Prévia do material em texto
Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Short communication High-resolution melting PCR analysis for rapid genotyping of Burkholderia mallei Girault G.a, Wattiau P.b, Saqib M.c, Martin B.a, Vorimore F.a, Singha H.d, Engelsma M.e, Roest H.J.e, Spicic S.f, Grunow R.g, Vicari N.h, De Keersmaecker S.C.J.i, Roosens N.H.C.i, Fabbi M.h, Tripathi B.N.d, Zientara S.a, Madani N.a, Laroucau K.a,⁎ a Paris-Est University, ANSES, Laboratory for Animal Health, Bacterial Zoonosis Unit, European Union Reference Laboratory for Equine Diseases/Glanders, Maisons- Alfort, France bDepartment of Bacterial Diseases, CODA-CERVA (Veterinary and Agrochemical Research Centre), Brussels, Belgium cUniversity of agriculture, Faisalabad, Pakistan d ICAR-National Research Centre on Equines, Hisar, India eWageningenBioveterinary Research, Lelystad, The Netherlands f Croatian Veterinary Institute, Department for Bacteriology and Parasitology, Laboratory for Bacterial Zoonoses and Molecular Diagnosis of Bacterial Diseases, Zagreb, Croatia g Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany h IstitutoZooprofilatticoSperimentaledellaLombardia e dell'EmiliaRomagna "Bruno Ubertini", Pavia, Italy i Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health, Brussels, Belgium A R T I C L E I N F O Keywords: Burkholderia mallei Genotyping HRM A B S T R A C T Burkholderia (B.) mallei is the causative agent of glanders. A previous work conducted on single-nucleotide polymorphisms (SNP) extracted from the whole genome sequences of 45 B. mallei isolates identified 3 lineages for this species. In this study, we designed a high-resolution melting (HRM) method for the screening of 15 phylogenetically informative SNPs within the genome of B. mallei that subtype the species into 3 lineages and 12 branches/sub-branches/groups. The present results demonstrate that SNP-based genotyping represent an in- teresting approach for the molecular epidemiology analysis of B. mallei. 1. Short communication Burkholderia (B.) mallei is the causative agent of glanders in equids and camels, a disease recently qualified as a re-emergent due to the increased number of cases reported in several parts of the world during the last 20 years (Khan et al., 2013). B. mallei is a genetically homo- genous species that is very closely related to the much more diverse species B. pseudomallei from which it recently evolved. Its genome is thought to be continuously evolving through random insertion se- quence-mediated recombination events (Losada et al., 2010). Due to a lack of diversity, only molecular characterization techniques with high discrimination power could enhance genetic differentiation at strain level. Most of the genotyping methods applied to B. mallei were initially developed for B. pseudomallei. Whereas multilocus sequence typing based on 7 housekeeping genes failed to differentiate B. mallei strains which match the ST40 sequence type for nearly all of them (Godoy et al., 2003; Losada et al., 2010), a 23-loci Multiple Locus Variable Number of Tandem repeats Analysis (MLVA) method derived from the 32-loci MLVA method for B. pseudomallei (U'Ren et al., 2007) succeeded to distinguish B. mallei outbreak isolates for example in Pakistan and Emirates (Hornstra et al., 2009; Scholz et al., 2014). However, this method requires the analysis of 23 loci which is technically