Prévia do material em texto
CHAPTER 3 79 we saw in Problem 3.15e. By comparing pKa values from Table 3.1, we conclude that the following proton is more acidic (lower pKa value). This suggests that a negative charge will be more stabilized when spread over two oxygen atoms, rather than being spread over one oxygen atom and three carbon atoms (oxygen is more electronegative than carbon). 3.18. (a) The highlighted proton is the most acidic. When this location is deprotonated, the resulting conjugate base is stabilized by the electron-withdrawing effects of the electronegative fluorine atoms: (b) The highlighted proton is more acidic. When this location is deprotonated, the resulting conjugate base is stabilized by the electron-withdrawing effects of the electronegative chlorine atoms, which are closer to this proton than the other acidic proton (left): 3.19. (a) The compound with two chlorine atoms is more acidic, because of the electron-withdrawing effects of the additional chlorine atom, which helps stabilize the conjugate base that is formed when the proton is removed. (b) The more acidic compound is the one in which the bromine atom is closer to the acidic proton. The electron-withdrawing effects of the bromine atom stabilize the conjugate base that is formed when the proton is removed. 3.20. (a) In the following compound, one of the chlorine atoms has been moved closer to the acidic proton of the carboxylic acid group, which further stabilizes the conjugate base that is formed when the proton is removed. (b) In the following compound, one of the chlorine atoms has been moved farther away from the acidic proton of the carboxylic acid group, and the distant chlorine atom is less capable of stabilizing the conjugate base that is formed when the proton is removed. (c) There are many acceptable answers to this question, since there are many constitutional isomers that lack the carboxylic acid functional group. One example is shown below. This compound is not a carboxylic acid, so its conjugate base is not resonance-stabilized: 3.21. The most acidic proton is highlighted in each of the following compounds. For each of the first two compounds, deprotonation leads to a conjugate base in which the negative charge is associated with an sp hybridized orbital (which is more stable than being associated with an sp2 or sp3 hybridized orbital). In the final compound, deprotonation leads to a conjugate base in which the negative charge is associated with an sp2 hybridized orbital (which is more stable than being associated with an sp3 hybridized orbital). www.MyEbookNiche.eCrater.com