Buscar

Contents_2023_Bioengineered-Nanomaterials-for-Wound-Healing-and-Infection-Co

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 9 páginas

Prévia do material em texto

Contents
List of contributors xv
About the editors xix
Preface xxiii
1. An overview of antimicrobial resistance and its
mechanisms 1
Mansab Ali Saleemi, Lizhen Fang and Vuanghao Lim
1.1 Introduction 1
1.2 Origins and types of resistance to antimicrobial agents 2
1.2.1 Natural resistance 2
1.2.2 Acquired resistance 3
1.3 The complex issues of antimicrobial resistance reversibility
and fitness 5
1.3.1 Is the emergence of resistance reversible? 6
1.3.2 Does antimicrobial resistance affect microbial resistance? 6
1.4 Mechanisms of antimicrobial action 7
1.4.1 Inhibiting the synthesis of cell walls 8
1.4.2 Interfering with the synthesis of protein 9
1.4.3 Interfering with the synthesis of nucleic acid 10
1.4.4 Inhibition of bacterial metabolic pathways 10
1.4.5 Interruption of the bacterial membrane structure 10
1.5 Mechanisms of antimicrobial resistance 11
1.5.1 Limiting antimicrobial agents’ uptake 11
1.5.2 Alteration of drug targets 12
1.5.3 Inactivation of drugs 14
1.5.4 β-Lactamases 14
1.5.5 Drug efflux 16
1.5.6 The ATP-binding cassette transporter family 16
1.5.7 The small multidrug resistance transporter family 17
1.5.8 The multidrug and toxic compound extrusion
transporter family 17
1.5.9 The resistance-nodulation-cell division transporter family 18
1.5.10 The major facilitator superfamily transporter family 18
1.6 Current challenges 19
1.7 Conclusion 21
Acknowledgment 22
References 22
v
2. An overview of wound healing: wound types and
current therapeutics 29
Nasrin Zarei Chamgordani, Mahsa Sayed Tabatabaei,
Seyedeh Maryam Mortazavi and Hamid Reza Moghimi
2.1 Introduction 29
2.2 Physiology of wound healing 30
2.3 Wound classification 32
2.4 Factors impairing wound healing 33
2.5 Barriers to drug delivery to the wound 36
2.6 Current therapeutic approaches 36
2.6.1 Current medicines 37
2.6.2 Current technologies and procedures 42
2.7 Conclusion 50
References 51
3. The role of biofilms and multidrug resistance in
wound infections 57
Olga I. Guliy, Stella S. Evstigneeva, Victor D. Bunin and
Yulia P. Fedonenko
Abbreviations 57
3.1 Introduction 58
3.2 Multidrug resistance in wound infections 58
3.2.1 Role of biofilm formation in wound infections 60
3.2.2 Multidrug resistance mechanisms 65
3.3 Prevention and control of wound infections 74
3.3.1 Biofilm detection methods 75
3.3.2 Current methods for combating multidrug
resistance biofilms in wound infections 77
3.4 Conclusions and future directions 88
Acknowledgments 88
Conflict of interest 89
References 89
4. Wound healing and nanotechnology: opportunities
and challenges 115
Azadeh Ghaffari, Morteza Abazari and Hamid Reza Moghimi
4.1 Introduction 115
4.2 Wound and its classification 116
4.3 Wound healing process 117
4.3.1 Chronic wounds 120
4.4 Current procedures in wound management 120
4.4.1 Nanotechnology in wound healing 127
4.5 Conclusion and future perspectives 156
References 162
vi Contents
5. Nanotechnology-based therapeutics to
combat biofilms and antibacterial resistance in
chronic wound infections 175
Amanda-Lee Ezra Manicum, Katlego Makgopa,
Tholakele Shabangu, Govindarajan Venkat Kumar,
Ernest C. Agwamba, Leshweni Jerry Shai and Suresh Ghotekar
5.1 Introduction 175
5.2 Development of chronic wound 177
5.2.1 Physiological mechanism of acute wound healing 178
5.2.2 Physiological mechanism of chronic wound healing 180
5.2.3 Microbial colonization and wound repair 182
5.2.4 Bacterial biofilms and wound repair 184
5.3 Limitations in current wound therapy 185
5.3.1 Biological debridement 186
5.3.2 Enzymatic debridement 187
5.3.3 Autolytic debridement 187
5.3.4 Mechanical debridement 187
5.3.5 Conservative sharp and surgical sharp debridement 188