demanding, expensive and time-consuming. Given that variable number of tandem repeats are inappropriate for determining deep levels of evolutionary relatedness (Hornstra et al., 2009) and given the increasing availability of whole genome sequences (WGS), it is now possible to interrogate nearly every base of the genome and to identify specific single nu- cleotide polymorphisms (SNPs) able to discriminate B. mallei isolates at strain level. The post- real-time PCR high resolution melting (HRM) analysis offers the possibility to discriminate different amplicons based on their melting temperature (Tm) and allows the detection of genetic variations such as SNPs (Tamburro and Ripabelli, 2017). In a previous work, a minimum spanning tree based on 2296 B. mallei specific SNPs extracted from the WGS of 45 strains identified 3 lineages for B. mallei (Laroucau et al., 2018). In this study, inside these 3 lineages (L1 to L3), subdivisions into branches (Br, up to 3), sub- https://doi.org/10.1016/j.meegid.2018.05.004 Received 12 January 2018; Received in revised form 2 May 2018; Accepted 4 May 2018 ⁎ Corresponding author. E-mail address: karine.laroucau@anses.fr (K. Laroucau). Infection, Genetics and Evolution 63 (2018) 1–4 Available online 08 May 2018 1567-1348/ © 2018 Elsevier B.V. All rights reserved. T http://www.sciencedirect.com/science/journal/15671348 https://www.elsevier.com/locate/meegid https://doi.org/10.1016/j.meegid.2018.05.004 https://doi.org/10.1016/j.meegid.2018.05.004 mailto:karine.laroucau@anses.fr https://doi.org/10.1016/j.meegid.2018.05.004 http://crossmark.crossref.org/dialog/?doi=10.1016/j.meegid.2018.05.004&domain=pdf branches (sB, up to 3) and even groups (Gp) could be identified, as illustrated in Fig. 1. A first set of 15 SNPs specific for each of these lineages, branches, sub-branches and groups was identified in silico using BioNumerics 7.6.1 (Applied Maths) and PCR primers targeting these SNPs were designed using Primer 3web version 4.0.0 (http:// www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) (Table 1). Singleplex PCR amplifications were conducted on a ViiA7™ Real-Time PCR instrument (Life Technologies) using the LightCycler® 480 High Resolution Melting Master Mix (Roche Diagnostics). Reaction mixtures consisted of 10 ng DNA, 0.2 μM of each primer, 10 μL Light- Cycler® 480 HRM master mix and 2.5 mM MgCl2 in 20 μL final volume. The following amplification parameters were used: 10min at 95 °C followed by 40 cycles consisting in 30 s at 94 °C, 30 s at 55 °C and 30 s at 72 °C. Samples were next heated to 95 °C for 30 s, cooled down to 65 °C for 1min and heated from 65 °C to 95 °C at a rate of 0.025 °C/s with 25 fluorescence acquisitions/°C. HRM data were analyzed by the ViiA7™ Software version 1.2.1. For each of the SNPs, synthetic DNA oligonu- cleotides carrying either the C/G or A/T substitutions (Eurofins, Germany) were included as controls (Table 1, Supplementary material 1). All yielded amplicons produced a single melting peak. Each peak was characterized by a melting curve, with Tm values depending on the SNP carried by the amplicon. On average, differences in Tm values of about 0.4 to 1.1 °C were observed between the two allelic states (Table 1). This panel of 15 SNPs was first validated on 8 DNA preparations from the 45 fully sequenced strains used for the phylogenetic clustering (Laroucau et al., 2018). As determined