa da 
locação das vigas nos pavimentos do edifício. As vigas que ligam um pilar ao 
outro já ficam determinadas, formando os pórticos. Entretanto, outras vigas 
são necessárias para dividir, por exemplo, painéis de laje com grandes vãos 
ou vigas para suportar paredes de divisão e evitar que essas se apoiem dire-
tamente sobre as lajes da obra, ou ainda as vigas de transição, como já men-
SISTEMAS ESTRUTURAIS III 44
SER_ARQURB_SEIII_UNID2.indd 44 30/08/2021 17:07:29
cionamos, que são responsáveis por suportar a carga de um pilar que muda 
de direção entre os pavimentos.
Assim como os pilares, as vigas possuem algumas variáveis de extrema im-
portância, que são as vinculações de apoio para ligar as vigas aos pilares. Elas 
podem ser rotuladas, engastadas ou semirrígidas. Mas o que isso influencia 
no projeto? Se bem utilizada, as vinculações adotadas podem gerar grandes 
economias, solucionar alguns problemas de dimensionamento e influenciar di-
retamente na concepção da estrutura.
Na sequência, podemos ver a seção de uma viga em uma planta (Figura 4). 
Nela, possuímos todas as informações de leitura de barras, dimensão, e exe-
cução de estribo.
34
34
9
Primeiro pavimento
V19
Esc 1:50
300
2 N5 ø 10.0 C = 484
2 N4 ø 10.0 C = 464
330.3 337
337
40 40
15
40
315.3
LA
452
432
15 x 40 15 x 40
16 N1 c/20 17 N1 c/ 20
2 N2 ø 10.0 C = 347
2 N6 ø 10.0 C = 773
33 N1 ø 5.0 C = 97
Seção A-A
Esc 1:25
2 N3 ø 10.0 C = 751
2 ø 2 c 2 ø 3 c
P10 P7
741
741
1 ø 2c
337
V11
34
34
12
12
Figura 4. Seção de viga e suas informações.
d) Posição das lajes
Como as vigas delimitam os painéis de laje, suas disposições devem levar 
em consideração o valor econômico do menor vão que, para lajes maciças, é da 
ordem de 3,50 a 5,50 m. O posicionamento das lajes fica, então, praticamente 
definido através da posição das vigas. A escolha do tipo de laje é um dos fatores 
que mais repercute nos custos da execução. Normalmente, aquelas pré-molda-
das são as cotadas como a opção economicamente mais vantajosa.
SISTEMAS ESTRUTURAIS III 45
SER_ARQURB_SEIII_UNID2.indd 45 30/08/2021 17:07:29
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Veja, na Figura 5, o detalhe de uma laje pré-moldada cerâmica e informa-
ções na seção.
Blocos de enchimento
Detalhe Tipo Nome
Dimensões (cm)
Quantidade
hb bx by
1 Lajota cerâmica B8/25/20 8 25 20 1165
Detalhe 1 (esc. 1:30)
258 8 8
8
5
Figura 5. Laje pré-moldada cerâmica e informações.
Desenho das formas
De posse do arranjo dos elementos estruturais, é possível fazer os dese-
nhos preliminares de formas de todos os pavimentos, inclusive cobertura e 
caixa d’água, com as dimensões baseadas no referido projeto arquitetônico.
SISTEMAS ESTRUTURAIS III 46
SER_ARQURB_SEIII_UNID2.indd 46 30/08/2021 17:07:29
Nesse sentido, precisamos entender primeiramente o que é uma planta de 
formas. Na verdade, ela é identificada pelo projeto, posicionando os elemen-
tos (vigas, pilares, lajes e fundações). Quanto às formas, o termo refere-se aos 
elementos de madeira, aço ou pvc, que permitem a moldagem e execução dos 
elementos de concreto armado.
As larguras das vigas adotadas na execução da planta de formas, sempre 
que possível, devem ser embutidas na alvenaria, respeitando as condições do 
projeto arquitetônico ou limitações construtivas. Em muitos casos, essas vigas 
precisam prever a passagem de tubulações, ou seja, o projeto precisa ser otimi-
zado em conjunto com o projeto hidrossanitário. Uma observação de extrema 
importância é que o cobrimento mínimo das faces das vigas em relação às das 
paredes finalizadas é de 1,5 a 2,5 cm, em geral. Isso deve ser respeitado, para 
que realmente a viga fique embutida.