5.4 Advancements in wound dressings and coatings 188
5.4.1 Passive wound dressings 188
5.4.2 Dressing with interaction 189
5.4.3 Advanced wound dressing 190
5.4.4 Smart wound dressing 190
5.5 Nanotherapeutics for wound care 191
5.6 Nanoparticles with antimicrobial properties 192
5.7 Conclusion 196
References 197
6. Smart nanosystems for wound healing and
infection control 207
Hussein Sabit, Mohamed Abdel-Hakeem,
Shaimaa Abdel-Ghany and Didier Montet
6.1 Introduction 207
6.2 Classification of smart nanomaterials 208
6.3 Synthesis of smart nanomaterials 210
6.4 Recent methods for synthesis 210
6.4.1 3D printing 210
6.4.2 Electrospinning 211
6.5 Magnetic responsive nanomaterials 211
6.5.1 Magnetic hyperthermia treatments 212
6.5.2 Magnetic-guided drugs 212
6.6 Light-responsive nanomaterials 213
6.6.1 Photochemical reactions 213
6.6.2 Photothermal nanomaterials 214
Contents vii
6.7 Temperature-responsive nanomaterials 214
6.7.1 Thermosensitive polymers 214
6.7.2 Applications in wound healing and infection
control 215
6.8 Electrical and electrochemical stimuli-responsive
nanomaterials 216
6.8.1 Current conductive polymer 217
6.8.2 Conductive nanofiller 217
6.9 pH-responsive nanomaterials 217
6.9.1 Classification of pH-sensitive polymers 217
6.9.2 Applications in wound healing and infection
control 218
6.10 Redox-responsive nanomaterials 219
6.11 Enzyme/toxin-responsive nanomaterials 220
6.11.1 Mode of action of different enzyme categories 222
6.12 Biological functions of miRNA 223
6.12.1 miRNA and nanomaterials 224
6.12.2 Obstacles facing smart nanoplatforms in clinical
applications 225
6.13 Future directions 228
6.14 Conclusion 229
Acknowledgment 229
Conflict of interest 229
Authors’ contribution 230
References 230
7. Bioengineering of nanomaterials using biological
resources: biofabrication mechanisms,
characterizations, and biomedical applications 239
Kamyar Jounaki, Kasra Morad Soltani, Hossein Vahidi and
Hamed Barabadi
7.1 Introduction 239
7.2 Fabrication of metal-based nanomaterials 241
7.2.1 Green synthesis of nanomaterials mediated by
biological resources: a mechanistic approach 242
7.3 Large-scale production of biosynthesized nanomaterials 247
7.4 Characterization of biogenic metal�based nanomaterials 248
7.4.1 UV�vis spectroscopy 250
7.4.2 Electron microscopy 250
7.4.3 X-ray diffraction 251
7.4.4 Dynamic light scattering 251
7.4.5 Atomic force microscopy 252
7.4.6 Fourier transform infrared spectroscopy 252
7.4.7 Zeta potential analysis 253
7.5 Advantages and limitations of biological methods in
nanomaterials’ synthesis 253
viii Contents
7.6 Biomedical application of bioengineered metal�based
nanomaterials: recent advances 257
7.6.1 Drug delivery potential of nanomaterials 257
7.6.2 Antineoplastic potential of nanomaterials 261
7.6.3 Antioxidant potential of nanomaterials 263
7.6.4 Antimicrobial potential of nanomaterials 264
7.7 Future challenges and conclusion 273
References 273
8. Bacteria-derived nanobiomaterials: exploration of
their wound healing, antimicrobial, and biofilm
inhibitory activities 287
Joana C. Pieretti, Isabella M. Lourenço, Gonzalo R. Tortella,
Ariane Boudier, Igor Clarot and Amedea B. Seabra
8.1 Introduction 287
8.2 Synthesis of nanoparticles 288
8.2.1 Biogenic synthesis 289
8.2.2 Bacteria-mediated synthesis 292
8.3 Physicochemical properties of bacteria-synthesized
nanoparticles 299
8.4 Potential use of biogenic nanoparticles 302
8.4.1 Bacterial infections 303
8.4.2 Wound healing 306
8.4.3 Antibiofilm potential in implants and medical devices 306
8.5 Prospects for the use of bacteria-synthesized nanoparticles:
current status and prediction 309
8.6 Final remarks 311
References 311
9. Mycosynthesis of nanobiomaterials and their wound
healing, antimicrobial, and biofilm inhibitory activities 325
Sunday Adewale Akintelu, Abel Kolawole Oyebamiji,
Seyifunmi Charles Olugbeko, Deborah Omowunmi Afolabi,