from WGS data, all strains clustered within their predicted lineage, branch, sub-branch and/or group, namely L1 for NCTC120/2002734306, L2B2sB1Gp1 for ATCC23344, L2B2sB1Gp2 for NCTC10245/ATCC10399 and China 5, L3B2 for 16-2438_BM#8, and L3B3sB3 for NCTC10229, Ivan and NCTC10247 (Table 2). The developed PCR-HRM method was further applied to 33 DNA preparations from either ancient or contemporary B. mallei strains isolated in Croatia (Croatia_1957), Hungary (64.12 and NCTC10230), India (Mukteswar, NCTC3708, NCTC3709, 3711, 3712, 3851, 3855, NCTC10248(TR) 16-2438_BM#816-2438_BM#816-2438_BM#816-2438_BM#816-2438_BM#816-2438_BM#816-2438_BM#816-2438_BM#8- 102102102102102102102102102 11, strain_1111, strain_1111, strain_1111, strain_1111, strain_1111, strain_1111, strain_1111, strain_1111, strain_11 200272127620027212762002721276200272127620027212762002721276200272127620027212762002721276 200272128020027212802002721280200272128020027212802002721280200272128020027212802002721280 20027343062002734306200273430620027343062002734306200273430620027343062002734306 307630763076307630763076307630763076371237123712371237123712371237123712 6, strain_66, strain_66, strain_66, strain_66, strain_66, strain_66, strain_66, strain_66, strain_6 A188, BURK080A188, BURK080A188, BURK080A188, BURK080A188, BURK080A188, BURK080A188, BURK080A188, BURK080A188, BURK080 A193, BURK081A193, BURK081A193, BURK081A193, BURK081A193, BURK081A193, BURK081A193, BURK081A193, BURK081A193, BURK081 ATCC 10399ATCC 10399ATCC 10399ATCC 10399ATCC 10399ATCC 10399ATCC 10399ATCC 10399 BMQBMQBMQBMQBMQBMQBMQBMQBMQ Bahrain1Bahrain1Bahrain1Bahrain1Bahrain1Bahrain1Bahrain1Bahrain1Bahrain1 BudapestBudapestBudapestBudapestBudapestBudapestBudapestBudapestBudapest China5China5China5China5China5China5China5China5 FMH 23344FMH 23344FMH 23344FMH 23344FMH 23344FMH 23344FMH 23344FMH 23344FMH 23344 FMHFMHFMHFMHFMHFMHFMHFMHFMH GB8 horse 4GB8 horse 4GB8 horse 4GB8 horse 4GB8 horse 4GB8 horse 4GB8 horse 4GB8 horse 4GB8 horse 4 India86-567-2India86-567-2India86-567-2India86-567-2India86-567-2India86-567-2India86-567-2India86-567-2India86-567-2 JHUJHUJHUJHUJHUJHUJHUJHUJHU KC_1092KC_1092KC_1092KC_1092KC_1092KC_1092KC_1092KC_1092KC_1092 Kweiyang#4Kweiyang#4Kweiyang#4Kweiyang#4Kweiyang#4Kweiyang#4Kweiyang#4Kweiyang#4Kweiyang#4 NCTC 10229NCTC 10229NCTC 10229NCTC 10229NCTC 10229NCTC 10229NCTC 10229NCTC 10229 NCTC 10247_v2NCTC 10247_v2NCTC 10247_v2NCTC 10247_v2NCTC 10247_v2NCTC 10247_v2NCTC 10247_v2NCTC 10247_v2 PRL-20PRL-20PRL-20PRL-20PRL-20PRL-20PRL-20PRL-20PRL-20 SR092700ISR092700ISR092700ISR092700ISR092700ISR092700ISR092700ISR092700ISR092700I Turkey10Turkey10Turkey10Turkey10Turkey10Turkey10Turkey10Turkey10Turkey10 Turkey1Turkey1Turkey1Turkey1Turkey1Turkey1Turkey1Turkey1Turkey1 Turkey2Turkey2Turkey2Turkey2Turkey2Turkey2Turkey2Turkey2Turkey2 Turkey3Turkey3Turkey3Turkey3Turkey3Turkey3Turkey3Turkey3Turkey3 Turkey4Turkey4Turkey4Turkey4Turkey4Turkey4Turkey4Turkey4Turkey4 Turkey5Turkey5Turkey5Turkey5Turkey5Turkey5Turkey5Turkey5Turkey5 Turkey7Turkey7Turkey7Turkey7Turkey7Turkey7Turkey7Turkey7Turkey7 Turkey8Turkey8Turkey8Turkey8Turkey8Turkey8Turkey8Turkey8Turkey8 Turkey9Turkey9Turkey9Turkey9Turkey9Turkey9Turkey9Turkey9Turkey9 V-120V-120V-120V-120V-120V-120V-120V-120V-120 ATCC 23344ATCC 23344ATCC 23344ATCC 23344ATCC 23344ATCC 23344ATCC 23344ATCC 23344 20000310632000031063200003106320000310632000031063200003106320000310632000031063 