Prévia do material em texto
Renato Brito Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br Capítulo 17 In terações entre cargas elétr icas e campos magnéticos 1 - ÍMÃS Os ímãs ou magnetos são corpos que possuem a capacidade de atrair o ferro e outros materiais. Tal propriedade tem o nome de magnetismo e as regiões de um ímã onde as ações magnéticas são mais intensas denominam-se polos magnéticos. Todo ímã sempre tem dois polos. Nos ímãs em forma de barra, por exemplo, os polos localizam-se em suas extremidades. Primeira lei das Ações Magnéticas Polos magnéticos de mesmo nome se repelem e polos magnéticos de nomes diferentes se atraem. a) b) c) Em a e b os ímãs se repelem, pois estão próximos polos de mesmo nome, norte-norte e sul-sul, respectivamente. Em c os ímãs se atraem, já que foram aproximados polos de nomes diferentes A Primeira Lei das Ações Magnéticas nos leva a concluir que se o polo norte magnético da agulha da bússola aponta para o Polo Norte geográfico, é porque no Polo Norte geográfico existe um polo sul magnético. Da mesma forma, no Polo Sul geográfico existe um polo norte magnético. Salientamos ainda que, na verdade, os polos geográficos e os polos magnéticos da Terra não estão exatamente no mesmo local. Foi por isso que dissemos anteriormente que a agulha da bússola indica aproximadamente a direção Norte-Sul geográfica. Segunda lei das Ações Magnéticas (lei de Coulomb) Charles Augustin de Coulomb (1736-1806) O físico francês Charles Augustin de Coulomb (1736-1806) enunciou, por volta de 1785, a lei que leva o seu nome. De acordo com essa lei: Dois polos magnéticos se atraem ou se repelem na razão inversa do quadrado da distância que os separa. Dobrando-se a distância entre os polos, a intensidade das forças reduz-se a um quarto do valor inicial. O Princípio da inseparabilidade dos polos de um ímã A experiência mostra que é impossível separar os polos magnéticos de um ímã. De fato, quando dividimos um ímã ao meio obtemos dois outros ímãs, cada um com seus próprios polos norte e sul. Se dividirmos esses dois novos ímãs, obteremos quatro ímãs também com seus próprios polos norte e sul e assim sucessivamente, até a escala subatômica. A figura a seguir ilustra o fato: É impossível separar os polos magnéticos de um ímã. Cada pedaço continuará sendo sempre um dipolo magnético. 2. O CAMPO MAGNÉTICO Um ímã provoca o aparecimento de forças atrativas em materiais ferromagnéticos (ferro, níquel, cobalto e algumas ligas), mesmo não estando em contato com eles. Assim, um ímã cria, à sua volta, uma região de influências, denominada campo magnético, isto é, o campo que transmite a força magnética Orientação do Campo magnético ( B ) Tomemos uma placa de papelão disposta horizontalmente e coloquemos sob ela uma barra imantada: Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 130 Pulverizando limalha de ferro por toda a placa de papelão. observamos que os fragmentos de ferro dispõem-se segundo linhas que se estendem de um polo magnético ao outro. Essas linhas são denominadas linhas de indução do campo magnético e podem ser notadas na foto a seguir: A figura seguinte representa esquematicamente as linhas de indução do campo magnético da barra: Observemos, nessa figura, que as linhas de indução estão orientadas, externamente ao ímã, do polo norte magnético para o polo sul magnético. Isso é uma convenção. As linhas de indução orientam-se do polo norte para o polo sul. Observemos, ainda, nessa mesma figura, que o vetor indução magnética B é estabelecido de modo a tangenciar a linha de indução em cada ponto, tendo a mesma orientação dela. Nessa figura, a metade negra da agulha magnética é o seu polo norte. A configuração do campo magnético gerado peIa barra também pode ser percebida deslocando-se bússolas ao redor dela e ao longo da placa. Em cada posição, a agulha magnética dispor-se-á numa direção que é a direção do vetor indução magnética B nessa posição. Além disso, o polo norte magnético da agulha apontará no sentido estabelecido para B. Todas as bússolas se alinham ao campo magnético gerado pelo ímã. A palavra chave, para entender o comportamento das bússolas, quando imersas em campo magnéticos, é “alinhamento”. Notas: • Admitimos que, nas proximidades do ímã, o campo criado por ele é muito mais intenso que o campo magnético terrestre. Se não fosse assim, a agulha se alinharia na direção do campo resultante do ímã e da Terra. • Cada fragmento da limalha de ferro imanta-se na presença de um campo magnético e permanece imantado enquanto esse campo não é removido Por isso, na experiência descrita no início deste item, cada fragmento de ferro comporta-se como uma pequena agulha magnética. 3 - O CAMPO MAGNÉTICO DA TERRA A Terra pode ser considerada um imã gigantesco. O magnetismo terrestre é atribuído a enormes correntes elétricas que circulam no núcleo do planeta, que é constituído de ferro e níquel no estado líquido, devido às altas temperaturas. Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 131 Quando um ímã qualquer é suspenso pelo seu centro de massa, como no caso da agulha magnética da bússola, ele se alinha aproximadamente na direção Norte-Sul geográfica do local, isto é, se alinha ao campo magnético terrestre. A extremidade do ímã que se volta para o Polo Norte geográfico recebe o nome de polo norte magnético. Da mesma forma, a extremidade que aponta para o Polo Sul geográfico chama-se polo sul magnético. Entretanto, como sabemos, polos de mesmo nome se repelem e de nomes contrários se atraem. Então podemos concluir que: I) se a extremidade preta da agulha magnética (polo norte magnético) aponta para uma região terrestre próxima ao polo norte geográfico (ártico) é porque nessa região da Terra existe um polo sul magnético nesse grande ímã redondo; II) se a extremidade branca da agulha magnética (polo sul magnético) aponta para uma região terrestre próxima ao polo sul geográfico (antártico) é porque nessa região da Terra existe um polo Norte magnético nesse grande ímã redondo; Comportamento de bússolas sob ação do campo magnético terrestre – mais uma vez, a palavra chave é “alinhamento”. A figura anterior mostra que o eixo magnético da Terra é inclinado em relação ao seu eixo de rotação. O polo norte magnético desse ímã Terra encontra-se em seu polo antártico, enquanto que o seu polo sul magnético, no seu polo ártico. 4 - CAMPO MAGNÉTICO UNIFORME Campo Magnético uniforme é aquele em que o vetor indução magnética B tem o mesmo módulo, a mesma direção e o mesmo sentido em todos os pontos do meio, suposto homogêneo. No campo magnético uniforme, as linhas de indução são retas paralelas igualmente espaçadas e orientadas. O campo magnético na região destacada na figura a seguir, por exemplo, é aproximadamente uniforme. Consideração importante: Seja um campo magnético uniforme onde as linhas de indução são perpendiculares ao plano desta página. Se o sentido do campo for para fora do papel, ele será representado por um conjunto de pontos uniformemente distribuídos, como mostra a figura a seguir: Se ocorrer o contrário, isto é, se o sentido do campo for para dentro do papel, ele será representado por um conjunto de cruzinhas também uniformemente distribuídas, conforme a figura: Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 132 5 - AÇÃO DO CAMPO MAGNÉTICO SOBRE UMA AGULHA IMANTADA Quando uma agulha magnética é colocada num campomagnético, surge, no polo norte, uma força F1 de mesma direção e mesmo sentido que o vetor B. No polo sul, por sua vez, surge outra força F2 de mesma direção, mas de sentido oposto ao de B. As forças F1 e F2 fazem a agulha magnética alinhar-se com o vetor B, com o polo norte apontando no sentido deste. A palavra chave é alinhamento. A bússola sempre fica alinhada ao campo magnético B que age sobre ela. Destaquemos, então, que: Uma agulha magnética imersa num campo magnético alinha-se com o vetor indução magnético B, ficando o polo norte da agulha apontado no sentido de B. 6 - FORÇA MAGNÉTICA AGINDO SOBRE CARGAS ELÉTRICAS A força magnética Fm é bastante exótica e tem características muito peculiares, quando comparadas à força elétrica Fe. Para estabelecermos uma comparação, recordemos as características básicas da força elétrica: Quando uma carga elétrica q é colocada no interior de um campo elétrico E (não originado por essa carga própria carga), ela sofre uma força elétrica Fe tal que: • sua intensidade é dada, simplesmente, pela expressão Fe = q.E. Quanto maior for a carga elétrica q e quanto mais intenso for o campo elétrico E agindo sobre ela, maior será a força elétrica que esse campo elétrico exercerá sobre essa carga. • a intensidade da força elétrica, portanto, independe da velocidade V com que a carga se move através do campo. Quer ela esteja parada, quer ela esteja se movendo, a intensidade da força elétrica atuante sobra a partícula será simplesmente dada pela expressão Fe = q.e. • A força elétrica Fe que age sobre uma carga q sempre tem a mesma direção do campo elétrico E que a transmite. O sentido dessa força será o mesmo sentido do campo, quando essa carga elétrica é positiva; e terá o sentido oposto ao do campo, caso a carga elétrica q seja negativa. A seguir, colocaremos uma carga elétrica q no interior de um campo magnético B e descreveremos as características da força magnética Fm que agirá sobre essa carga: • A força magnética Fm que age sobre uma carga elétrica q livre depende da velocidade V com que essa se move. • Se a carga elétrica q estiver em repouso ( v = 0) no interior desse campo B , nenhuma força magnética agirá sobre ela (Fm = 0); • Se a carga elétrica estiver se movendo, porém na mesma direção do campo B, isto é, se a sua velocidade for paralela ao campo B, nenhuma força Fm agirá sobre essa carga ( Fm = 0). • Se a carga elétrica se mover com uma velocidade V⊥ perpendicular ( = 90o) ao campo magnético B, ficará sujeita a uma força magnética que desviará a sua trajetória. Na figura a seguir, um canhão de prótons está acoplado a um tubo de vidro onde se fez o vácuo. Sua extremidade mais larga é uma tela recoberta internamente com tinta fluorescente, de modo que o ponto atingido pelos prótons torna-se luminescente. Na ausência do ímã representado na figura, os prótons emitidos pelo canhão movem-se sensivelmente em linha reta, atingindo o ponto P da tela. Na presença do ímã, entretanto, a trajetória modifica-se e os prótons desviam-se para cima, atingindo P' em vez de P. Todos essas características da força magnética que atua sobre uma carga q, se movendo num campo magnético uniforme B, estão sintetizadas na expressão abaixo: Fm = B . q . V. sen • Fm = força magnética medida em newtons • B = campo magnético que age sobre a carga q, medido em teslas T. • q = módulo da carga elétrica sujeita à ação do campo B, medida em coulombs. • V = velocidade da carga elétrica em m/s • = o ângulo formado entre os vetores V e B: A expressão acima confirma as características da força magnética Fm: 1) se a partícula tiver velocidade nula V = 0 (no referencial da fonte que gera esse campo magnético B) , teremos Fm = 0 2) se a partícula se mover paralelamente ao campo magnético ( = 0o) ou anti-paralelamente ( = 180o), teremos Fm = 0. Isto se dá pelo fato de que apenas a componente da velocidade perpendicular ao campo B (denominada V⊥) é que sofre a ação desse campo magnético, e para = 0o ou 180o, não haverá esta componente V⊥ da velocidade. 