Prévia do material em texto
Problem 4.21 PP (a) Determine values for K^. K2, and K3 so that (i) both systems exhibit zero steady-state error to step inputs (that is. both are Type 1). and (ii) their static velocity constant /Cv = 1 when KO = 1. Two feedback systems are shown in Fig. (b) Suppose KQ undergoes a small perturbation: KQ-* + 5KQ. What effect does this have on the system type in each case? Which system has a type which is robust? Which system do you think would be preferred? Figure Two feedback systems h p '' ^ l - p ' ’ Step-by-step solution step 1 of 4 (a) Refer from Figure 4.36 (a) in the textbook and write the emor detector output equation. E ^ R - Y (1)E ( s U - ^ ^ ^ 1+G (s) Substitute the gain of the system from Figure 4.36 (a) in the textbook for G («) in equation (1). (2) ^ ' A s ^ + s + K ^ , ' ' Determine the value of velocity error coefficient K , ■ Write the general formula for velocity error coefficient. Calculate the ^ . ^ ( o o ) = U in s £ ( j) from equation (2). , . .. i ( 4 s + l ) 1 'b j-p V ) 4s^+s + K JC ^s' (4s+ \) ^ H = l i 2 1 z r’ - ^ 4 s ‘ + s + K ^ i (o o )s— !— . ’ K .K , (4) ForJS:.= l , find the value of (5) (® ) (oo) ■ — . Substitute equations (5) in equation (3). = ....... (6) Hence, from equation (6), the value of is equal to |pnel • Step 2 of 4 Refer from Figure 4.36 (a) in the textbook and write the emor detector output equation. E s R — Y Substitute the gain of the system from Figure 4.36 (b) in the textbook for in equation (7). --------------i 4 £ ± i £ _ i d £ ± y j t ( , ) ------------R(s) (8) 4J + 1 + C A 4s + l Calculate the from equation (8). 4 s+ i + a:,a:„ , , 4 j + i + i r A ( i - A : , ) ^ ( * ) = ------------- “4 1 + i + a:,* :. , X l i M M J Consider the value of ^ ( » ) • e . « , H = 0 (10) Equate equations (9) and (10), U K , K , ( \ - K , ) i+ A r , x . ( i - ^ : , ) = o (11) For AT̂ « i , modify equation (11). i + i : , ( i - a: , )= o ......(1 2 ) (9) Step 3 of 4 Determine the value of velocity error coefficient K, Calculate the from equation (8). ' ’ ,-M 4s + i + a:,k , *’ ■ — 4 s + i+ ^ r ,^ :. s ^ ̂ 1 ̂ K , K , ( \ - K , ) pH ' , H • lim — S ^.■M 4 ■ (13) F o r j r . = l , find the value of 4 ■.......... ....... (14) U K , ' ^ Substitute equations (14) in equation (3). a: . * \ U K , \ U K , For AT, a 1. find the value of K,- a: , = 3 ........ (15) Substitute equations (15) in equation (12). i+ 3 ( i - * r j ) = o .(16)K - 1« p - 3 Hence, from equations (15), and (16). the value (b) Consider the value of A^. K ^ ^ K ^ + 8 K ^ ...... (17) Calculate the ^ * pH = '™ » ^ W from equation (2). of ATjis and the value of AT, is [^ . .(18) ‘ i . * p l ) ‘™ * 4 i ’ + i+ (A r .+ S A r ,) iir , j Substitute AT| value in equation (18). •b » p v I « P 4 i ' + * + ( * ; ,+ 8 a:„) e . « p H = 0 (19) Hence, the Figure 4.36 (a) is regardless of K^ value. Step 4 of 4 Substitute equations (17) in equation (9). , . i + a: , ( a: . + 5 a: . ) ( i - a: , ) t _ (