NCTC 10247_v1NCTC 10247_v1NCTC 10247_v1NCTC 10247_v1NCTC 10247_v1NCTC 10247_v1NCTC 10247_v1NCTC 10247_v1 SAVP1SAVP1SAVP1SAVP1SAVP1SAVP1SAVP1SAVP1SAVP1 2002734299, Ivan2002734299, Ivan2002734299, Ivan2002734299, Ivan2002734299, Ivan2002734299, Ivan2002734299, Ivan2002734299, Ivan Turkey6Turkey6Turkey6Turkey6Turkey6Turkey6Turkey6Turkey6Turkey6 2000031281, China_72000031281, China_72000031281, China_72000031281, China_72000031281, China_72000031281, China_72000031281, China_72000031281, China_72000031281, China_7 Bahrain Brazil Burma China France Hungary India Iran NR Pakistan Turkey United Kingdom United States L3 L1 L2 B1 B2 B1 B2 B3 sB1 sB2 sB3 sB2 sB1 Grp2 Grp1 NCTC 10229 16 2438_BM#8 ATCC 10399 China5 2000031063 ATCC 23344 2002734299, Ivan A198, A199(IR) A200(IR) 52.236(IR) 2007_2, 2017_1, 56, KH1, KH2(PK) 3711, 3712, 3851, 3855, 3880, 3881, 3893, 3897, 3912, 3932, 4295(IN) NCTC 10247_v2 NCTC 10247_v1 A187 2002734306 IZLSER1411(IT) RKI 03-0444 NCTC3708(IN) NCTC3709(IN) NCTC10260(TR) Bogor (ID) Mukteswar (IN) Zagreb (YU) Croatia_1957(HR) A B 64.12, NCTC10230(HU) Fig. 1. A. SNP-based tree determined from 45 B. mallei publicly available whole genome sequences. Whole-genome sequences of 45 B. mallei strains present in public databases were aligned and mapped against the reference sequence ATCC 23344 using the BWA algorithm implemented in BioNumerics with 90% parameter identity. Strain-specific SNPs were identified using the BioNumericswgSNP module and then filtered using fixedconditions (minimum 30× coverage, removal of repeated elements, contiguous SNPs, ambiguous and non-informative bases, removal of gaps)(Laroucau et al., 2018). A tree was generatedin BioNumerics using the filtered SNP matrix as input and using the maximum parsimony algorithm (BioNumerics 7.6.1) (Applied Maths). DNA preparations from8 fully sequenced strains initially tested with the panel of SNPs markers are highlighted in yellow.PCR-HRM clustering results for the B. mallei DNAs included in this study, without pre- liminary WGS information, are shown in blue. B. Normalized melting curves obtained for three SNP markers (L1, L2 and L3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) G. Girault et al. Infection, Genetics and Evolution 63 (2018) 1–4 2 http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi 3880, 3881, 3893, 3897, 3912, 3932, 4295), Indonesia (Bogor), Italy (IZSLER1411), Iran (A198, A199, A200, 52.236), Pakistan (2007_2, 2017_1, KH1, KH2 and 56), Turkey (NCTC10260 and NCTC10248), former Yougoslavia (Zagreb), or from unknown origin (A187, RKI_03–04444). Results are summarized in Table 2. The Croatian strain Croatia_1957, the Hungarian strains 64.12 and NCTC10230, the Italian strain IZSLER 1411 and three of the Iranian isolates (A198, A199 and 52.236) clustered within the L3B3sB3 branch. Two of the 14 Indian strains (NCTC3708, NCTC3709) as well as one Iranian isolate (A200) clustered within the L3B2 lineage which also includes the Indian BMQ isolate. Among the Turkish strains, NCTC10260 grouped in L3B3sB3 together with the fully sequenced NCTC10247 strain also isolated in Turkey at the same period, whereas the NCTC10248 strain clustered in L1, a lineage which already includes a Turkish strain 6. The RKI 03–04444 strain of unknown origin clustered in L2B1, along with Bogor, Mukteswar and Zagreb strains. Strain A187 clustered in L1. Five strains collected between 