Prévia do material em texto
50 2 INTERNAL ENERGY �e van der Waals parameter a of sulfur dioxide is found in Table 1C.3, and needs to be converted to SI units a = (6.775 dm6 atmmol −2 ) × (10 −6 m6 1 dm6 ) × (1.01325 × 10 5 Pa 1 atm ) = 0.686... m6 Pamol−2 �erefore the internal pressure is πT = a V 2m = (0.686... m6 Pamol−2) (2.47... × 10−2 m3mol−1)2 = 1.12 × 103 Pa E2D.2(b) �e internal energy of a closed system of constant composition is a function of temperature and volume. For a change in V and T , dU is given by [2D.5–61], dU = πTdV + CVdT . At constant temperature, this reduces to dU = πTdV . Substituting in the given expression for πT for a van der Waals gas and using molar quantities dUm = a V 2m dVm �is expression is integrated between Vm,i and Vm,f to give ∫ Vm,f Vm,i dUm = ∫ Vm,f Vm,i a V 2m dVm hence ∆Um = − a V 2m ∣ Vm,f Vm,i = −a ( 1 Vm,f − 1 Vm,i ) �e van der Waals parameter a for argon is found in Table 1C.3, and needs to be converted to SI units a = (1.337 dm6 atmmol −2 ) × (10 −6 m6 1 dm6 ) × (1.01325 × 10 5 Pa 1 atm ) = 0.135... m6 Pamol−2 ∆Um = −(0.135... m6 Pamol−2) ( 1 30.00 × 10−3 m3mol−1 − 1 1.00 × 10−3 m3mol−1 ) = +1.30... × 102 Jmol−1 = +131 Jmol−1 �e work done by an expanding gas is given by [2A.5a–39], dw = −pexdV . For a reversible expansion pex is the pressure of the gas, hence w = −∫ pdVm Substituting in the expression for the pressure of a van der Waals gas, [1C.5b– 24] w = −∫ RT Vm − b − a V 2m dVm = −∫ RT Vm − b dVm + ∫ a V 2m dVm = −∫ RT Vm − b dVm + ∆Um