EXPLICANDO
O desenho de planta de forma, é basicamente o resumo do dimensionamen-
to do projeto estrutural propriamente em desenho. A planta de formas é o 
documento responsável por fornecer todas as informações da execução 
das formas e da disposição e distribuição das armaduras. A planta de for-
mas é a planta do modelo que deverá ser concebida com fidelidade, assim, 
ou seja, quanto mais clareza tenham os elementos e detalhes, mais qualida-
de será apresentada na execução e no processo.
O ideal é que todas as vigas tenham a mesma altura, para facilitar a execu-
ção e o cimbramento da estrutura. Entretanto, quando não é possível, adota-se 
no máximo três dimensões diferentes para as suas seções transversais. Em 
edifícios residenciais, é conveniente que as seções das vigas não ultrapassem 
60 cm de altura, para não interferir nos vãos das aberturas (portas e janelas).
Comumente a numeração de todos os elementos que compõem a estrutura 
é realizada de cima para baixo e da esquerda para a direita:
• Primeira etapa: inicia-se com a numeração das lajes, por exemplo: L1, L2, L3, L4, 
L5, L6, sendo que seus números devem ser colocados centralizados em seus panos;
• Segunda etapa: são numeradas as vigas: V1, V2, V3, V4, V5, V6, seus núme-
ros são dispostos de maneira centralizada no primeiro tramo;
• Terceira etapa: são colocados os números dos pilares, posicionados abai-
xo deles na planta de formas estrutural (P1, P2, P3, P4, P5, P6).
SISTEMAS ESTRUTURAIS III 47
SER_ARQURB_SEIII_UNID2.indd 47 30/08/2021 17:07:29
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Na planta devem ser previstas a colocação das cotas parciais e totais em 
cada direção (x,y), posicionadas fora do contorno do desenho da planta de for-
ma, para facilitar a visualização e leitura.
Ao final da disposição e numeração dos elementos (lajes, vigas e pilares), 
obtém-se o anteprojeto de todos os pavimentos, e pode-se então prosseguir 
com o pré-dimensionamento.
Apesar de ser uma planta consideravelmente simples, é necessário estar 
atento a todos os detalhes como, por exemplo, a falta de uma hachura, indi-
cação de nível ou dimensão, que pode prejudicar todo o projeto. Não indicar o 
rebaixamento de uma laje de sacada, no caso, fará com que o pedreiro consi-
dere que a laje esteja no mesmo nível das demais, prejudicando o escoamento 
de água e podendo causar patologias na construção.
A planta de formas deve conter todos os elementos gráficos e textuais ne-
cessários para identificação, posicionamento e execução da estrutura no lote. 
Podemos citar: origem (ou seja, a referência), as cotas (dimensões e distâncias), 
níveis, ligações entre as vigas e lajes, as fundações, pilares, vigas, lajes e se o 
pavimento constar algum shaft, este também deve estar previsto.
Formado pavimento térreo
Figura 6. Parte de uma planta de forma de uma edificação residencial em dois pavimentos.
SISTEMAS ESTRUTURAIS III 48
SER_ARQURB_SEIII_UNID2.indd 48 30/08/2021 17:07:30
Na sequência, temos a legenda dos pilares.
Legenda dos pilares
Pilar que morre
Pilar que passa
Pilar que nasce
Pilar com mudança de seção
Legenda das vigas e paredes
Viga
Figura 7. Legenda dos elementos utilizados na planta de formas.
Já a Tabela 1 mostra as características das vigas e dos pilares.