2007 and 2017 in Pakistan and 11 of the recent Indian strains (3711, 3712, 3851, 3855, 3880, 3881, 3893, 3897, 3912, 3932, 4295) grouped in L2B2sB2, together with strains fully se- quenced and recently isolated in these two countries. PCR-HRM data suggest that recent B. mallei isolates fall in three groups with strains from Dubai, UAE, Bahrain clustering in L2B1, strains from India and Pakistan clustering in L2B2sB2 and strains from Brazil clustering in L3B2. This method should be now applied to a larger number of recent strains to confirm this hypothesis. The in silico analysis of the 45 publicly available WGS allowed the design of a first panel of 15 PCR-HRM markers. The SNP clustering determined by the new proposed PCR-HRM method was validated in comparison with publicly available WGS as well as with unpublished WGS data from 29 of the 33 DNA preparations of ancient or con- temporary B. mallei strains included in this study (A187, NCTC10248, IZSLER1411, A198, A199, 64.12, NCTC10230, NCTC10260, 52.236, A200, NCTC3708, NCTC3709, 56, RKI 03–0444, 3711, 3712, 3851, 3855, 3880, 3881, 3893, 3897, 3912, 3932, 4295, Bogor, Mukteswar and Zagreb). Comparative whole-genome sequencing offers now a powerful way for in-depth characterization of pathogens, including the identification of informative SNPs. In the future, with the increase in availability of WGS, new SNP positions will emerge and could be added to the currently PCR-HRM panel used in this study. This new PCR-HRM tool is rapid, reliable and could be used in field investigations in countries where the disease is endemic. Such studies are required to trace back the origin and spread of strains circulating during outbreaks of this important and re-emergent zoonosis. Table 1 List of primers used for this study and melting temperature (Tm) values determined for the respective controls tested 6 times. Subtype name Genomic position Forward primer (5′-3′) Reverse primer (5′-3′) Amplicon size (pb) SNP for the respective subtype SNP for the other subtype Allele Tm values (°C) Allele Tm values (°C) L1 330,697TCGAGGCAATCAGTTAATATCCG CGCGCGGAACAACAATGA 60 C 79,00 ± 0,03 T 78,41 ± 0,06 L2 2,621,027 CGCAGTGAAAGATCGGTGAG CCTGCTGTTCTTCATGGTCG 69 A 83,73 ± 0,03 G 84,17 ± 0,02 L2B1 354,181 TCCCGATCTTCTGGATGG GAAGAGCGCGGACGAATA 68 A 84,39 ± 0,02 G 84,97 ± 0,02 L2B2 1,408,904 ACCCTTACACGATCGAAAGGT GGCCGCTACCCCTAAGATAG 96 C 85,18 ± 0,02 T 84,43 ± 0,02 L2B2sB1 1,853,849 CACCGGCTTCTCGAACTT GGTCGAGCTTCACGATGTC 62 T 83,87 ± 0,03 C 84,34 ± 0,02 L2B2sB1Gp1 1,163,826 CGAACTCTCATCTTCAAGGCA CGTACCTTGCCGCAAAATTG 76 T 79,11 ± 0,02 C 79,71 ± 0,02 L2B2sB1Gp2 559,637 GAAGATCACGACCGTTCAGC TATTACGCCTTGACGTTCGC 60 G 85,01 ± 0,02 A 83,95 ± 0,03 L2B2sB2 707,292 CGAGCCGTTCCGTTTGATG TATCTCAAAACATCGGCCGC 60 T 82,52 ± 0,03 C 83,31 ± 0,04 L3 2,557,840 GTGCCCGTCTTCTTGTACG AAGTGGAACCAGTGGCTGTT 65 T 82,91 ± 0,02 C 83,59 ± 0,03 L3B1 309,945 TTTCTCGTATCTGCCGCTGT TGGAACAGCAGATAGATCACGT 75 T 84,49 ± 0,02 C 85,14 ± 0,01 L3B2 1,767,871 CTTCTCGATCTGCACCGC GACCTGTACATCCGCGACT 66 A 83,66 ± 0,03 G 84,10 ± 0,02 L3B3 135,971 CGCTCGACATGATGAAGAAG CGTCGCGAGATCGTTCAT 77 T 85,08 ± 0,02 C 85,82 ± 0,02 L3B3sB1 155,657 GCGCTCGGGATGAATTTCTT CTTCCTGCGCGTTGTACATG 73 T 81,50 ± 0,03 C 82,18 ± 0,03 L3B3sB2 1,560,255 AGATCGTCGACTCGGTGGT CAGCACGAATTTGTTCGAGA 89 A 85,29 ± 0,04 G 85,96 ± 0,03 L3B3sB3 922,706 CTGCTCGATGCAGCCTTC ATGCCGCTCTACCTGTCG 72 T 85,86 ± 0,02 C 86,38 ± 