7 - ORIENTAÇÃO DA FORÇA MAGNÉTICA FM Seja uma partícula com carga q que está se movendo com velocidade V através de um campo magnético B, sob ação de uma força magnética Fm. Seja BV o plano definido pelos vetores B e V, plano esse que se encontra destacado em cinza na figura a seguir: Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 133 B V MF Plano BV A força magnética sempre é, simultaneamente, perpendicular aos vetores B e V, qualquer que seja o ângulo formado entre esses vetores B e V. Assim, a força magnética sempre é perpendicular ao plano BV definido por esses vetores B e V Direção da força magnética: A força magnética Fm que age na carga elétrica q é sempre perpendicular ao plano BV, isto é, Fm é perpendicular a B e perpendicular a V, em qualquer instante, sempre, independente do ângulo formado entre B e V. Regra da mão direita para a carga positiva: A regra da mão direita espalmada, que está de acordo com as observações experimentais, permite determinar a direção e o sentido da força magnética Fm. Para isso, apontamos, com a mão direita espalmada, o polegar (dedão) no sentido da velocidade V e os outros quatro dedos no sentido de B. A força Fm será, então, perpendicular à palma da mão, saindo dela, se a carga for positiva. Regra da mão direita para a carga negativa: Se a carga for negativa, a força magnética terá sentido oposto ao que teria se a carga fosse positiva. Neste caso, a força também é perpendicular à palma da mão, mas entrando na palma dela. 8 - TRAJETÓRIAS DE CARGAS ELÉTRICAS EM MOVIMENTO EM CAMPO MAGNÉTICO UNIFORME Quando uma partícula se move através de um campo magnético estático (cujo valor não varia com o tempo) B uniforme (cujo valor não varia de um ponto para outro ponto do espaço) , que tipo de trajetórias ela pode descrever ? Analisaremos a seguir as 3 possíveis trajetórias para esse movimento admitindo que a força magnética é a única força atuando na partícula eletrizada, após o lançamento. Caso 1: A velocidade V tem a mesma direção de B: Neste caso, o campo magnético B não age na partícula, a força magnética FM sobre ela será nula (FM = 0). A partícula atravessará o campo sem sofrer desvio, em MRU, qualquer que seja o sinal de sua carga elétrica. Caso 2: A velocidade V tem direção perpendicular a B: Temos, na figura a seguir, um campo magnético uniforme perpendicular a esta página e saindo dela. Uma partícula de massa m, eletrizada com carga q, é lançada perpendicularmente ao campo, isto é, V ⊥ B : Como é característico da Fmag, essa força sempre age perpendicularmente à velocidade V da partícula (Fmag ⊥ V) , alterando a direção da sua velocidade e, consequentemente, alterando a direção do seu movimento (que será curvilíneo) , sem alterar o módulo da velocidade. Mas qual será, então, a força que estará agindo paralelamente à velocidade dessa partícula, a fim de alterar o módulo da sua velocidade ? Pelo que percebemos, sendo a Fmag a única força agindo sobre a partícula, não haverá forças tangenciais ao seu movimento que, portanto, se dará com velocidade escalar constante, isto é, com aceleração escalar nula, caracterizando um movimento uniforme. Do exposto, conclui-se que: Todo movimento de cargas elétricas sob ação exclusivas de forças magnéticas (não nulas) será curvilíneo e uniforme. As mais variadas trajetórias curvilíneas podem ser obtidas, tais com circunferências, hélices cilíndricas, hélices cônicas etc mas, ainda assim, em qualquer caso, o movimento será uniforme.A 2ª lei de Newton, na direção radial ou centrípeta permite escrever: FRCTP = FIN − FOUT = m. actp Fm − 0 = m. R v 2 B.q.V.sen90o = m. R v 2 B.q v.m R = Vemos que o raio R da trajetória descrita pela partícula depende dos fatores massa m, velocidade v e campo magnético uniforme (B), grandezas essas que são constantes no tempo e no Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 134 espaço, o que implica que o raio de curvatura (R) também é constante. Por isso, a trajetória curvilínea será uma circunferência. Assim, pode-se concluir que: Quando uma partícula eletrizada é lançada perpendicularmente a um campo magnético B uniforme, ela desloca-se em movimento circular e uniforme de raio R, dado por: B.q v.m R = O período desse MCU pode ser calculado por: T = = = B.q V.m . V 2. V .R2. V volta uma durante percorrida distância B.q m..2 T = Assim, pode-se concluir que: Quando uma partícula eletrizada é lançada perpendicularmente a um campo magnético B uniforme, ela desloca-se em movimento circular e uniforme de período T dado por: B.q m..2 T = Note que: • O período T desse MCU independe da velocidade V com que a partícula penetra o campo magnético B ! Isso é incrível, por isso leia de novo esse parágrafo ! ☺ • Partículas com mesma razão carga-massa (q/m), lançadas perpendicularmente a um campo magnético B uniforme, descreverão MCU’s de períodos T idênticos, independente de suas velocidades v ! • Se a velocidade V da partícula duplicar, duplicará também o raio R do sua trajetória circular e o comprimento C da circunferência C = 2..R, mantendo inalterado o período T do seu movimento. Caso 3: A velocidade v forma um ângulo qualquer com B: O caso 1 mostrou que uma velocidade V paralela ao campo magnético uniforme ( V // B) não sofre a ação desse campo e, nesse caso, a partícula se move em MRU. O caso 2 mostrou que uma velocidade V perpendicular ao campo magnético uniforme B (V⊥B) leva a partícula a descrever uma trajetória circular MCU. No presente caso 3, a partícula será lançada obliquamente ao campo magnético B, com uma velocidade V formando um ângulo com ele. Decompondo essa velocidade V em suas componentes V// = V.cos e V⊥ = V.sen, podemos dizer que essa partícula está penetrando o campo magnético dotada, simultaneamente, de duas velocidades V// e V⊥. Ora, a componente V// da velocidade leva partícula a descrever um MRU paralelamente ao campo B (caso 1) , enquanto a componente V⊥ leva a partícula a descrever um MCU (caso 2) perpendicularmente ao campo B. Como será um movimento que contenha, simultaneamente, as duas velocidades ? Na direção de B, o movimento é retilíneo e uniforme. Na direção perpendicular a B, o movimento é circular e uniforme. Ora, será a superposição desses dois movimentos, como mostra a figura a seguir : A partícula descreverá um MCU num plano perpendicular ao campo B com uma velocidade tangencial V⊥ = V.sen. Esse plano, por sua vez, se moverá ortogonalmente ao campo B em Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 135 MRU com velocidade V// = V.cos. Portanto, o movimento resultante é helicoidal e uniforme, semelhante a uma mola comum. Note que, nesse caso, o MCU é descrito com uma velocidade tangencial V⊥= V.sen e seu novo raio será dado por: q.B m.V.sen B .q v.m RH == ⊥ Ao passo que seu período será: B .q m ..2 B.q sen.V.m . V.sen 2. V .R2. T H H = = = ⊥ Vemos que o período é igual ao período que obtivemos para o caso 2. O passo P da hélice (análogo ao comprimento de onda de uma onda) é o deslocamento sofrido pela partícula (durante seu MRU paralelo a B) a cada intervalo de tempo correspondente a um período T do MCU (veja esse passo P representado na figura anterior). Assim: Distância = V x T , para movimentos uniformes, portanto: Passo = V// x T = V.cos x B.q m..2 = B.q cos.V.m..2 Conclusão: vemos que, quando uma carga q é lançada num campo magnético uniforme B, três trajetórias são possíveis: Forma da trajetória Condição necessária 1) Retilínea (MRU) V // B, = 0o ou =180o 2) Curvilínea (MCU) V ⊥B, = 90o 3) Helicoidal 90o, 180o , 270o, 360o 9 – O FILTRO DE VELOCIDADES A força magnética Fm sobre uma partícula carregada que se move num campo magnético B uniforme pode ser equilibrada (cancelada) por uma força elétrica FE, se os módulos e as direção dos campos magnético B e elétrico E sofrem convenientemente ajustados: A figura mostra uma região do espaço entre as placas de um capacitor onde há um campo elétrico E e um campo magnético perpendicular B a este campo elétrico (o campo magnético é produzido por um ímã que não aparece na figura). Imaginemos uma partícula de carga q que entra nesta região com velocidade V→, como mostra a figura anterior. Se q for positiva, a força elétrica de modulo FE = q.E esta dirigida para baixo e a força magnética de módulo Fm = q.v.B para cima . Se a carga for negativa, o sentido de ambas as forças se inverte, mas ainda permanecerão dirigidas em sentidos opostos, por isso o sinal da carga elétrica é irrelevante nessa análise. As duas forças se equilibram se: FE = FM |q|.E = |q|.v.B B E v = (velocidade filtrada) Independente da massa ou a carga da partícula, se ela estiver se movendo com essa velocidade V = E/B, atravessará os dois campos sem sofrer deflexão e emergirá pelo orifício lateral, isto é, essa partícula será filtrada (veja figura abaixo). X X X X X X X X X X X X X X X X X X B E V E V B = partícula filtradaFE FMag E V B E V B Se partícula tiver uma velocidade grande demais V > E/B, teremos B.q.V > q.E e, portanto, a partícula será desviada na direção da força magnética FM (veja figura anterior). Se uma partícula tiver uma velocidade pequena demais V < E/B, teremos B.q.V < q.E e, portanto, a partícula será desviada na direção da força elétrica FE . A partícula sempre é desviada para o lado da força de maior intensidade logicamente ☺ ! Esta configuração dos campos, que só deixa passar as partículas com uma certa velocidade, é um filtro de velocidades. V E B Vetores V, E e B formando um triedo tri-ortogonal XYZ, isto é, vetores V, E e B mutuamente perpendiculares entre si, dois a dois. Deduzimos, então que as condições para que tenhamos um filtro de velocidades são: 1) Campos elétrico E e magnético B uniformes e perpendiculares entre si ( B ⊥ E) 2) Velocidade V da partícula perpendicular ao campo elétrico E e ao campo magnético B. As condições para que uma partícula com velocidade V seja filtrada são: 3) As forças elétrica FE e magnética FM devem ter mesma direção (o que já está garantido pelas condições 1 e 2) e sentidos opostos. 4) A velocidade da partícula deve valer V = E/B. Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 136 As condições 1 e 2 podem ser reunidas numa só condição: os vetores B, E e V devem formar um triedro tri-ortogonal XYZ, isto é, devem ser mutuamente perpendiculares entre si, dois a dois. 10 – O TRABALHO REALIZADO PELA FORÇA MAGNÉTICA Qualquer que seja o formato da trajetória descrita por uma carga elétrica q se movendo através de um campo magnético B estático, é importante notar que: • A Força magnética Fm que atua sobre sobre essa carga é perpendicularà sua velocidade V em cada instante. V V V Fm Fm Fm q q q • Assim, a força magnética Fm, portanto, é sempre perpendicular à trajetória descrita pela partícula, em cada instante. • Consequentemente, o trabalho realizado por uma força magnética Fm agindo sobre uma carga livre é sempre nulo, visto que essa Fm será perpendicular à trajetória em cada instante. • Isso mostra que a força magnética é incapaz de aumentar ou diminuir a energia cinética Ecin dessa carga elétrica, visto que não realiza trabalho. • A força magnética Fm agindo sobre essa partícula terá uma função exclusivamente centrípeta, alterando apenas a direção da sua velocidade durante o movimento. • A força magnética, portanto, é incapaz de alterar a velocidade escalar (rapidez ou módulo da velocidade) da partícula. Se a força resultante agindo sobre uma carga elétrica livre for a força magnética, então o movimento realizado por ela será, necessariamente, um movimento curvilíneo uniforme (MU) – velocidade escalar constante, aceleração escalar nula, independente do campo magnético ser uniforme ou não. • A força magnética sempre age perpendicularmente à velocidade e, portanto, à trajetória da partícula, portanto, não realiza trabalho. Assim, não há energia potencial associada à força magnética (não existe o conceito de energia potencial magnética) e, portanto, a força magnética é dita não-conservativa. Esses fatos, associados ao fato de não existirem monopolos magnéticos, fazem com que as linhas de campo magnético sejam sempre fechadas, ao contrário das linhas do campo eletrostático, que são sempre abertas. 11 - AURORAS BOREAIS A aurora polar é um belíssimo fenômeno óptico composto de um brilho luminoso variável, um belíssimo espetáculo de cores pulsantes observado nos céus noturnos nas regiões polares, em decorrência do impacto de partículas de vento solar com a alta atmosfera da Terra, canalizadas pelo campo magnético terrestre. Em latitudes do hemisfério norte é conhecida como aurora boreal (nome batizado por Galileu Galilei em 1619, em referência à deusa romana do amanhecer, Aurora, e Bóreas, deus grego, representante dos ventos nortes). Ocorre normalmente nas épocas de setembro a outubro e de março a abril. Em latitudes do hemisfério sul é conhecida como aurora austral. O fenômeno não é exclusivo somente à Terra, sendo também observável em outros planetas do sistema solar como Júpiter, Saturno, Marte e Vênus. A aurora boreal e austral são fenômenos atmosféricos que constituem um belo espetáculo de luz e de cores. Veja essa e outras imagens reais e “coloridas mesmo” no link www.fisicaju.com.br/aurora, vale a pena conferir. Procure no youtube vídeos sobre Aurora boreal, voce vai ficar chocado com esse espetáculo de rara beleza ! Os termos aurora boreal e aurora austral significam, respectiva- mente, “luzes do norte” e “luzes do sul”. Esses fenômenos são conhecidos desde a antiguidade, sendo mencionados na mitologia dos esquimós e de outros povos, que lhes atribuíam origem sobrenatural. Podem apresentar-se com variadas formas ( cortinas, arcos, raios etc) e cores. Ventos Solares emanados pelo sol. O campo magnético da Terra nos protege desses ventos, mas eles são os responsáveis pela produção das auroras boreais ao excitarem os níveis eletrônicos das moléculas dos gases da nossa atmosfera. Uma explicação bem elaborada desse fenômeno só foi possível após o lançamento dos primeiros satélites artificiais. Os cientistas descobriram que os íons que constituíam o cinturão de Van Allen se movem freneticamente e colidem com os gases atmosféricos principalmente com os átomos e moléculas de oxigênio e nitrogênio, fazendo com que eles emitam as luzes que constituem a aurora. Esses fenômenos atmosféricos são vistos especialmente no céu das regiões próximas aos polos terrestres, onde moram os esquimós. Procure no Youtube vídeos sobre a Aurora Boreal, são de encher os olhos ! É provavelmente um dos fenômenos naturais mais mais belos de todos ! A aurora polar terrestre é causada quando partículas emitidas pelo sol (ventos solares) tais como elétrons, prótons e partículas alfa atingem os gases da atmosfera terrestre. A luz é produzida quando eles colidem com átomos da atmosfera do planeta, Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 137 predominantemente oxigênio e nitrogênio, tipicamente em altitudes entre 80 e 150 km. Cada colisão emite parte da energia da partícula para o átomo que é atingido, um processo de ionização, dissociação e excitação de partículas. Quando ocorre ionização, elétrons são ejetados, os quais carregam energia e criam um efeito dominó de ionização em outros átomos. A excitação resulta em emissão, levando o átomo a estados instáveis, sendo que estes emitem luz em frequências específicas enquanto se estabilizam. Enquanto a estabilização do oxigênio leva até um segundo para acontecer, o nitrogênio estabiliza-se e emite luz instantaneamente. Tal processo, que é essencial para a formação da ionosfera terrestre, é comparável ao de uma tela de televisão, no qual elétrons atingem uma superfície de fósforo, alterando o nível de energia das moléculas e resultando na emissão de luz. De modo geral, o efeito luminoso é dominado pela emissão de átomos de oxigênio em altas camadas atmosféricas (em torno de 200 km de altitude), o que produz a tonalidade verde. Quando a tempestade é forte, camadas mais baixas da atmosfera são atingidas pelo vento solar (em torno de 100 km de altitude), produzindo a tonalidade vermelho escura pela emissão de átomos de nitrogênio (predominante) e oxigênio. Átomos de oxigênio emitem tonalidades de cores bastante variadas, mas as predominantes são o vermelho e o verde. A interação entre moléculas de oxigênio e nitrogênio, ambas gerando tonalidades na faixa do verde, cria o efeito da "linha verde auroral", como evidenciado pelas imagens da Estação Espacial Internacional. Da mesma forma a interação entre tais átomos pode produzir o efeito da "linha vermelha auroral", ainda que mais raro e presente em altitudes mais altas. 12 - LEITURA COMPLEMENTAR: OS ACELERADORES DE PARTÍCULAS. Para estudar núcleos atômicos, para provocar reações nucleares (decaimento alfa, beta, gama etc) , frequentemente precisamos bombardear núcleos atômicos com partículas de alta energia, tais como partículas alfa 2 4 + emitidas por algum material radioativo, como Plutônio. Entretanto, pelo fato dos núcleos atômicos também terem carga positiva q = +Z.e , (Z = número atômico, e = carga elementar), quando essas partículas são lançadas em direção a esses núcleos, sofrem forte repulsão elétrica e nem sempre possuem energia cinética suficiente para vencer essa repulsão elétrica e atingi-los. Quanto maior o número atômico Z do núcleo alvo, maior será a sua carga elétrica nuclear, maior a repulsão que ele exercerá na partícula positiva que tentar se aproximar dele, mais difícil é de bombardeá-lo. Assim, a fim de obter feixes de partículas aceleradas com grandes energias cinéticas (grandes velocidades), os físicos inventaram o que chamamos de aceleradores de partículas, que utilizam poderosos campos elétricos e magnéticos para manter uma partícula confinada, descrevendo uma trajetória circular com uma energia cinética cada vez maior, a cada volta, até que essa partícula finalmente deixa o acelerador e vai em direção ao núcleo alvo a ser bombardeado. Cíclotron construído pelos físicos americanos Lawrence e Livingstone da universidade de Berkeley – 1931 Como Funciona um Cíclotron ? A figura mostra esquematicamente os principais componentes de um cíclotron. Vemos que ele é constituído por duas câmeras metálicas ocas, com a forma da letra D (D1 e D2 na figura a seguir), atravessadas por um poderoso campo magnéticouniforme B vertical produzido por um par de poderosos eletroímãs circulares , mostrados na figura anterior. Uma voltagem alternada é aplicada de forma a causar um campo elétrico E horizontal também alternado somente na região entre D1 e D2 (como num capacitor) . O sentido desse campo elétrico E ora aponta de D1 para D2, ora aponta no sentido inverso. Um dispositivo que emite íons de baixa energia (prótons, dêuterons) é colocado no ponto S (source), situado entre D1 e D2 na posição indicada na figura acima. Suponha que um próton seja produzido em S (carga q) no instante em que o campo elétrico E está apontando de D1 para D2 . Essa partícula será acelerada por Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 138 este campo elétrico e penetrará no interior de D2 (veja figura) com uma certa velocidade v1 , descreverá uma trajetória semi-circular de raio r1 = m.v1/ (q.B) e retornará para a região entre os “dês”. Nesse instante, ela penetrará novamente o campo elétrico E, cujo sentido já estará invertido, agora apontando de D2 para D1 , a fim de acelerar ainda mais o próton, quanto este novamente atravessar a região entre os “dês”, indo de D2 para D1. O próton sofrerá um aumento de Ecin cada vez que atravessar a região entre os “dês”, correspondente ao trabalho realizado pela força elétrica que age sobre essa carga, durante essa travessia, isto é: Feletr = Fe x D = Ecin2 − Ecin1 Feletr = q.E x D = m.(v2)2 / 2 − m.(v1)2 / 2 onde D é a distância percorrida pelo próton na região entre os “dês”. Agora o elétron penetrará o D1 com uma velocidade v2 > v1 e descreverá uma trajetória semi-circular de raio r2 = m.v2 / q.B maior que r1. O raio r2 aumenta em relação a r1 na mesma proporção em que v2 aumenta em relação a v1, de forma que o tempo que ele permanece no interior de cada “dê” é sempre o mesmo ( a metade do período do MCU estudado anteriormente). Conforme aprendemos anteriormente, o período do MCU num campo magnético uniforme independe da velocidade v e do raio r da trajetória circular, sendo dado por = 2.m/ (q.B). O sentido do campo elétrico E na região entre os “dês” se alterna com a mesma freqüência do movimento da partícula, de forma que este campo sempre estará a favor do seu movimento quando ela atravessar a região entre os “dês”, fornecendo Ecin adicional para a partícula duas vêzes a cada volta. Quanto maior for a velocidade adquirida pela partícula, maior será o raio R da sua trajetória semi-circular R = m.v/ q.B. Essse processo se repete um grande número de vezes até que o raio da trajetória cresça suficientemente para que a partícula saia por uma abertura lateral onde é colocado o alvo a ser bombardeado (veja figuras). Nos cíclotrons mais modernos, os prótons executam cerca de 100 voltas completas no interior do aparelho e adquirem uma energia cinética igual àquela que adquiririam se fossem acelerados por uma diferença de potencial de, aproximadamente, 12 milhões de volts, isto é, uma energia de 12 milhões de elétron-volts ( 12 MeV). O ponto chave do funciomento do cíclotron eh que o campo elétrico E na região entre os “dês” deve alternar o seu sentido com a mesma freqüência do movimento da partícula descreve seu movimento. A voltagem alternada usada para produzir esse campo elétrico E se encarregará disso. Entretanto, quando as partículas atingirem velocidades suficientemente grandes, efeitos relativísticos que estudaremos na apostila 3 fazem com que a massa da partícula aumente com o aumento da velocidade. Embora esse efeito só se torne perceptível para