Vigas
Nome Seção(cm)
Elevação
(cm)
Nível
(cm)
V1 15x45 0 300
V2 15x45 0 300
V3 15x45 0 300
V4 15x45 0 300
V5 15x45 0 300
V6 15x45 0 300
V7 15x50 0 300
V8 15x45 0 300
V9 15x45 0 300
VI0 15x45 0 300
V11 15x45 0 300
Vigas
Nome Seção(cm)
Elevação
(cm)
Nível
(cm)
VI2 15x45 0 300
VI3 15x45 0 300
VI4 15x45 0 300
VI5 15x45 0 300
VI6 15x45 0 300
VI7 15x50 0 300
VI8 15x45 0 300
VI9 15x45 0 300
V20 15x45 0 300
V21 15x45 0 300
V22 15x45 0 300
TABELA 1. CARACTERÍSTICAS DE VIGAS E PILARES
SISTEMAS ESTRUTURAIS III 49
SER_ARQURB_SEIII_UNID2.indd 49 30/08/2021 17:07:30
Pilares
Nome Seção(cm)
Elevação 
(cm)
Nível
(cm)
P1 15x30 0 300
P2 15x30 0 300
P3 15x30 0 300
P4 15x20 0 300
P5 15x40 0 300
P6 15x40 0 300
P7 15x40 0 300
P8 15x40 0 300
P9 15x40 0 300
P10 15x65 0 300
Pilares
Nome Seção(cm)
Elevação 
(cm)
Nível
(cm)
P11 15x40 0 300
P12 15x40 0 300
P13 15x40 0 300
P14 15x40 0 300
P15 15x25 0 300
P16 15x25 0 300
P17 15x40 0 300
P18 25x50 0 300
P19 25x50 0 300
P20 25x50 0 300
E, por fim, temos a Tabela 2 indicando as características das lajes.
Lajes
Dados Sobrecarga (kgf/m2)
N
om
e
Ti
po
A
lt
ur
a 
(c
m
)
El
ev
aç
ão
 
(c
m
)
N
ív
el
 (c
m
)
Pe
so
 p
ró
pr
io
 
(k
gf
/m
2 )
A
di
ci
on
al
A
ci
de
nt
al
Lo
ca
liz
ad
a
L1 Pré-moldada 13 0 300 283 182 150 -
L2 Pré-moldada 13 0 300 283 182 150 -
L3 Pré-moldada 13 0 300 283 182 150 -
L4 Pré-moldada 13 0 300 283 182 150 -
L5 Pré-moldada 13 0 300 283 182 150 -
L6 Pré-moldada 13 0 300 283 182 150 -
L7 Pré-moldada 13 0 300 283 182 150 -
TABELA 2. CARACTERÍSTICAS DAS LAJES
SISTEMAS ESTRUTURAIS III 50
SER_ARQURB_SEIII_UNID2.indd 50 30/08/2021 17:07:30
L8 Pré-moldada 13 0 300 283 182 150 -
L9 Pré-moldada 13 0 300 283 182 150 -
L10 Pré-moldada 13 0 300 283 182 150 -
L11 Pré-moldada 13 0 300 283 182 150 -
L12 Pré-moldada 13 0 300 283 182 150 -
L13 Pré-moldada 13 0 300 283 182 150 -
L14 Pré-moldada 13 0 300 283 182 150 -
L15 Pré-moldada 13 0 300 283 182 150 -
L16 Pré-moldada 13 0 300 283 182 150 -
Vamos resumir o lançamento dos elementos nas estruturas?
O lançamento da estrutura é, basicamente, realizado através do projeto ar-
quitetônico e seus requisitos. Ao lançar a estrutura, devemos ter algumas prer-
rogativas em mente e podemos resumi-las em: resistência, estética, economia 
e funcionalidade.
• Resistência: ao lançarmos os elementos estruturais, devemos procurar 
estabelecer uma estrutura capaz de resistir aos esforços verticais e horizon-
tais. Para isso, necessitamos de meios para atingir a resistência necessária em 
cada estrutura, podendo ser através de pórticos, núcleos rígidos, pilares com 
grande inércia, dentre outros;
• Estética: devemos sempre procurar embutir ao máximo a estrutura den-
tro das paredes, isso serve para vigas e pilares;
• Economia: deve-se lançar a estrutura, pensando em minimizar o custo de 
execução da obra. Atingimos a tal “boa” economia através da uniformização da 
estrutura, da compatibilidade entre os vãos, da escolha dos materiais e, prin-
cipalmente, do método de escolha dos elementos (laje maciça ou protendida, 
por exemplo). As vigas de transição devem ser evitadas ao máximo, pois são 
inimigas dos princípios da economia;
• Funcionalidade: como um princípio de extrema importância, podemos 
levar o exemplo das garagens. Caso os posicionamentos dos elementos não 
sejam funcionais, podemos perder vagas ou tornar uma garagem inviável de 
se estacionar. Um aproveitamento adequado dos cômodos pode ser obtido, 
espaçando os pilares a cada 4,80 ou 5,50 m.