0,01 Table 2 List of B. mallei DNA used for this study and PCR-HRM clustering results. Name Country Host Year of isolation SNP clustering found by HRM analysis 16-2438_BM#8 Brazil Mule 2016 L3B2 ATCC23344 Burma Human 1944 L2B2sB1Gp1 NCTC10245/ ATCC10399 China Horse 1956, 1942? L2B2sB1Gp2 China 5 China Horse 1956 L2B2sB1Gp2 Croatia_1957 Croatia – 1957 L3B3sB3 64.12 Hungary Horse 1961 L3B3sB3 NCTC10229 Hungary unknown 1961 L3B3sB3 NCTC10230 Hungary Horse 1961 L3B3sB3 Ivan Hungary Horse 1961 L3B3sB3 NCTC3708 India unknown 1932 L3B2 NCTC3709 India Horse 1932 L3B2 Mukteswar India Horse – L2B1 3711 India Mule 2015 L2B2sB2 3712 India Horse 2015 L2B2sB2 3851 India Horse 2016 L2B2sB2 3855 India Horse 2016 L2B2sB2 3880 India Mule 2016 L2B2sB2 3881 India Horse 2016 L2B2sB2 3893 India Mule 2016 L2B2sB2 3897 India Horse 2016 L2B2sB2 3912 India Mule 2016 L2B2sB2 3932 India Mule 2016 L2B2sB2 4295 India Horse 2018 L2B2sB2 Bogor Indonesia Horse – L2B1 IZSLER 1411 Italy Horse 1959 L3B3sB3 A198 Iran Horse 1948 L3B3sB3 A200 Iran Horse 1948 L3B2 52.236 Iran Mule 1952 L3B3sB3 A199/strain 324 Iran Horse 1954 L3B3sB3 2007_2 Pakistan Gelding 2007 L2B2sB2 2017_1 Pakistan Donkey 2017 L2B2sB2 KH1 Pakistan Gelding 2013 L2B2sB2 KH2 Pakistan Gelding 2013 L2B2sB2 56 Pakistan Horse 2015 L2B2sB2 NCTC10247 Turkey unknown 1960 L3B3sB3 NCTC10260 Turkey Human 1949 L3B3sB3 NCTC10248 Turkey Human 1950 L1 NCTC120/ 2002734306 UK Unknown 1920 L1 Zagreb Yugoslavia Horse – L2B1 A187/strain A – – 1954 L1 RKI 03-04444 – – – L2B1 G. Girault et al. Infection, Genetics and Evolution 63 (2018) 1–4 3 Acknowledgments This project was supported by the European Commission's Directorate-General for Health and Consumers (EC n°180/2008). We would like to acknowledge Christophe Cordevant from the Anses sci- entific direction for his precious support as well as the fruitful colla- boration of the CRBIP - Biological Resource Center of Institut Pasteur, Paris, France, for providing some of the bacterial strains used in this study. Appendix A. Supplementary data Supplementary data to this article can be found online at https:// doi.org/10.1016/j.meegid.2018.05.004. References Godoy, D., Randle, G., Simpson, A.J., Aanensen, D.M., Pitt, T.L., Kinoshita, R., Spratt, B.G., 2003. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderiapseudomallei and Burkholderia mallei. J. Clin. Microbiol. 41 (5), 2068–2079. Hornstra, H., Pearson, T., Georgia, S., Liguori, A., Dale, J., Price, E., O'Neill, M., Deshazer, D., Muhammad, G., Saqib, M., Naureen, A., Keim, P., 2009. Molecular epidemiology of glanders, Pakistan. Emerg. Infect. Dis. 15, 2036–2039. Khan, I., Wieler, L.H., Melzer, F., Elschner, M.C., Muhammad, G., Ali, S., Sprague, L.D., Neubauer, H., Saqib, M., 2013. Glanders in animals: a review on epidemiology, clinical presentation, diagnosis and countermeasures. Transbound Emerg. Dis. 60, 204–221. Laroucau, K., Lucia de Assis Santana, V., Girault, G., Martin, B., Miranda da Silveira, P.P., Brasil Machado, M., Joseph, M., Wernery, R., Wernery, U., Zientara, S., Madani, N., 2018. First molecular characterisation of a BrasilianBurkholderia mallei strain isolated from a mule in 2016. Infect. Genet. Evol. 57, 117–120. Losada, L., Ronning, C.M., DeShazer, D., Woods, D., Fedorova, N., Kim, H.S., Shabalina, S.A., Pearson, T.R., Brinkac, L., Tan, P., Nandi, T., Crabtree, J., Badger, J., Beckstrom- Sternberg, S., Saqib, M., Schutzer, S.E., Keim, P., Nierman, W.C., 