velocidades superiores a 10% da velocidade da luz (v > 0.1.c) , as velocidades atingidas pelas partículas no interior do cíclotron são grandes o suficiente para que essa variação m da massa seja aprecíável. O aumento da massa m implica um aumento do período = 2.m/ (q.B), deixando de haver sincronia entre o movimento do íon e as inversões no sentido do campo elétrico E. Com essa ausência de sincronia, o próton poderá encontrar o campo elétrico E em sentido contrário ao seu movimento. Nessas condições, o campo elétrico E não mais transfere energia à partícula, sendo atingido, assim, o limite de energia que o íon pode adquirir. Para superar essas dificuldades, os físicos aperfeiçoaram o aparelho e construíram um cíclotron sincronizado, o sincrocíclotron. Neste acelerador de partículas, a freqüência com que o campo elétrico E é invertido varia automaticamente, compensando a variação relativística da massa da partícula, de forma a sempre coincidir com a freqüência do movimento do íon acelerado. Com isso, o sincrocícloton garante a perfeita sincronia e, na década de 40, já era capaz de acelerar partículas até uma energia cinética de 700 Mev, usando “dês” com 4,5m de diâmetros. No Fermi lab, nos EUA, um acelerador de partículas (subterrâneo) chamado Tévatron acelera prótons a uma energia cinética máxima de 1 TeV = 1012 eV, após darem cerca de 400.000 viagens circulares completas em sua circunferência de 1 km de raio . O CERN (Centro Europeu para Física de Partículas) possui laboratórios de pesquisas nucleares, construídos nas proximidades de Genebra, na Suíça, com recursos de vários países da Europa. Esta associação de países para realização de pesquisas foi concretizada, principalmente, em virtude dos altíssimos custos exigidos na montagem de laboratórios de alta energia. Recentemente, no CERN, foi colocado em operação o acelerador de partículas denominado LEP (large electron positron collider) com 27 km de circunferência. Vista aérea do Fermi Lab – na cidada da Batavia , estado de Illinois nos EUA O seu acelerador de partículas - o Tévatron - tem aproximadamente 1 km de raio Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 139 O segundo mais moderno acelerador de partículas atualmente chama-se SSC (Superconducting Collider), um mega-projeto que reuniu mais de 250 cientistas e engenheiros de mais de 38 países para a sua construção no estado do Texas. Seu anel acelerador tem cerca de 90 km de circunferência, abriga mais de 10.000 ímãs supercondutores e produz energias de colisão próton-antipróton da ordem de 20 TeV ( 20 trilhões de elétron-volts). O maior acelerador de partículas e o de maior energia existente do mundo atualmente chama-se LHC (Large Hadron Collide) − O Grande Colisor de Hádrons. Seu principal objetivo é obter dados sobre colisões de feixes de partículas, tanto de prótons a uma energia de 7 TeV (1,12 microjoules) por partícula, ou núcleos de chumbo a energia de 574 TeV (92,0 microjoules) por núcleo. O laboratório localiza-se em um túnel de 27 km de circunferência, bem como a 175 metros abaixo do nível do solo na fronteira franco- suíça, próximo a Genebra, Suíça. Alguns valores relativos às características do LHC para permitir fazer-se uma ideia da sua enormidade e do que esses valores representam à escala 'humana' ! Características Valores Equivalente a Circunferência ~ 27 km Distância percorida em 10 horas por um feixe ~ 10 mil milhões de km uma ida e volta a Neptuno Número de voltas no túnel por segundo 11 245 Velocidade dos protões à entrada do LHC 229 732 500 m/s 99,9998 % da velocidade da luz Velocidade dos protões na colisão 299 789 760 m/s 99,9999991 % da velocidade da luz Temperatura da colisão ~ 1016 oC 1 milhão de vezes mais quente que no centro do Sol Temperatura dos crio- ímans 1,9 K (−271,3 oC) temperatura inferior à do espaço intersideral (2,7 K, −270,50C) Quantidade de Hélio necessário ~ 120 t Volume do vazio isolando os crio-ímans ~ 9 000 m³ volume da nave de um catedral Pressão do vazio no feixe~ 10−13 atm pressão 10 vezes inferior à da Lua Consumo eléctrico ~ 120 MW o dobro de um Airbus A380 em viagem de cruzeiro Ao contrário dos demais aceleradores de partículas, a colisão será entre prótons, e não entre pósitrons e elétrons (como no LEP), entre prótons e antiprótons (como no Tevatron) ou entre elétrons e prótons (como no HERA). O LHC irá acelerar os feixes de prótons até atingirem 7 TeV (assim, a energia total de colisão entre dois prótons será de 14 TeV) e depois fará com que colidam em quatro pontos distintos. A luminosidade nominal instantânea é 1034 cm−2s−1, a que corresponde uma luminosidade integrada igual a 100 fb−1 por ano. Com esta energia e luminosidade espera-se observar o bóson de Higgs e assim confirmar o modelo padrão das partículas elementares. ------------------------------------------------------------- A história da ciência conta que em 1831, logo após uma demonstração de Michael Faraday sobre eletricidade, Indução eletromagnética, o princípio de funcionamento de hidrelétricas modernas, alguém o indagou: “e para que serve isso ?”, ao que Faraday prontamente respondeu “responda-me então você, senhor, para que serve um bebê recém-nascido ?” Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 140 Pensando em Classe Pensando em Classe Questão 01 Considere o cenário abaixo. Uma ambulância A se move com velocidade VA constante em relação à Terra e, no seu painel, encontram-se fixas uma carga elétrica +QA e uma bússola A. No painel do carro B, que se move em sentido oposto com velocidade VB, encontram-se fixas uma carga −QB e uma bússola B. O Mago encontra-se parado na calçada observando tanto a movimentação dos carros quanto as possíveis interações eletromagnéticas presentes no sistema. De posse do Mago também existem uma bússola C e uma carga elétrica +QC. A VA B VB C Analise as alternativas abaixo e assinale verdadeiro V ou falso F, conforme seus conhecimentos sobre Eletricidade e Magnetismo: a) a carga elétrica +QA não produz no campo magnético B no referencial da ambulância A; em outras palavras, a bússola A não é perturbada pela carga +QA. b) A bússola A é perturbada pelos campos magnéticos que as cargas −QB e +QC produzem no referencial da ambulância; c) No referencial da ambulância, existem os campos elétricos EA, EB e EC produzidos pelas cargas elétricas +QA, −QB e +QC; d) A bússola C do mago é perturbada tanto pelo campo magnético B gerado pela carga +QA quanto pelo campo magnético produzido pela carga −QB. A carga +QC, estando imóvel em relação á bússola C, é incapaz de perturbá-la; e) A bússola C do mago, no referencial da Terra, sofre força magnética tanto pela ação do campo magnético gerado pela carga +QA quanto pelo campo magnético produzido pela carga −QB nesse referencial. f) A bússola de cada veículo não é perturbada pela carga elétrica fixa ao seu próprio painel. Afinal de contas, esta carga encontra-se parada em relação ao próprio veículo, não gerando campo Magnético B no referencial daquele veículo. Ela produzirá apenas campo elétrico E. g) Cargas elétricas produzem campo elétrico E pelo simples fato de existirem; h) Cargas elétricas só produzem Campo Magnético B nos referenciais em que elas encontram-se em movimento. i) A existência de um Campo Magnético B não é absoluta, mas sim relativa ao observador, isto é, depende do referencial que observa. Questão 02 Sabemos que apenas materiais ferromagnéticos são fortemente atraídos por ímãs. Assinale a alternativa que contém dois conjuntos exclusivamente de materiais ferromagnéticos e de materiais não-ferromagnéticos, respectivamente: a) { ferro, cobre, níquel } , { isopor, madeira, papel } b) { ferro, alumínio, aço } , { cobre, madeira, papel } c) { ferro, níquel, cobalto }, { ouro, madeira, cobre } d) { ferro, cobre, níquel } , { isopor, madeira, prata } e) { ferro, cobalto, aço } , { prata, ouro, níquel } Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 141 Questão 03 Na figura temos a representação das linhas de indução do campo magnético de um ímã em forma de barra. Os vetores indução magnética, nos pontos 1, 2, 3 e 4, são corretamente representados por: N S 4 2 1 3 a) 1 3 4 2 b) 1 3 4 2 c) 1 3 4 2 d) 1 3 4 2 e) 1 3 4 2 Questão 04 (UFRS) Uma pequena bússola é colocada próximo de um ímã permanente. Em quais posições assinaladas na figura a extremidade norte da agulha apontará para o alto da página? a) somente em A ou D b) somente em B ou C c) somente em A, B ou C d) somente em B, C ou D e) em A, B, C ou D N C N S D B A Questão 05 A figura mostra dois ímãs idênticos dispostos sobre a superfície plana de uma mesa horizontal. Colocando uma bússola em repouso sobre o ponto A, assinale a opção que indica a posição de equilíbrio da bússola, desprezando o campo magnético da terra. a) b) S N S N A c) d) Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 142 Questão 06 Na figura abaixo, um canhão de partículas lança íons que deslocam-se através dos campos elétrico e magnético e atingem um anteparo. Caso não sofressem desvio em sua trajetória, tais partículas atingiriam o anteparo no centro O. Devido a ação dos campos, cada partícula é defletida, incidindo num dos quatro quadrantes A, B, C e D. Pode-se afirmar que: N S A B C D E a) todos os cátions devem atingir o quadrante B, ao passo que todos os ânios, o quadrante C. b) todos os cátions devem atingir o quadrante D, ao passo que todos os ânios, o quadrante B. c) todos os cátions devem atingir o quadrante D, ao passo que todos os ânios, o quadrante A. d) todos os cátions devem atingir o quadrante C, ao passo que todos os ânios, o quadrante B. Questão 07 (U. C Salvador-BA) A figura a seguir representa um tubo de raios catódicos, cujo canhão de elétrons faz os mesmos atingirem o centro X do cinescópio. A seguir, um campo magnético uniforme B é criado na região K do cinescópio. Esse campo tem direção perpendicular ao feixe de elétrons, como sugere a figura a seguir. Assim, o feixe de elétrons: a) continua atingindo o ponto X b) se aproxima de P c) se aproxima de Q d) se aproxima de R e) se aproxima de T Questão 08 (U.F. Uberlândia-MG) A figura mostra a tela de um osciloscópio onde um feixe de elétrons, que provém perpendicularmente da página para seus olhos, incide no centro da tela. Aproximando-se lateralmente da tela dois ímãs iguais com seus respectivos polos mostrados, verificar-se-á que o feixe: a) será desviado para cima b) será desviado para baixo c) será desviado para a esquerda d) será desviado para a direita e) não será desviado Questão 09 Dois prótons A e B são lançados no interior de um campo magnético uniforme de intensidade B = 100 T, com velocidade idênticas VA = VB = 5 x 106 m/s, sendo que VA aponta numa direção que forma um ângulo de 30 com as linhas do campo. Determine as intensidades das forças magnéticas que agem em cada próton. B vA 30o vB Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 143 Questão 10 Partículas elétricas como elétrons, partículas ou íons em geral, quando se movem através de um campo magnético B, podem executar as trajetórias mais inusitadas sob ação exclusiva