Dennisha Magdalene David, Lazarus Obed Livingstone Banda and
Mary Oluwatosin Kaka
9.1 Introduction 325
9.2 Synthesis of nanomaterials 326
9.2.1 Physical methods 327
9.2.2 Chemical methods 328
9.2.3 Biological methods 328
9.2.4 The mechanism for the mycosynthesis of nanoparticles 330
9.3 Factors affecting the mycosynthesis of nanobiomaterials 335
9.3.1 Effect of precursor concentrations and quantity offungal
biomass on mycosynthesis of nanobiomaterials 336
9.3.2 Effect of pH on mycosynthesis of nanobiomaterials 337
Contents ix
9.3.3 Effect of temperature on mycosynthesis of nanobiomaterials 338
9.3.4 Effect of time on mycosynthesis of nanobiomaterials 339
9.3.5 Effect of the culture medium on mycosynthesis of
nanobiomaterials 339
9.4 Characterization of nanobiomaterials 340
9.4.1 Visual observation of color change and UV�visible
spectroscopy 340
9.4.2 Morphology and particle size determination of
mycosynthesized nanobiomaterials 341
9.4.3 X-ray diffraction analysis 342
9.4.4 Energy-dispersive X-ray spectroscopy 343
9.4.5 Functional group determination 344
9.5 Activities of mycosynthesized nanobiomaterials and
applications 344
9.5.1 Biofilm inhibitory and activities of mycosynthesized
nanobiomaterials and their applications 345
9.5.2 Wound healing activities of mycosynthesized
nanobiomaterials 346
9.5.3 Antimicrobial activities of mycosynthesized
nanobiomaterials and their applications 349
9.6 Limitations and challenges 352
9.7 Conclusive remarks and future perspectives 353
References 353
10. Bioengineering of nanomaterials using micro- and
macroalgae and their wound healing, antimicrobial,
and biofilm inhibitory activities 373
Abhinav Prasad, Ashim Chandra Roy, Kunwar Somesh
Vikramdeo and Hamed Barabadi
10.1 Introduction 373
10.2 Microalgae- and macroalgae-mediated biosynthesis of
nanomaterials and their characterization 374
10.3 Potential of algal nanotechnology in wound healing,
antimicrobial, and biofilm inhibition activities 374
10.3.1 Wound healing potential of phycosynthesized
nanomaterials 374
10.3.2 Antibacterial activity of algal-synthesized
nanomaterials and their mechanisms 381
10.3.3 Mechanistic exploration of antifungal potential of
phycosynthesized nanoparticles 384
10.3.4 Antiviral potential of algal nanomaterials 389
10.3.5 Biofilm inhibition potential of algal-synthesized
nanomaterials: a mechanistic insight 390
10.4 Challenges in the clinical development of phycosynthesized
nanomaterials 392
10.5 Conclusion and future perspectives 394
References 395
x Contents
11. Phytonanotechnology: a greener approach for
bioengineering of nanomaterials and their wound
healing, antimicrobial, and biofilm inhibitory activities 407
Junaid Iqbal, Jalal Ahmad, Muhammad Maqsood Ur Rehman,
Hamed Barabadi and Muhammad Ovais
11.1 Phytonanotechnology: emerging paradigms 407
11.2 The interface of nanotechnology, plant, and microbes 409
11.3 Production of green nanomaterials from plant extracts 411
11.4 Optimization and characterization of biological
nanomaterials 414
11.4.1 UV�visible spectroscopy 414
11.4.2 Fourier transform infrared spectroscopy 415
11.4.3 X-ray diffraction 415
11.4.4 Electron microscopy 416
11.4.5 Factors influencing nanoparticles’ biosynthesis 416
11.5 The antibacterial and wound healing potential of
phytonanotechnology 417
11.5.1 Biogenic nanoparticles’ antimicrobial potential 417
11.5.2 Biogenic nanoparticles’ biofilm-inhibiting potential 420
11.5.3 Biogenic nanomaterials’ antifungal potential 422
11.5.4 Biogenic nanomaterials’ antiviral potential 424
11.5.5 The capacity of biogenic nanoparticles to heal wounds 426
11.6 Challenges in clinical development of biogenic
nanobiomaterials 428
11.7 Conclusion and prospective development 430
References 430
12. Bioengineered silver nanoparticles for antimicrobial
therapeutics 443
Hamed Barabadi, Fatemeh Ashouri, Maha Soltani,