2010. Continuing evolution of Burkholderia mallei through genome reduction and large-scale re- arrangements. Genome Biol. Evol. 2, 102–116. Scholz, H.C., Pearson, T., Hornstra, H., Projahn, M., Terzioglu, R., Wernery, R., Georgi, E., Riehm, J.M., Wagner, D.M., Keim, P.S., Joseph, M., Johnson, B., Kinne, J., Jose, S., Hepp, C.M., Witte, A., Wernery, U., 2014. Genotyping of Burkholderia mallei from an outbreak of glanders in Bahrain suggests multiple introduction events. PLoSNegl Trop Dis. 8 (9), e3195. Tamburro, M., Ripabelli, G., 2017. High resolution melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: a comprehensive review of the literature. Ann. Ig. 29 (4), 293–316. U'Ren, J.M., Schupp, J.M., Pearson, T., Hornstra, H., Friedman, C.L., Smith, K.L., Daugherty, R.R., Rhoton, S.D., Leadem, B., Georgia, S., Cardon, M., Huynh, L.Y., DeShazer, D., Harvey, S.P., Robison, R., Gal, D., Mayo, M.J., Wagner, D., Currie, B.J., Keim, P., 2007. Tandem repeat regions within the Burkholderiapseudomallei genome and their application for high resolution genotyping. BMC Microbiol. 7, 23. G. Girault et al. Infection, Genetics and Evolution 63 (2018) 1–4 4 https://doi.org/10.1016/j.meegid.2018.05.004 https://doi.org/10.1016/j.meegid.2018.05.004 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0010 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0010 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0010 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0010 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0015 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0015 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0015 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0025 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0025 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0025 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0025 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0030 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0030 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0030 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0030 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0035 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0035 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0035 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0035 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0035 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0040 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0040 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0040 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0040 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0040 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0045 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0045 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0045 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0045 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0050 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0050 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0050 http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0050http://refhub.elsevier.com/S1567-1348(18)30244-2/rf0050 High-resolution melting PCR analysis for rapid genotyping of Burkholderia mallei Short communication Acknowledgments Supplementary data References