SISTEMAS ESTRUTURAIS III 51
SER_ARQURB_SEIII_UNID2.indd 51 30/08/2021 17:07:30
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Asus
Realce
Na Figura 8, temos uma planta de formas completa de uma estrutura com três 
pavimentos, onde apresentamos a planta do pavimento 1, realizado no programa 
Eberick. Podemos visualizar os elementos distribuídos, enumerados e as cotas.
Forma do pavimento primeiro pavimento (nível 300) 
escala 1:50
Figura 8. Forma completa de um pavimento.
SISTEMAS ESTRUTURAIS III 52
SER_ARQURB_SEIII_UNID2.indd 52 30/08/2021 17:07:31
Critério para escolha de sistema estrutural
Como escolhemos um sistema estrutural e o que deve ser observado? De-
sempenho, durabilidade, capacitação de mão de obra, materiais disponíveis e 
assistência técnica são alguns dos quesitos decisivos para a especifi cação de 
um sistema estrutural seguro e efi caz 
Ao se avaliar a viabilidade econômica de um projeto estrutural, não se 
deve levar em consideração somente os consumos de materiais e mão de 
obra, mas sim todos os sistemas de serviços que são infl uenciados pela es-
colha das diversas opções estruturais, além das características executivas 
e equipamentos necessários. Como exemplo, podemos citar a escolha de 
uma estrutura com o pé direito, isto é, distância de piso a piso, se escolher 
por este ser mais baixo, provocará uma economia na alvenaria de vedação, 
no reboco e nos revestimentos externos e internos em cada pavimento. 
Contudo, se a escolha for por um pé direito mais alto nos apartamentos, 
isso vai agregar um grande valor para os compradores e, por consequência, 
acarretará em um maior custo de execução. Então, qual será a melhor op-
ção: economizar na estrutura, reduzindo o pé direito, ou aumentar o valor 
de venda do empreendimento?
Para uma avaliação mais completa, deve-se realizar também uma análise 
das implicações que cada alternativa acarreta nas instalações, nas alvenarias, 
tipos de forro e nos demais sistemas. Pode-se defi nir por custo direto da es-
trutura os materiais e a mão de obra, tais como: formas, escoras, cimbramen-
to, concreto, bombeamento, aço de armadura passiva e ativa, car-
pinteiros, pedreiros, serventes, etc. Já os custos indiretos são os 
impactos que a solução condiciona aos demais sistemas, como 
revestimentos, forro, pintura, instalações elétricas e hidráulicas, 
elementos de fachada, tempo e difi culdade de execução.
Para análise de critério de escolha de um sistema 
estrutural, selecionamos duas opções para que seja 
possível fazer uma análise comparativa, quantitativa 
e qualitativa em relação a cada uma. Também pode-
mos considerar essas duas opções como uma das mais 
usuais em obras.
SISTEMAS ESTRUTURAIS III 53
SER_ARQURB_SEIII_UNID2.indd 53 30/08/2021 17:07:32
Asus
Realce
a) Estrutura convencional com lajes maciças: 
Estrutura convencional é aquela na qual as lajes se apoiam nas vigas, que 
por sua vez se apoiam em pilares. A laje maciça é basicamente uma camada de 
concreto “maciço” sobre ela. Essa laje não vence grandes vãos, devido ao seu 
elevado peso-próprio. Comumente usa-se vão de lajes maciças em torno de 
3,5 a 5,50 m.
De acordo com a norma 6118, item 13.2.4.1, as lajes maciças devem respei-
tar os seguintes limites mínimos para a espessura: 
a) 7 cm para cobertura não em balanço; b) 8 cm para lajes de piso 
não em balanço; c) 10 cm para lajes em balanço; d) 10 cm para lajes 
que suportem veículos de peso total menor ou igual a 30 kN; e) 12 
cm para lajes que suportem veículos de peso total maior que 30 kN; 
f) 15 cm para lajes com protensão apoiadas em vigas, com o mínimo 
de l42 para lajes de piso biapoiadas e 
l
50
 para lajes de piso contínuas; 
g) 16 cm para lajes lisas e 14 cm para lajes-cogumelo, fora do capitel 
(ABNT, 2014, p. 74).
Algumas das principais desvantagens apresentadas caracterizam-se

Outros materiais