Nazanin Azimi Vaziri, Dorsan Rabbanian,
Muthupandian Saravanan, Hossein Vahidi and Mojtaba Ansari
12.1 Introduction 443
12.2 Microbial resistance; a global concern 444
12.3 Current nanotherapeutics to combat microbial resistance 445
12.4 Green nanotechnology: an overview 446
12.5 Bioengineering of silver nanomaterials 448
12.5.1 Bioengineering of nanomaterials using plants 448
12.5.2 Bioengineering of silver nanomaterials using fungi 450
12.5.3 Bioengineering of silver nanomaterials using bacteria 451
12.5.4 Bioengineering of silver nanomaterials using algae 452
12.6 Antimicrobial potential of bioengineered silver
nanomaterials 453
12.6.1 Antibacterial potential of bioengineered silver
nanomaterials 453
Contents xi
12.6.2 Antifungal potential of bioengineered silver
nanomaterials 458
12.6.3 Antiparasitic potential of bioengineered silver
nanomaterials 461
12.7 Conclusion and future outlook 463
References 464
13. Bioengineered gold nanoparticles for antimicrobial
therapeutics 475
Hamed Barabadi, Parisa Behnia, Tina Vadie, Navid Jamshidi,
Kamyar Jounaki, Hossein Vahidi, Mojtaba Ansari and
Muthupandian Saravanan
13.1 Nanoscience and nanotechnology: an introduction 475
13.2 Nanomaterials: types, properties, and applications 476
13.2.1 Types and classification 476
13.2.2 Synthesis of nanomaterials 476
13.2.3 Properties and characteristics of nanomaterials 477
13.3 Resistance to antibiotics: a global threat 477
13.4 Nanostrategies to prevent microbial infections 479
13.4.1 Antibacterial mechanisms of nanoparticles 479
13.5 Gold nanoparticles: properties and biomedical applications 480
13.6 Biological synthesis of gold nanoparticles 481
13.6.1 Herbal-mediated gold nanoparticle synthesis 481
13.6.2 Fungus-mediated gold nanoparticle synthesis 483
13.6.3 Bacteria-mediated gold nanoparticle synthesis 484
13.6.4 Algae-mediated gold nanoparticle synthesis 485
13.7 Antimicrobial performance of biosynthesized gold
nanoparticles 486
13.7.1 Antibacterial performance of biosynthesized gold
nanoparticles 486
13.7.2 Antifungal performance of biosynthesized gold
nanoparticles 487
13.7.3 Antiparasitic performance of biosynthesized gold
nanoparticles 488
13.7.4 Antiviral performance of biosynthesized gold
nanoparticles 489
13.8 Conclusions and future outlook 490
References 490
14. Green nanotechnology�based selenium and titanium
dioxide nanomaterials for antimicrobial applications 497
Hamed Barabadi, Tina Vadie, Navid Jamshidi,
Parisa Behnia and Kiana Mobaraki
14.1 Nanobiotechnology: an overview 497
xii Contents
14.2 Selenium nanomaterials: properties, characteristics, and
applications 498
14.3 Titanium dioxide nanomaterials: properties, characteristics,
and applications 499
14.4 Green nanotechnology�based approaches for the
biosynthesis of selenium and titanium dioxide nanomaterials 500
14.5 Antimicrobial performance of biogenic selenium
nanomaterials 502
14.6 Antimicrobial performance of biogenic titanium dioxide
nanomaterials 507
14.7 Conclusions and future outlook 510
References 510
15. Opportunities and challenges for bioengineered
metallic nanoparticles as future nanomedicine 517
Debasis Nayak, Hitesh Chopra, Ishani Chakrabartty,
Muthupandian Saravanan, Hamed Barabadi and
Yugal Kishore Mohanta
15.1 Introduction 517
15.2 A brief history of biologically synthesized metal
nanoparticles 519
15.2.1 Biological synthesis of metal nanomaterials 521
15.2.2 Advantages of bioengineered nanomaterials 524
15.2.3 Enhancement of mechanical and biological
properties 527
15.3 Market prospects and opportunities 527
15.3.1 Nanotechnology advances 529
15.4 Challenges and future perspectives 530
15.4.1 Toxicity 530
15.4.2 Carcinogenicity 532
15.4.3 Teratogenicity 532
15.4.4 Risk assessments of biologically synthesized
metal nanoparticles 533
15.5 Conclusion 534
Acknowledgment 534
References 535
Index 541
Contents xiii
	Contents

Outros materiais