da força magnética Fmag, a qual sempre atua perpendicularmente aos vetores V (velocidade da partícula) e B (campo magnético agindo sobre a partícula). É o caso da garrafa magnética mostradas abaixo: Esquema de funcionamento das “Garrafas magnéticas” , campos magnéticosusados para confinar, em uma região do espaço um gás ionizado (plasma) com temperatura das ordem de 106 K que poderia fundir qualquer recipiente onde tentassem guardá-lo. v t 1ª parte: esboce o gráfico da velocidade escalar da partícula eletrizada que se move confinada à garrafa magnética, executando seu movimento circular de vaivém sob ação exclusiva da força magnética: 2ª parte: assinale V ou F para as afirmativas abaixo a respeito das peculiaridades da excêntrica força magnética: a) ( ) a força magnética sempre realiza trabalho nulo; b) ( ) a força magnética sempre age na direção radial (centrípeta) do movimento, sendo sempre responsável pela produção da aceleração centrípeta; c) ( ) se a energia cinética de uma partícula eletrizada aumentou ou diminui de valor, ao atravessar uma região contendo apenas campos elétrico E e magnético B, essa variação da Ecin deve-se exclusivamente à ação da força elétrica Fe. A força magnética NUNCA alterará a energia cinética de uma partícula eletrizada. d) ( ) Dentro do tubo de imagem de um aparelho de televisão convencional, um feixe de elétrons é acelerado, a partir do repouso, até atingir grandes velocidades e, em seguida, se chocar com a tela recoberta com material sensível à luz. O responsável pela aceleração desse feixe são os fortes campos magnéticos produzidos por bobinas existentes no interior desses aparelhos. A figura mostra um feixe com várias partículas e radiações entrando perpendicularmente a um campo magnético uniforme B com velocidade inicial V→. X X X X X X X X X B 1 3 2V posição inicial X X X X X X X Questão 11 Qual vetor abaixo melhor representa a força magnética que age no feixe, ao passar pela posição inicial, supondo que ele descreva a trajetória 3 ? a) b) c) d) Questão 12 As partículas do feixe 3 são positivas ou negativas ? Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 144 Questão 13 Ainda com base nessa figura, preencha essa tabela abaixo com as informações pedidas: X X X X X X X X X B 1 3 2V posição inicial X X X X X X X Feixe Partícula ou Onda eletromagnética ? Trajetória seguida Prótons Elétrons Nêutrons Raios alfa Raios beta Raios beta Raios X Raios gama Pósitrons Neutrinos Questão 14 Em um campo magnético uniforme B são lançadas uma partícula 2 4 + e um dêuteron 1 2H+ com velocidades iniciais V e VH (com VH = 2.V) perpendiculares à direção das linhas de indução do campo. Admitindo que as partículas fiquem sob a ação exclusiva das forças magnéticas, elas descrevem movimentos circulares e uniformes com raios R e RH e períodos T e TH. Assinale a opção que relaciona corretamente os raios e os períodos. a) RH = R e T = TH b) RH = R e TH = 2.T c) RH = 2.R e TH = T d) RH = 2.R e TH = 2.T e) H H R R e T T 2 = = Questão 15 (ITA – SP) A figura representa a seção transversal de uma câmara de bolhas utilizadas para observar as trajetórias de partículas atômicas. Um feixe de partículas, todas com a mesma velocidade, contendo elétrons ( 1 0e− ), pósitrons ( 1 0e+ ), prótons ( 1 1H+ ), dêuterons ( 1 2H+ ) e nêutrons ( 0 1n ) penetra nessa câmara, à qual está aplicado um campo magnético perpendicularmente ao plano da figura. Identifique a trajetória de cada partícula. A B C DE Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 145 Questão 16 (Unichristus - Medicina 2016.1) – VENTO SOLAR Um elétron de massa m e velocidade V penetra perpendicularmente um campo magnético de intensidade B. Determine o raio do MCU e o período do MCU descrito por ele no interior desse campo. Dados: B = − 71,2 10 T, m = − 319 10 kg, V = 68 10 m/s, = 3 Questão 17 A figura representa uma partícula eletrizada, de massa m e carga q, descrevendo um movimento retilíneo e uniforme, com velocidade de módulo v, que penetra e sai da região onde existe um campo magnético uniforme de módulo B. Sabendo que a linha pontilhada é um arco de circunferência, determine: a) o sinal da carga elétrica da partícula; b) o tipo de movimento descrito pela partícula; c) a distância percorrida pela partícula na região do campo magnético; d) o tempo de permanência da partícula na região do campo magnético; e) o módulo da aceleração dessa partícula; f) o trabalho realizado pela força magnética durante esse trajeto; Questão 18 – Filtro de velocidades Uma partícula estava se movendo com velocidade V e penetrou uma região com dois campos B e E uniformes e cruzados, como a figura abaixo. Sabendo que a partícula passou sem sofrer desvio (trajetória 2), determine: a) o sinal da carga elétrica, com base na figura; b) a velocidade V da partícula, dado sua massa m = 20g, E = 300 N/C e B = 0,2 T; c) Se um próton fosse lançado com velocidade V = 2000 m/s no lugar dessa partícula, qual das trajetórias ele seguiria: 1, 2 ou 3 ? Questão 19 (FM Itajubá MG) Um feixe de elétrons, com velocidade v, penetra numa certa região do espaço, onde existem um campo elétrico E e um campo magnético B atuando simultaneamente. Assinale, entre os gráficos abaixo, o que tem possibilidade de satisfazer a condição de que o feixe de elétrons não sofra desvio em sua trajetória, descrevendo um MRU. a) b) c) d) e) X X X X X X X X X X X X X X X X X B E V FE FMag 1 3 2 Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 146 Pensando em Casa Pensando em Casa Questão 01 Maria e Teresa hoje foram para a aula do Ranaldo num belo carro esportivo conversível feito de fibra de vidro. Aproveitando o trânsito livre, Maria já passava dos 120 km/h na avenida Desembargador Moreira e, para se orientar melhor na aldeota, a exímia motorista sempre mantinha presa ao painel do carro uma bússola sensível. Teresa, sentada no banco do carona, segurava um bastão eletrizado com grande carga positiva +q, tendo o cuidado de mantê-lo sempre imóvel em relação ao veículo. Lá pelas tantas, avistaram o Raul, sentado na calçada, segurando outra bússola e outro bastão eletrizado com grande carga negativa −q. A respeito das interações elétricas e magnéticas nesse episódio, considere as seguintes afirmativas: I. A bússola do painel do carro é perturbada pelo campo magnético gerado pela carga +q; II. Durante a passagem do carro, a bússola do Raul é perturbada pelo campo magnético gerado pela carga +q; III. Durante a passagem do carro, a carga +q exerce sobre a carga −q uma força elétrica. Pode-se afirmar corretamente que: a) apenas III está errada; b) apenas II está correta; c) apenas I está errada; d) apenas III está correta. e) todas estão corretas Questão 02 (UFRN) Considerando a interligação existente entre a Eletricidade e o Magnetismo, um observador, ao analisar um corpo eletricamente carregado que está em movimento, com velocidade constante, em relação a ele constatará a presença: a) campos elétrico e magnético cuja resultante é nula. b) campo elétrico nulo e campo magnético não nulo. c) campo elétrico não nulo e campo magnético nulo. d) campos elétrico e magnético não nulos. Questão 03 Sabemos que apenas materiais ferromagnéticos são fortemente atraídos por ímãs. Assinale a alternativa que contém dois conjuntos exclusivamente de materiais ferromagnéticos e de materiais não-ferromagnéticos, respectivamente: a) { ferro, cobre, níquel } , { isopor, madeira, papel } b) { ferro, alumínio, aço } , { cobre, madeira, papel} c) { ferro, níquel, alumínio }, { ouro, madeira, cobre } d) { ferro, aço, níquel } , { isopor, cobre, prata } e) { ferro, cobalto, aço } , { prata, ouro, níquel } Questão 04 A figura mostra os ímãs idênticos dispostos sobre a superfície plana de uma mesa horizontal. Colocando uma bússola em repouso sobre o ponto A, assinale a opção que indica a posição de equilíbrio da bússola, desprezando o campo magnético da Terra: S N S N A a) b) c) d) Questão 05 (Cesgranrio) As linhas de força do campo magnético terrestre (desprezando-se a inclinação do eixo magnético) e a indicação da agulha de uma bússola colocada em P1, sobre a linha de força, são mais bem representados por (leia sobre o campo magnético terrestre na teoria da apostila) : (NG = polo norte geográfico e SG = polo sul geográfico.) a) b) c) d) e) Questão 06 - Maglev Trem levitador O Maglev é uma espécie de trem sem rodas que possui eletroímãs em sua base, e há também eletroímãs no trilho que ele percorre. As polaridades desses eletroímãs são controladas por computador, e esse controle permite que o trem levite sobre o trilho bem como seja movido para frente ou para trás. Para demonstrar o princípio do funcionamento do Maglev, um estudante desenhou um vagão de trem em uma caixa de creme dental e colou em posições especiais ímãs permanentes, conforme a figura. Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 147 O vagão foi colocado inicialmente em repouso e no meio de uma caixa de papelão de comprimento maior, porém de largura muito próxima à da caixa de creme dental. Na caixa de papelão também foram colados ímãs permanentes idênticos aos do vagão. Admitindo-se que não haja atrito entre as laterais da caixa de creme dental, em que se desenhou o vagão, e a caixa de papelão, para se obter o efeito de levitação e ainda um pequeno movimento horizontal do vagão sempre para a esquerda, em relação à figura desenhada, a disposição dos ímãs permanentes, no interior da caixa de papelão, deve ser a que se encontra representada em: a) b) c) d) Questão 07 (UEM 2012) A agulha de uma bússola ao ser colocada entre dois imãs sofre um giro no sentido anti-horário. A figura que ilustra corretamente a posição inicial da agulha em relação aos imãs é a) b) c) d) Questão 08 – Treinando a Regra da Mão Direita Para treinar a Regra da Mão Direita, determine em cada uma das figuras abaixo a orientação da força magnética Fm que atuará sobre a partícula. Observe atentamente o sinal da carga elétrica da partícula em cada caso: Questão 09 As faces polares de um ímã são encostadas à tela de vidro de um televisor convencional de tubo, cujas imagens são produzidas por um feixe de elétrons. Com isso, a imagem da televisão se distorce: a) para a esquerda; b) para a direita; c) para cima; d) para baixo; e) a imagem não se distorce. Questão 10 (Fuvest) Assim como ocorre em tubos de TV, um feixe de elétrons move-se em direção ao ponto central O de uma tela com velocidade constante. A trajetória dos elétrons é modificada por um campo magnético B, na direção perpendicular à trajetória, cuja intensidade varia, em função do tempo t, conforme o gráfico a seguir. Devido a esse campo, os elétrons incidem na tela, deixando um Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 148 traço representado por uma das figuras a seguir. A figura que pode representar o padrão visível na tela é: Dica: nesse gráfico, B positivo quer dizer B para cima , B negativo quer dizer B para baixo . Assim, o campo magnético tanto muda de intensidade quanto inverte o seu sentido periodicamente, sempre se mantendo na vertical. Questão 11 (UFC) Uma