Prévia do material em texto
86 05 (Enem 2017) Uma pessoa ganhou uma pulseira formada por pérolas esféricas, na qual faltava uma das pérolas. A figura indica a posição em que estaria faltando esta pérola. Ela levou a jóia a um joalheiro que verificou que a medida do diâmetro dessas pérolas era 4 milímetros. Em seu estoque, as pérolas do mesmo tipo e formato, disponíveis para reposição, tinham diâmetros iguais a: 4,025 mm; 4,100 mm; 3,970 mm; 4,080 mm e 3,099 mm. O joalheiro então colocou na pulseira a pérola cujo diâmetro era o mais próximo do diâmetro das pérolas originais. A pérola colocada na pulseira pelo joalheiro tem diâmetro, em milímetro, igual a A) 3,099. B) 3,970. C) 4,025. D) 4,080. E) 4,100. 01 (Enem 2011) Para determinar a distância de um barco até a praia, um navegante utilizou o seguinte procedimento: a partir de um ponto A, mediu o ângulo visual α fazendo mira em um ponto fixo P da praia. Mantendo o barco no mesmo sentido, ele seguiu até um ponto B de modo que fosse possível ver o mesmo possível ver o mesmo ponto P da praia, no entanto sob um ângulo visual 2α. A figura ilustra essa situação: Suponha que o navegante tenha medido o ângulo α = 30° e, ao chegar ao ponto B, verificou que o barco havia percorrido a distância AB = 2 000 m. Com base nesses dados e mantendo a mesma trajetória, a menor distância do barco até o ponto fixo P será: A) 1 000 m. B) 1 000 √3 m. C) 2 000 √3/3 m. D) 2 000 m. E) 2 000 √3m. 02 (Enem 2013) O dono de um sítio pretende colocar uma haste de sustentação para melhor firmar dois postes de comprimentos iguais a 6 m e 4 m. A figura representa a situação real na qual os postes são descritos pelos segmentos AC e BD e a haste é representada pelo segmento EF, todos perpendiculares ao solo, que é indicado pelo segmento de reta AB. Os segmentos AD e BC representam cabos de aço que serão instalados. Qual deve ser o valor do comprimento da haste EF? A) 1 m B) 2 m C) 2,4 m D) 3 m E) 2√6 m 3.7 Estudo de Triângulos GABARITO 1. 𝐶 2. 𝐵 3. 𝐷 4. 𝐴 5. 𝐶 87 03 (Enem 2013) As torres Puerta de Europa são duas torres inclinadas uma contra a outra, construídas numa avenida de Madri, na Espanha. A inclinação das torres é de 15° com a vertical e elas têm, cada uma, uma altura de 114 m (a altura é indicada na figura como o segmento AB). Estas torres são um bom exemplo de um prisma oblíquo de base quadrada e uma delas pode ser observada na imagem. Utilizando 0,26 como valor aproximado para a tangente de 15° e duas casas decimais nas operações, descobre-se que a área da base desse prédio ocupa na avenida um espaço: A) menor que 100 m² B) entre 100 m² e 300 m² C) entre 300 m² e 500 m² D) entre 500 m² e 700 m² E) maior que 700 m² 04 (Enem 2014) Uma criança deseja criar triângulos utilizando palitos de fósforo de mesmo comprimento. Cada triângulo será construído com exatamente 17 palitos e pelo menos um dos lados do triângulo deve ter o comprimento de exatamente 6 palitos. A figura ilustra um triângulo construído com essas características. A quantidade máxima de triângulos não congruentes dois a dois que podem ser construídos é: A) 3. B) 5. C) 6. D) 8. E) 10. 05 (Enem 2014) Diariamente, uma residência consome 20 160 Wh. Essa residência possui 100 células solares retangulares (dispositivos capazes de converter a luz solar em energia elétrica) de dimensões 6 cm u 8 cm. Cada uma das tais células produz, ao longo do dia, 24 Wh por centímetro de diagonal. O proprietário dessa residência quer produzir, por dia, exatamente a mesma quantidade de energia que sua casa consome. Qual deve ser a ação desse proprietário para que ele atinja o seu objetivo? A) Retirar 16 células. B) Retirar 40 células. C) Acrescentar 5 células. D) Acrescentar 20 células. E) Acrescentar 40 células. 06 (Enem 2017) Raios de luz solar estão atingindo a superfície de um lago formando um ângulo X com a sua superfície, conforme indica a figura. Em determinadas condições, pode-se supor que a intensidade luminosa desses raios, na superfície do lago, seja dada aproximadamente por I(x) = k . sen(x) sendo k uma constante, e supondo-se que X está entre 0° e 90º. Quando x = 30º, a intensidade luminosa se reduz a qual percentual de seu valor máximo? A) 33% B) 50% C) 57% D) 70% E) 86% 88 07 (Enem 2017) Para decorar uma mesa de festa infantil, um chefe de cozinha usará um melão esférico com diâmetro medindo 10 cm, o qual servirá de suporte para espetar diversos doces. Ele irá retirar uma calota esférica do melão, conforme ilustra a figura, e, para garantir a estabilidade deste suporte, dificultando que o melão role sobre a mesa, o chefe fará o corte de modo que o raio r da seção circular de corte seja de pelo menos 3 cm. Por outro lado, o chefe desejará dispor da maior área possível da região em que serão afixados os doces. Para atingir todos os seus objetivos, o chefe deverá cortar a calota do melão numa altura h, em centímetro, igual a A) 5 − √91 2 B) 10 − √91 C) 1 D) 4 E) 5 08 (Enem 2018) Um quebra- cabeça consiste em recobrir um quadrado com triângulos retângulos isósceles, como ilustra a figura. Uma artesã confecciona um quebra-cabeça como o descrito, de tal modo que a menor das peças é um triângulo retângulo isósceles cujos catetos medem 2 cm. O quebra- cabeça, quando montado, resultará em um quadrado cuja medida do lado, em centímetro, é A) 14. B) 12. C) 7√2 D) 6 + 4√2 E) 6 + 2√2 09 (Enem 2018) O remo de assento deslizante é um esporte que faz uso de um barco e dois remos do mesmo tamanho. A figura mostra uma das posições de uma técnica chamada afastamento. Nessa posição, os dois remos se encontram no ponto A e suas outras extremidades estão indicadas pelos pontos B e C. Esses três pontos formam um triângulo ABC cujo ângulo BÂC tem medida de 170°. O tipo de triângulo com vértices nos pontos A, B e C, no momento em que o remador está nessa posição, é A) retângulo escaleno. B) acutângulo escaleno. C) acutângulo isósceles. D) obtusângulo escaleno. E) obtusângulo isósceles. 10 (Enem 2018) Para decorar um cilindro circular reto será usada uma faixa retangular de papel transparente, na qual está desenhada em negrito uma diagonal que forma 30° com a borda inferior. O raio da base do cilindro mede 6/π cm, e ao enrolar a faixa obtém-se uma linha em formato de hélice, como na figura. O valor da medida da altura do cilindro, em centímetro, é A) 36√3 B) 24√3 C) 4√3 D) 36 E) 72