Logo Passei Direto
Buscar

exericcio AZ

Ferramentas de estudo

Questões resolvidas

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

Prévia do material em texto

**Explicação:** A área pode ser calculada usando a fórmula A = (1/2) * base * altura. 
Aqui, a base é 4 e a altura é 3. Portanto, A = (1/2) * 4 * 3 = 6 cm². 
 
12. Uma esfera tem um raio de 6 cm. Qual é o volume da esfera? 
A) 72π cm³ 
B) 144π cm³ 
C) 288π cm³ 
D) 216π cm³ 
**Resposta:** B) 144π cm³ 
**Explicação:** O volume de uma esfera é dado pela fórmula V = (4/3)πr³. Substituindo o 
raio, temos V = (4/3)π(6)³ = (4/3)π(216) = 288π cm³. 
 
13. Um paralelogramo tem uma base de 10 cm e uma altura de 5 cm. Qual é a área do 
paralelogramo? 
A) 50 cm² 
B) 60 cm² 
C) 40 cm² 
D) 70 cm² 
**Resposta:** A) 50 cm² 
**Explicação:** A área de um paralelogramo é dada pela fórmula A = base * altura. Assim, 
A = 10 * 5 = 50 cm². 
 
14. Um triângulo isósceles tem dois lados de 10 cm e uma base de 12 cm. Qual é a altura 
do triângulo? 
A) 8 cm 
B) 6 cm 
C) 5 cm 
D) 12 cm 
**Resposta:** A) 8 cm 
**Explicação:** Para encontrar a altura, dividimos a base ao meio e formamos dois 
triângulos retângulos. Usamos o Teorema de Pitágoras: h = √(10² - 6²) = √(100 - 36) = √64 = 
8 cm. 
 
15. Qual é a área total de uma pirâmide de base quadrada com lado de 4 cm e altura de 5 
cm? 
A) 32 cm² 
B) 36 cm² 
C) 40 cm² 
D) 44 cm² 
**Resposta:** B) 36 cm² 
**Explicação:** A área da base é 4² = 16 cm². As áreas laterais são 4 * (1/2) * 4 * 5 = 40 
cm². Portanto, a área total é 16 + 40 = 56 cm². 
 
16. Um hexágono regular tem um lado de 6 cm. Qual é a área do hexágono? 
A) 36√3 cm² 
B) 18√3 cm² 
C) 54√3 cm² 
D) 12√3 cm² 
**Resposta:** A) 54√3 cm² 
**Explicação:** A área de um hexágono regular é dada por A = (3√3/2) * lado². Portanto, A 
= (3√3/2) * 6² = (3√3/2) * 36 = 54√3 cm². 
 
17. Qual é o volume de um paralelepípedo retângulo com dimensões 2 cm, 3 cm e 4 cm? 
A) 12 cm³ 
B) 24 cm³ 
C) 18 cm³ 
D) 20 cm³ 
**Resposta:** B) 24 cm³ 
**Explicação:** O volume de um paralelepípedo é dado pela fórmula V = largura * altura * 
profundidade. Portanto, V = 2 * 3 * 4 = 24 cm³. 
 
18. Um quadrado tem um perímetro de 40 cm. Qual é a área do quadrado? 
A) 100 cm² 
B) 200 cm² 
C) 250 cm² 
D) 300 cm² 
**Resposta:** A) 100 cm² 
**Explicação:** O perímetro de um quadrado é dado por P = 4 * lado. Portanto, lado = P / 4 
= 40 / 4 = 10 cm. A área é A = lado² = 10² = 100 cm². 
 
19. Um triângulo retângulo possui catetos de 6 cm e 8 cm. Qual é a hipotenusa do 
triângulo? 
A) 10 cm 
B) 12 cm 
C) 14 cm 
D) 16 cm 
**Resposta:** A) 10 cm 
**Explicação:** Usando o Teorema de Pitágoras, temos hipotenusa² = cateto1² + cateto2², 
ou seja, h² = 6² + 8² = 36 + 64 = 100. Assim, h = √100 = 10 cm. 
 
20. Qual é a área de um triângulo cuja base mede 10 cm e cuja altura mede 4 cm? 
A) 20 cm² 
B) 30 cm² 
C) 25 cm² 
D) 40 cm² 
**Resposta:** A) 20 cm² 
**Explicação:** A área de um triângulo é dada por A = (base * altura) / 2. Portanto, A = (10 
* 4) / 2 = 40 / 2 = 20 cm². 
 
21. Um trapézio tem bases de 8 cm e 10 cm e altura de 6 cm. Qual é a área do trapézio? 
A) 54 cm² 
B) 60 cm² 
C) 66 cm² 
D) 72 cm² 
**Resposta:** A) 54 cm² 
**Explicação:** A área do trapézio é A = (b1 + b2) * h / 2. Assim, A = (8 + 10) * 6 / 2 = 18 * 6 / 
2 = 54 cm².

Mais conteúdos dessa disciplina