carga positiva percorre uma trajetória circular com velocidade constante, no sentido anti-horário, sob a ação de um campo magnético uniforme (veja figura). A direção do campo magnético: a) tangencia a trajetória, no sentido horário. b) tangencia a trajetória, no sentido anti-horário. c) é radial, apontando para o ponto O. d) é perpendicular ao plano definido por esta página e aponta para fora dela. e) é perpendicular ao plano definido por esta página e aponta para dentro dela. Questão 12 - Resolvida Um elétron é lançado num campo magnético uniforme. Qual o tipo de movimento e qual a trajetória descrita, nos casos: a) O elétron é lançado na direção das linhas de Campo Magnético b) O elétron é lançado perpendicularmente às linhas de campo magnético c) O elétron é lançado obliquamente às linhas de campo magnético Resolução: a) Em qualquer dos casos, o movimento do elétron é uniforme, pois a força magnética quando não-nula, é centrípeta. No caso a, o ângulo entre v e B é 0º e 180º e, portanto, o elétron descreve trajetória retilínea. = 0º → MRU = 180º → MRU b) No caso b, sendo = 90º, concluímos que o elétron descreve trajetória circular. Observe a figura. x x x x x x x x x x x x x x x v v v v Fm elétron Bx = 90º → MCU no item b Hélice cilíndrica no item c c) No caso c, a partícula é lançada obliquamente às linhas de indução e, portanto, sua trajetória é uma hélice cilíndrica. Questão 13 (UFPA) Uma partícula de massa m, carga q > 0 é lançada em uma região do espaço onde existe um campo magnético uniforme B. A partícula tem uma velocidade v que forma com a direção de B um ângulo . Nessas condições podemos afirmar corretamente: a) A trajetória da partícula é uma circunferência quando = 0o. b) A trajetória da partícula é uma circunferência quando = 180o. c) A partícula descreve uma trajetória helicoidal se = 90o. d) A trajetória da partícula é helicoidal com eixo paralelo a B se = 45o. e) Para = 90o a partícula descreve uma trajetória retilínea paralela a B. Questão 14 (UFRGS 2015) Dois campos, um elétrico e outro magnético, antiparalelos (mesma direção e sentidos opostos) coexistem em certa região do espaço. Uma partícula eletricamente carregada é liberada, a partir do repouso, em um ponto qualquer dessa região. Assinale a alternativa que indica a trajetória que a partícula descreve. a) Circunferencial b) Elipsoidal c) Helicoidal d) Parabólica e) Retilínea V Fm Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 149 Questão 15 Um feixe de elétrons atravessa uma determinada região do espaço sem sofrer desvio. Pode-se concluir que, nessa região: a) Não há outro campo magnético a não ser aquele gerado pela presença do feixe de elétrons. b) Não há nenhum campo magnético. c) Se houver um campo magnético além daquele gerado pela presença do feixe de elétrons, ele será perpendicular ao mesmo. d) Se houver um campo magnético além daquele gerado pela presença do feixe de elétrons, ele será paralelo a esse feixe de elétrons. e) Não se pode tirar nenhuma conclusão a respeito de um campo magnético. Questão 16 (ITA).... calma, é Itapajé ☺ kkkkkk Consideremos uma carga elétrica q entrando com velocidade v num campo magnético B. Para que a trajetória de q seja uma circunferência é necessário e suficiente que: a) v seja perpendicular a B e que B seja uniforme e constante. b) v seja paralela a B. c) v seja perpendicular a B. d) v seja perpendicular a B e que B tenha simetria circular. e) Nada se pode afirmarpois não é dado o sinal de q. Questão 17 (UFBA) Uma carga puntiforme q é lançada obliquamente, com velocidade V, em um campo de indução magnética uniforme B. A trajetória dessa carga, enquanto estiver sob influência do campo B, é: a) um círculo b) uma reta c) uma espiral de passo variável d) uma hélice cilíndrica de passo variável e) uma hélice cilíndrica de passo constante Questão 18 (Fuvest) Raios cósmicos são partículas de grande velocidade, provenientes do espaço, que atingem a Terra de todas as direções. Sua origem é, atualmente, objeto de estudos. A Terra possui um campo magnético semelhante ao criado por um ímã em forma de barra cilíndrica, cujo eixo coincide com o eixo magnético da Terra. Uma partícula cósmica P com carga elétrica positiva, quando ainda longe da Terra, aproxima-se percorrendo uma reta que coincide com o eixo magnético da Terra, como mostra a figura. Desprezando a atração gravitacional, podemos afirmar que a partícula, ao se aproximar da Terra: a) aumenta sua velocidade e não se desvia de sua trajetória. b) diminui sua velocidade e não se desvia de sua trajetória retilínea. c) tem sua trajetória desviada para leste. d) tem sua trajetória desviada para oeste. e) não altera sua velocidade nem se desvia de sua trajetória retilínea. Questão 19 (UFC) Num hipotético detector de partículas, baseado na interação delas com um campo magnético, aparecem os traços deixados por três partículas: um próton ( ) 1 1e + , um elétron ( ) 1 0e − e um pósitron ( ) 1 0e + . Supondo que as partículas cheguem ao detector com valores de velocidade não muito diferentes, entre si, os traços representados na figura a seguir seria, respectivamente: a) I, II e III b) I, III e II c) II, III e I d) II, I e III e) III, II e I I II III Questão 20 (UECE) Em um acelerador de partículas, três partículas K, L, e M, de alta energia, penetram em uma região onde existe somente um campo magnético uniforme B , movendo-se perpendicularmente a esse campo. A figura a seguir mostra as trajetórias dessas partículas (sendo a direção do campo B perpendicular ao plano do papel, saindo da folha). Com relação às cargas das partículas podemos afirmar, corretamente, que a) as de K, L e M são positivas. b) as de K e M são positivas. c) somente a de M é positiva. d) somente a de K é positiva. Questão 21 (UFPR 2014) O espectrômetro de massa é um equipamento utilizado para se estudar a composição de um material. A figura abaixo ilustra diferentes partículas de uma mesma amostra sendo injetadas por uma abertura no ponto O de uma câmara a vácuo. Essas partículas possuem mesma velocidade inicial v, paralela ao plano da página e com o sentido indicado no desenho. No interior desta câmara há um campo magnético uniforme B perpendicular à velocidade v, cujas linhas de campo são perpendiculares ao plano da página e saindo desta, conforme representado no desenho com o símbolo . As partículas descrevem então trajetórias circulares identificadas por I, II, III e IV. Considerando as informações acima e os conceitos de eletricidade e magnetismo, identifique como verdadeiras (V) ou falsas (F) as seguintes afirmativas: ( ) A partícula da trajetória II possui carga positiva e a da Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 150 trajetória IV possui carga negativa. ( ) Supondo que todas as partículas tenham mesma carga, a da trajetória II tem maior massa que a da trajetória I. ( ) Supondo que todas as partículas tenham mesma massa, a da trajetória III tem maior carga que a da trajetória II. ( ) Se o módulo do campo magnético B fosse aumentado, todas as trajetórias teriam um raio maior. Assinale a alternativa que apresenta a sequência correta, de cima para baixo. a) V – V – V – F. b) F – V – F – V. c) V – F – V – V. d) V – V – F – F. e) F – F – V – V. Questão 22 (UEA 2014) Considere uma câmara em cujo interior atua um campo magnético constante, indicado por X, perpendicular ao plano da folha e entrando nela. Um próton, um elétron e um feixe de radiação gama penetram no interior desta câmara por uma abertura comum, como mostra a figura. O próton e o elétron passam pela entrada com a mesma velocidade, e os números indicam os possíveis pontos de colisão dos três componentes citados com a parede interior da câmara. Considerando o próton, o elétron e a radiação gama, os números correspondentes aos pontos com que eles colidem são, respectivamente, a) 2, 4 e 3. b) 3, 5 e 1. c) 1, 4 e 3. d) 2, 3 e 4. e) 1, 5 e 3. Questão 23 (PUC-SP - 2018.2) Considere uma região do espaço que possua um campo magnético uniforme B. Nela são lançadas duas partículas V e W com velocidades inicias perpendiculares à direção do campo magnético. Admita que as partículas fiquem sujeitas exclusivamente à ação da força magnética. Com base nos dados da tabela abaixo referente às partículas, assinale a alternativa que corretamente relaciona os raios R das suas trajetórias bem como os períodos T dos seus movimentos. Partícula V Partícula W carga elétrica +q −3q Velocidade inicial V 2V massa m m/2 a) RW = 3RV e TV = 3TW b) RW = 2RV e TW = 3TV c) RV = 2RW e TW = 6TV d) RV = 3RW e TV = 6TW Questão 24 Uma carga, lançada perpendicularmente a um campo magnético uniforme, efetua MCU de período T e raio R. Se o lançamento fosse feito com velocidade 4 vezes maior, o novo MCU teria períodos e raios, respectivamente iguais a: a) T/2 e R b) T e 4R c) 2T e 2R d) T e 2R e) 4T e 4R Questão 25 (UESC) A figura representa uma partícula eletrizada, de massa m e carga q, descrevendo um movimento retilíneo e uniforme, com velocidade de módulo v, que penetra e sai da região onde existe um campo magnético uniforme de módulo B. Sabendo-se que a partícula abandona a região do campo no ponto P, é errado afirmar: a) A partícula atravessa a região do campo magnético em movimento circular uniforme. b) O espaço percorrido pela partícula na região do campo magnético é igual a mv 2qB . c) O tempo de permanência da partícula na região do campo magnético é de m 2qB . d) O módulo da aceleração centrípeta que atua sobre a partícula é igual a B.q.v / m. e) A força magnética realiza trabalho positivo sobre essa partícula. Questão 26 (Unesp 2014) A figura representa a trajetória semicircular de uma molécula de massa m ionizada com carga +q e velocidade escalar V, quando penetra numa região R de um espectrômetro de massa. Nessa região atua um campo magnético uniforme perpendicular ao plano da figura, com sentido para fora dela, representado pelo símbolo . A molécula atinge uma placa fotográfica, onde deixa uma marca situada a uma distância x do ponto de entrada. Considerando as informações do enunciado e da figura, é correto Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 151 afirmar que a massa da molécula é igual a a) q V B x 2 b) 2 q B V x c) q B 2 V x d) q x 2 B V e) q B x 2 V Questão 27 (PUC RJ) Cientistas creem ter encontrado o tão esperado “bóson de Higgs” em experimentos de colisão próton-próton com energia inédita de 4 TeV (tera elétron-Volts) no grande colisor de hádrons, LHC. Os prótons, de massa 1,7 10–27 kg e carga elétrica 1,6 10–19 C, estão praticamente à velocidade da luz (3 108 m/s) e se mantêm em uma trajetória circular graças ao campo magnético de 8 Tesla, perpendicular à trajetória dos prótons.Com esses dados, a força de deflexão magnética sofrida pelos prótons no LHC é em newtons: a) 3,8 10–10 b) 1,3 10–18 c) 4,1 10–18 d) 5,1 10–19 e) 1,9 10–10 Questão 28 - UniChristus Medicina 2017.2 Durante as intervenções cirúrgicas, os médicos anestesistas se utilizam de um aparelho para monitorar os gases respiratórios de pacientes submetidos a cirurgia. O isoflurano – cuja massa individual de cada molécula vale de 310–25 Kg - é um gás que é monitorado frequentemente. No aparelho, uma molécula de isoflurano ionizada, com carga q = +1,610–19 C, submetida a um campo magnético de módulo constante, movimenta-se em uma trajetória circular de raio 0,1 m com uma velocidade de intensidade constante v = 6,4103 m/s. Por meio desses dados e considerando que a única força atuante sobre o íon seja a força magnética, a magnitude do campo magnético que o aparelho está aplicando sobre a molécula de isoflurano vale: a) 120 militesla. b) 150 militesla. c) 180 militesla. d) 200 militesla. e) 240 militesla. Questão 29 - (Medicina Unichristus 2015.1) Em um forno de micro-ondas, o magnetron emite ondas eletromagnéticas com uma frequência na ordem de 2667 MHz (Mega = 106). Considerando = 3 e sabendo que a massa de um elétron vale, aproximadamente, 910−31 kg, pode-se afirmar que, para um elétron se mover em órbita circular com essa frequência, o campo magnético necessário será no valor de (em teslas): a) 0,03 b) 0,05 c) 0,06 d) 0,09 e) 0,1 Questão 30 - UniChristus Medicina A Terra é um ímã gigante cujas linhas de indução se assemelham às de um ímã reto, que vão do polo norte magnético (sul geográfico) para o polo sul magnético (norte geográfico). Assim, o campo magnético no Equador é aproximadamente constante e sua magnitude é 5 x 105 T. Se não levar em conta a resistência do ar e a força da gravidade, um corpo com carga elétrica q = 0,1 μC e massa m = 10 g poderia descrever uma órbita circular pela linha do Equador e próxima a superficíe (Requador = RTerra), como resultado da força magnética. Para que isso aconteça, a velocidade angular necessária seria de: a) 50 rad/s b) 25 rad/s. c) 10 rad/s. d) 5 rad/s. e) 1 rad/s. Questão 31 (UFCE) Uma partícula eletrizada é lançada, perpendicularmente, a um campo magnético. A grandeza física que permanece constante é: a) a força magnética b) a velocidade c) energia cinética d) a quantidade de movimento e) a aceleração centrípeta Questão 32 Os elétrons são acelerados, adquirindo velocidades de grande valor, dentro de um tubo de televisão, por: a) Um campo magnético. b) Um filamento aquecido. c) Ondas de radio. d) Um campo elétrico. e) Um intenso feixe de luz. Questão 33 - (UECE - 1ª fase) Quando comparamos as forças exercidas por campos elétricos E e magnéticos B sobre uma partícula dotada de carga elétrica, quando lançada nesses campos, podemos afirmar corretamente que: a) a força elétrica e a força magnética são sempre paralelas à velocidade. b) a força elétrica e a força magnética são sempre perpendiculares à velocidade. c) para um dado campo elétrico uniforme, existe sempre uma direção da velocidade para a qual a força elétrica é nula, o que não acontece com a força magnética. d) a força magnética nunca realiza trabalho sobre a carga, enquanto a força elétrica sempre realiza trabalho. Questão 34 - Uma partícula estava se movendo com velocidade V e penetrou uma região com dois campos B e E uniformes e cruzados, como a figura abaixo. Sabendo que a partícula passou sem sofrer desvio (trajetória 2), determine: a) o sinal da carga elétrica, com base na figura; b) a velocidade V da partícula, dado sua massa m = 20g, E = 300 N/C e B = 0,25 T; c) Se um elétron (carga negativa) fosse lançado com velocidade V = 1000 m/s no lugar dessa partícula , qual das forças agindo sobre ele seria maior, FE ou FM ? Qual das trajetórias ele seguiria: 1, 2 ou 3 ? X X X X X X X X X X X X X X X X X X B E V F E F Mag 1 3 2 Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 152 Questão 35 (UFRGS) Assinale a alternativa que preenche corretamente as lacunas no fim do enunciado que segue, na ordem em que aparecem. Um elétron atravessa, com velocidade constante de módulo v, uma região do espaço onde existem campos elétrico e magnético uniformes e perpendiculares entre si. Na figura abaixo, estão representados o campo magnético, de módulo B, e a velocidade do elétron, mas o campo elétrico não está representado. Desconsiderando-se qualquer outra interação, é correto afirmar que o campo elétrico ________ página, perpendicularmente, e que seu módulo vale _________. a) penetra na, vB b) emerge da, vB c) penetra na, eB d) emerge da, eB e) penetra na, E/B Questão 36 (PUC RS 2014) Um seletor de velocidades é utilizado para separar partículas de uma determinada velocidade. Para partículas com carga elétrica, um dispositivo deste tipo pode ser construído utilizando um campo magnético e um campo elétrico perpendiculares entre si. Os valores desses campos podem ser ajustados de modo que as partículas que têm a velocidade desejada atravessam a região de atuação dos campos sem serem desviadas. Deseja-se utilizar um dispositivo desse tipo para selecionar prótons que tenham a velocidade de 3,0104 m/s. Para tal, um feixe de prótons é lançado na região demarcada pelo retângulo em que existe um campo magnético de 2,010−3T perpendicular à página e nela entrando, como mostra a figura a seguir. Nessas condições, o módulo e a orientação do campo elétrico aplicado na região demarcada, que permitirá selecionar os prótons com a velocidade desejada, é a) 60 V/m – perpendicular ao plano da página – apontando para fora da página b) 60 V/m – perpendicular ao plano da página – apontando para dentro da página c) 60 V/m – no plano da página – apontando para baixo d) 0,15 V/m – no plano da página – apontando para cima e) 0,15 V/m – no plano da página – apontando para baixo Questão 37 - Espectrômetro de massa – Unichristus Medicina Em salas de cirurgia, anestesistas cirúrgicos usam espectrômetros de massa para monitorar os gases respiratórios de pacientes submetidos ao procedimento cirúrgico. Um gás que é frequentemente monitorado é o anestésico isoflurano ionizado (carga = +e). Observe na figura o esquema simplificado do espectrômetro de massa. (Despreze o campo gravitacional.) De acordo com a figura e pelo que se sabe acerca dos fenômenos magnéticos, pode-se afirmar que: a) o trabalho realizado pela força magnética (Fm) vale W = Fm.R , onde R é o raio da trajetória. b) o tempo para percorrer a semicircunferência foi de t = 2m / B. c) o íon atravessou as placas, onde existe um campo elétrico, com aceleração constante e diferente de zero. d) durante a trajetória curva, a força elétrica fez o papel da resultante centrípeta. e) não houve variação da energia cinética, durante a parte circular do trajeto. Questão 38 – Fuvest 2014 Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos uniformes e constantes, perpendiculares entre si, nas direções e sentidos indicados na figura. As partículas entram na câmara com velocidades perpendiculares aos campos e de módulos 1V (grupo 1), 2V (grupo 2) e 3V (grupo 3). As partículas do grupo 1 têm sua trajetória encurvada em um sentido, as do grupo 2, em sentido oposto, e as do grupo 3 não têm sua trajetória desviada. A situação está ilustrada na figura abaixo. Considere as seguintes afirmações sobre as velocidadesdas partículas de cada grupo: I. 1 2V V e 1V E / B II. 1 2V V e 1V E / B III. =3V E / B Está correto apenas o que se afirma em a) I. b) II. c) III. d) I e III. e) II e III. Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 153 Hora de Revisar Hora de Revisar Questão 01 Um pequeno bloco desliza sem atrito ao longo de um plano inclinado de 45o em relação à horizontal. Para que a aceleração de descida do bloco se reduza à metade, é necessário que haja atrito entre o plano e o bloco. O coeficiente de atrito, para que isto ocorra, deve ser igual a: a) 2 2 b) 2 3 c) 3 2 d) 2 1 Questão 02 A lâmpada incandescente moderna é construída com um filamento de tungstênio, que se aquece com a passagem de corrente elétrica e fica incandescente, emitindo luz. Para dificultar a oxidação do filamento metálico, o interior dessas lâmpadas é preenchido apenas com uma pequena quantidade do gás nobre argônio que, sendo inerte, dificulta a oxidação do filamento. Admita que o argônio no interior de uma lâmpada desligada esteja a 20 graus Celsius, submetido a uma pressão de 300 mmHg. Considerando que, quando a lâmpada é “acesa”, a temperatura do gás cresce bastante, chegando a 120 graus Celsius, a pressão que o gás atinge vale aproximadamente: a) 1800 mmHg b) 400 mmHg c) 1200 mmHg d) 600 mmHg Questão 03 Um colchão de isopor de 2,0 m de comprimento por 40 cm de largura e 5 cm de altura flutua em posição horizontal sobre a água de uma piscina. Um banhista deita-se sobre o colchão, que permanece em posição horizontal, boiando com a água aflorando justo na sua superfície superior. Conclui-se que a massa do banhista vale aproximadamente: a) 100 kg b) 80 kg c) 60 kg d) 40 kg Questão 04 Um raio de luz que se propaga no ar incide sobre a superfície plana polida de um bloco de cristal com um ângulo de incidência . Sabendo que o índice de refração do cristal vale 3 , determine o ângulo para que o raio refletido seja perpendicular ao raio refratado. Questão 05 A pequena Jucilene adora brincar com as bolas da árvore de natal de sua mãe. Certa vez, posicionou sua boneca Barbie de altura 24 cm a 3 cm da bola metálica, e observou uma imagem da boneca com altura 16 cm. Determine o raio dessa bola da árvore de natal de sua mãe. Questão 06 A figura a seguir representa o Ciclo de Carnot realizado por um gás ideal que sofre transformações numa máquina térmica. Considerando que o trabalho útil realizado pela máquina, em cada ciclo, é igual a 1500 J e, ainda que, T1 = 600 K e T2 = 300 K, é incorreto afirmar que: A B D C P V T1 T2 a) De B até C o gás expande devido ao calor recebido do meio externo. b) A quantidade de calor retirada da fonte quente é de 3000 J. c) De A até B o gás se expande isotermicamente. d) De D até A o gás é comprimido sem trocar calor com o meio externo. e) A variação de entropia no ciclo de Carnot, bem como em qualquer ciclo termodinâmico, é nula. Questão 07 A extremidade de uma mola vibra com um período T, quando uma certa massa M está ligada a ela. Quando essa massa é acrescida de uma massa m, o período de oscilação do sistema passa para 3T/2. O prof. Renato Brito pede que você determine a razão m / M entre as massas : a) 9 5 b) 4 9 c) 4 5 d) 2 1 e) 3 1 Questão 08 (UECE) Um gás ideal se expande em um processo isotérmico constituído por quatro etapas: I, II, III e IV, conforme a figura abaixo. As variações de volume ΔV nas etapas são todas iguais. A etapa onde ocorre maior troca de calor é a a) III. b) I. c) II. d) IV. Questão 09 - Mackenzie Uma partícula realiza um M.H.S. (movimento harmônico simples), segundo a equação x=0,2cos(/2 + .t /2), no S.I.. A partir da posição de elongação máxima, o menor tempo que esta partícula gastará para passar pela posição de equilíbrio é: a) 0,5 s b) 1 s c) 2 s d) 4 s e) 8 s Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – www.simétrico.com.br 154 Questão 10 – (UFPA) O arco-íris é um fenômeno óptico que acontece quando a luz branca do Sol incide sobre gotas esféricas de água presentes na atmosfera. A figura abaixo mostra as trajetórias de três raios de luz, um vermelho, um verde e um violeta que estão num plano que passa pelo centro de uma esfera (também mostrada na figura). Antes de passar pela esfera, estes raios fazem parte de um raio de luz branca incidente. Analisando as trajetórias destes raios quando passam do meio para a esfera e da esfera, de volta para o meio, é correto afirmar que a) o índice de refração da esfera é igual ao índice de refração do meio. b) o índice de refração da esfera é maior do que o do meio e é diretamente proporcional ao comprimento de onda da luz. c) o índice de refração da esfera é maior do que o do meio e é inversamente proporcional ao comprimento de onda da luz. d) o índice de refração da esfera é menor do que o do meio e é diretamente proporcional ao comprimento de onda da luz. e) o índice de refração da esfera é menor do que o do meio e é inversamente proporcional ao comprimento de onda da luz. Questão 11 – (Unicamp) Um objeto é disposto em frente a uma lente convergente, conforme a figura abaixo. Os focos principais da lente são indicados com a letra F. Pode-se afirmar que a imagem formada pela lente a) é real, invertida e mede 4 cm. b) é virtual, direta e fica a 6 cm da lente. c) é real, direta e mede 2 cm. d) é real, invertida e fica a 3 cm da lente. Questão 12 – (UEFS 2018.2) Dois garotos brincam com um bloco de madeira no chão plano e horizontal. Em determinado momento, um deles empurra o bloco que passa por um ponto A com velocidade VO e, após percorrer uma distância d em linha reta, para em um ponto B devido ao atrito entre ele e o solo. Sendo g a aceleração da gravidade local, o coeficiente de atrito cinético entre o bloco e o solo é igual a: a) 2 oV 2gd b) 2 o2V 2gd c) 2 o 2 V 2d d) o 2 V gd e) oV gd Questão 13 – (UEFS 2018.2) Para exercitar sua pontaria, Guilherme lança uma pequena flecha de 50 g tentando acertar uma maçã apoiada na cabeça de um boneco, ambos em repouso em relação ao solo. A flecha atinge a maçã e permanece presa a ela, constituindo um sistema que passa a se mover com velocidade de 1,25 m/s, como representado na figura. Sabendo que a maçã tem 150 g de massa e desprezando o atrito, a velocidade da flecha imediatamente antes de atingir a maçã era: a) 5,0 m/s. b) 4,5 m/s. c) 3,0 m/s. d) 2,5 m/s. e) 2,0 m/s. Questão 14 - UEFS 2018.2 Uma bola de borracha é lançada obliquamente da posição A com velocidade inicial v0 inclinada de um ângulo α em relação à horizontal. A bola colide contra o solo no ponto B de forma perfeitamente elástica e volta a subir. Desprezando a resistência do ar e o atrito, no ponto C, posição de máxima altura da bola após a colisão com o solo, a altura da bola (hC) e sua velocidade escalar (vC) satisfazem a relação: a) hC = hA e vC = v0 ∙ cos b) hC > hA e vC = v0 ∙ sen c) hC > hA e vC = v0 ∙ cos d) hC = hA e vC = v0 ∙ sen e) hC = hA e vC = v0 Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – ww.simétrico.com.br 340 Aula 1 – Interações entre Cargas Elétricas e Campos Magnéticos 1) C, veja os conceitos explicados na questão 1 de classe. 2) D, veja os conceitos explicados na questão 1 de classe. 3) D 4) C5) E 6) A Para o vagão levitar, os polos magnéticos da sua base devem ser dispostos de maneira que exista repulsão entre os imãs, portanto as alternativas [D] e [E] estão descartadas por apresentarem atração. Para acontecer o deslocamento para a esquerda, a disposição dos imãs na parte anterior e posterior do vagão, quando tomados da esquerda para a direita, respectivamente, deve apresentar atração e repulsão. Observando-se, com isso, a impossibilidade deste movimento para a alternativa [B], tendo repulsão nas duas pontas; já o movimento seria para a direita na alternativa [C]. Sendo assim, a alternativa correta é [A]. 7) C Somente na situação mostrada, a agulha sofre ação de um binário, provocando rotação no sentido anti-horário. 8) a) , b) , c) d) , e) , f) 9) Item A, o campo magnético B aponta do N para o S, ou seja, B aponta para baixo . Você encostou esse ímã na tela daquelas TVs antigas de tuo, os elétrons estão vindo de dentro da TV em direção à tela, ou seja, a velocidade V dos elétrons aponta saindo do papel V, elétrons têm carga negativa, use a regra da mão direita agora e conclua que a força magnética para a esquerda 10) E Comentário do prof. Renato Brito: De acordo com o gráfico, o campo magnético sempre aponta na vertical, mas sua intensidade varia senoidalmente com o tempo. Quando seu valor algébrico é positivo B > 0, então B aponta para cima B, por exemplo, e quando seu valor algébrico é negativo (B < 0), então B aponta para baixo B. Com isso, há duas possibilidades para a força magnética FM: Possibilidade 1: quando o campo magnético apontar para cima B, a força magnética desviará o elétron no plano horizontal para a esquerda, como mostra a figura a seguir. xB V Feixe de elétrons e - Feixe defle tid o para esquerda y FM x y Força m agnética para a esquerda Possibilidade 2: quando o campo magnético apontar para baixo B, a força magnética desviará o elétron no plano horizontal para a direita, como mostra a figura abaixo. x B V Feixe de elétrons e - Feixe defle tid o para dire ita y FM x yForça m agnética para a dire ita Assim, o elétron varrerá a tela, ora desviando para a esquerda, ora desviando para a direita, sempre no plano horizontal, portanto, o gráfico correto é a letra E. Como se fosse uma pessoa segurando uma metralhadora, disparando no modo automático, ora apontando a metralhadora sempre na mesma reta horizontal, ora mais pra esquerda, ora mais para a direita. O que você veria na parede ? Um rastro de balas formando apenas uma reta horizontal. 11) E 12) Questão Resolvida 13) D 14) E 15) D 16) A 17) E 18) E Comentário: Ao se aproximar do polo norte, a partícula estará com a sua velocidade paralela ao campo magnético que entra no polo ártico terrestre. Ora, se V//B, então teremos força magnética Fm nula. 19) D, note que 2 partículas foram para baixo e apenas uma foi para cima. Pelo enunciado, o pósitron (+e) e o próton (+e) são ambos positivos, portanto, deduzimos que foram eles dois que desviaram para baixo. 20) C 21) D 22) E Como aprendemos nas aulas de Ondas, os raios X e raios gama são ondas eletromagnéticas, portanto, não tem carga, não são desviadas por campos elétricos ou magnéticos. Assim, nessa questão, eles passam sem sofrer desvio atingindo o ponto 3. Pela regra da mão direita, quando as partículas positivas (+) estão na entrada (veja figura) elas têm velocidade para cima V, sofrem B para dentro da folha B, portanto sofrem força magnética para a esquerda FM . Assim, sabemos que as cargas positivas serão desviadas para a esquerda (podendo ser 1 ou 2) e que o elétron (carga negativa) é desviado para a direita podendo ser 4 ou 5). A figura ilustra possíveis trajetórias para o próton e para o elétron. O desempate é obtido pelos raios das trajetórias. Como sabemos, o raio da trajetória é dado por pelo habib: = m v R . q B Como a massa do próton é cerca de 1.840 vezes a massa do elétron, o raio da trajetória do próton também é 1.840 vezes maior. Assim, o raio de curvatura da trajetória do próton deve ser bem grande (curva bem aberta) portanto, dentre as opções 1 e 2 para o próton, escolhemos a de maior raio (R1 > R2) portanto escolhemos a 1. Como a massa do elétron é muito pequena, o raio da trajetória do elétron deve ser muito pequena (curva bem fechada) portanto, dentre as opções 4 e 5 para o elétron, escolhemos a de menor raio Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – ww.simétrico.com.br 341 (R5 < R4) portanto escolhemos a 5. Dentre as alternativas dadas na questão, na ordem pedida, a melhor opção é 1, 5 e 3. 23) D 24) B 25) E 26) E 27) A 19 8 10F q.v.B 1,6 10 3 10 8 3,84 10 N− −= = = 28) A, Use o Habbib R = m.V / q.B e ache o valor de B 29) D Resolução: 31 9 19 2 m 1 2 m q.B f q.B 2 m f 2 3 (9 10 ) (2,6 10 ) B 0,087T q 1,6 10 − − = = = = 30) D Comentário: Nesse caso, ele mandou desprezar a força peso. Apenas a força magnética vai agir. Como é movimento circular uniforme, o raio desse movimento é dado pelo Habib: = mv R qB . Sendo V R = , temos que: 5 6 3 m.V V B.q B.q 5 10 (0,1) 10 R 5 rad / s q B R m m 10 10 kg − − = = = = = 31) C 32) D 33) D, se a partícula for lançada num campo elétrico, a força elétrica certamente realizará trabalho. 34) a) positiva, b) 1200 m/s, c) FE, trajetória 1 (note que houve uma mudança do sinal da carga elétrica da partícula, do ítem a para o item c) 35) B 36) C Aplicando as regras práticas do eletromagnetismo (mão direita ou mão esquerda), constatamos que a força magnética sobre o próton tem sentido para cima, no plano da página. Se o movimento da partícula é retilíneo e uniforme, a resultante das forças agindo sobre ela deve ser nula, sendo, então, a força elétrica de mesma intensidade que a magnética, mas de sentido oposto, ou seja, no plano da figura e para baixo. Como a partícula tem carga positiva, a força elétrica e o campo elétrico têm o mesmo sentido, também no plano da página e apontando para baixo, conforme ilustrado na figura. Calculando a intensidade desse campo elétrico. Dados: 4 3v 3 10 m / s; B 2 10 T.−= = Do equilíbrio: e m 4 3 F F q E q v B E v B 3 10 2 10 E 60 V/m.− = = = = = 37) E 38) E HORA DE REVISAR – página 153 1) D Comentário: Qual a aceleração a de descida da caixa, quando a rampa é lisa ? N P.cos P.sen a 1º caso – sem atrito N P.cos Fat P.sen a* 2º caso FR = m.a P.sen = m.a m.g.sen = m.a a = g.sen [eq1] Qual a aceleração a* de descida da caixa, quando a rampa tem atrito (cinético) ? FR = m.a* P.sen − Fat = m.a* m.g.sen − u.N = m.a* , com N = m.g.cos m.g.sen − u.m.g.cos = m.a* , portanto: a* = g.(sen − u.cos) [eq2] Segundo o enunciado, devemos ter: a* = a/2 a = 2.a* a = 2.a* , substituindo as relações eq1 e eq2, vem: g.sen = 2.g.(sen − u.cos) sen = 2.sen − 2.u.cos 2.u.cos = sen u = (1/2).tang() = (1/2).tang(45o) u = 0,5 2) B, não esqueça de passar de Celsius para kelvin. 3) D 4) 60o Comentário: A figura abaixo mostra o diagrama de raios. Pelo pedido da questão, temos + + 90o = 180o + = 90o sen = cos nar.sen = nvidro.sen nar.sen = nvidro.cos 1.sen = 3 cos sen 3 cos = tg = 3 = 60o ar vidro refletido refratado 5) 12 cm 6) A 7) C Comentário: M T 2 . K = , 3T M m 2 . 2 K + = Dividindo uma relação pela outra, membro a membro, e elevando ao quadrado de ambos os lados, temos: T M K . 3T K M m 2 = + 4 M 4m = 5M 9 M m = + m 5 M 4 = 8)B, isotérmico U = 0, Q = = área sob o gráfico. 9) B, veja que = /2 rad, = 2/ e o tempo que leva para percorrer UMA AMPLITUDE no MHS vale T/4. Se ainda tiver em dúvida, reveja a questão 9 de classe de MHS pagina 215. 10) C, lembre-se que F, n, , V e também lembre que C = F, com C = constante, portanto F implica , assim podemos completar escrevendo ,F, n, , V e , portanto, e n são inversamente proporcionais; Simétrico Pré-Universitário – Há 28 anos ensinando com excelência os estudantes cearenses – ww.simétrico.com.br 342 11) A, caso CC’, real invertida e maior, F = +2, P = +3 cm, ache P’ = 6 cm, ache A = −2, use A = i / O, com O = altura do objeto = 2 cm e ache i = 4 cm. 12) A, use trabalho e energia, Tfat = Ecin F − Ecin i 13) A, conservação da QDM, bem fácil 14) C