Buscar

Apostila QI 1 2012-1

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 233 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 233 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 233 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Universidade Federal de Pelotas 
Centro de Ciências Químicas et al.
Disciplina de
Química Inorgânica I
Curso de Química Industrial (Bach.)
(2º Semestre)
(Versão 2012-1)
Prof. Dr. rer. nat. W. Martin Wallau (Dipl.-Chem.)
Mir wird von alledem so dumm,
Als ging´ mir ein Mühlrad im Kopfe herum.*
* Tudo isso deixa-me tão tolo,
Como se um moinho me andasse no miolo.
i
Índice
Lista das Tabelas ...............................................................................................vi
Lista das Figuras ................................................................................................ ix
Lista das Figuras ................................................................................................ ix
Lista das Equações .......................................................................................... xix
1. Estrutura atômica ........................................................................................ 1
1.1. Conceitos básicos................................................................................ 1
1.1.1. Desenvolvimento histórico dos termos elemento e átomo............ 1
1.1.2. Partículas elementares ................................................................. 4
1.2. Modelos atômicos ................................................................................ 7
1.2.1. O modelo de Rutherford ............................................................... 7
1.2.2. O modelo de Bohr......................................................................... 9
1.2.3. Propriedades de partículas elementares .................................... 15
1.2.4. O Modelo de Kimball para o átomo de hidrogênio ...................... 21
1.2.5. O modelo quântico do átomo de hidrogênio ............................... 24
1.2.6. O modelo quântico para átomos polieletrônicos ......................... 42
1.2.7. O “Aufbauprinzip” (principio de construção)................................ 46
2. A Tabela periódica e as propriedades periódicas ..................................... 55
2.1. Desenvolvimento histórico da Tabela periódica................................. 55
2.2. Apresentações da Tabela periódica................................................... 59
2.3. Extensão da Tabela periódica para elementos super-pesados ......... 61
2.4. Propriedades periódicas .................................................................... 62
2.4.1. Massa atômica............................................................................ 62
2.4.2. Raios atômicos e iônicos ............................................................ 63
2.4.3. Energia de Ionização .................................................................. 66
2.4.4. Afinidade Eletrônica .................................................................... 68
2.4.5. Eletronegatividade ...................................................................... 69
ii
2.4.6. Ponto de fusão e ebulição .......................................................... 71
2.4.7. Números de oxidação ................................................................. 72
2.4.8. Acidez dos hidretos e basicidade dos hidróxidos........................ 73
2.4.9. Relação diagonal ........................................................................ 73
2.5. Periodicidades na química dos elementos super-pesados 
(transactinídeos) ........................................................................................... 74
2.5.1. Efeitos relativísticos na química dos elementos super-pesados. 74
2.5.2. Exemplos de propriedades químicas de elementos super-pesados
.................................................................................................... 76
3. Nomenclatura na química inorgânica........................................................ 77
3.1. O nome dos cátions ........................................................................... 77
3.2. O nome dos ânions............................................................................ 77
3.3. O nome de compostos iônicos........................................................... 78
3.4. O nome de compostos moleculares inorgânicos ............................... 78
4. Ligação metálica ....................................................................................... 80
4.1. Teoria do “mar de elétrons”................................................................ 80
4.2. Propriedades dos metais ................................................................... 80
4.3. Estruturas dos metais ........................................................................ 81
5. Ligação iônica ........................................................................................... 88
5.1. Propriedades típicas de compostos iônicos ....................................... 88
5.2. Energia reticular ................................................................................. 89
5.2.1. Calculo da energia reticular (equação Born – Mayer e de Born –
Landé) .................................................................................................... 89
5.2.2. Determinação experimental da energia reticular (Ciclo de Born –
Haber) .................................................................................................... 93
5.3. Caráter iônico parcial ......................................................................... 95
5.4. Estruturas de compostos iônicos ....................................................... 96
5.4.1. Estruturas do tipo AB .................................................................. 96
5.4.2. Estruturas do tipo AB2................................................................. 97
iii
5.4.3. Estruturas dos tipos A2B3 e AA´B3 .............................................. 98
5.4.4. Estruturas e AA´2B4 (espinélios e espinélios inversos) ............... 99
5.4.5. Exemplos para diversas estruturas iônicas................................. 99
5.5. Sólidos iônicos ................................................................................. 100
5.5.1. Solubilidade de compostos iônicos ........................................... 100
5.5.2. Condução iônica em sólidos iônicos ......................................... 101
5.5.3. Defeitos em cristais................................................................... 104
6. Ligação covalente ................................................................................... 108
6.1. As estruturas de Lewis..................................................................... 108
6.1.1. Escrever uma estrutura de Lewis.............................................. 108
6.1.2. Ressonância e carga formal ..................................................... 109
6.1.3. Compostos de ordem maior...................................................... 113
6.2. O modelo VSEPR ............................................................................ 116
7. Simetria, operações de simetria e grupos pontuais ................................ 122
7.1. O que é simetria?............................................................................. 122
7.2. Operações e elementos de simetria................................................. 123
7.2.1. Operações de simetria.............................................................. 123
7.2.2. Eixos de rotação e equivalência ............................................... 124
7.2.3. Planos de reflexão .................................................................... 125
7.2.4. Centro de inversão.................................................................... 125
7.2.5. Eixos de rotação – reflexão ...................................................... 126
7.2.6. Resumo de elementos de simetria............................................ 127
7.3. Grupos pontuais...............................................................................128
7.3.1. O que é um grupo? ................................................................... 128
7.3.2. Grupos pontuais para moléculas .............................................. 128
7.3.3. Determinação do grupo pontual para moléculas ...................... 131
7.3.4. Aplicação de simetria................................................................ 133
iv
8. A Teoria do orbital molecular .................................................................. 134
8.1. Orbitais moleculares para átomos homonucleares .......................... 134
8.2. Orbitais moleculares para moléculas heteronucleares..................... 141
8.3. Localização de orbitais moleculares ................................................ 143
8.4. O modelo das bandas ...................................................................... 144
8.5. Tipos de semicondutores ................................................................. 148
9. Ácidos e bases........................................................................................ 151
9.1. Desenvolvimento histórico do conceito de ácidos e bases .............. 151
9.1.1. Exemplos de ácidos e bases .................................................... 151
9.1.2. Conceitos históricos de ácidos e bases .................................... 152
9.1.3. Definição de Arrhenius.............................................................. 153
9.1.4. Definição de Brønsted e Lowry ................................................. 154
9.1.5. Definição de Lewis.................................................................... 156
9.2. Autoprotólise de água e escala pH (concentração de íons hidrogênio) .
......................................................................................................... 157
9.3. Força de ácidos e bases do tipo Brønsted (escala pKa e pKb)......... 160
9.4. Fatores influenciando a força de ácidos do tipo Brønsted ............... 163
9.4.1. Ácidos binários.......................................................................... 163
9.4.2. Aquaácidos ............................................................................... 164
9.4.3. Hidroxi- e Oxiácidos.................................................................. 165
9.4.4. Regras de Pauling para oxiácidos ............................................ 167
9.4.5. Oxiácidos substituídos .............................................................. 167
9.4.6. Ácidos carboxilicos ................................................................... 168
9.5. Óxidos ácidos e básicos .................................................................. 169
9.5.1. Oxi-, hidroxi e aquaácidos como derivados de óxidos hidratados ..
.................................................................................................. 169
9.5.2. Óxidos ácidos ........................................................................... 169
9.5.3. Óxidos básicos.......................................................................... 169
v
9.5.4. Óxidos anfotéricos .................................................................... 170
9.6. Cálculo de pH em soluções aquosas............................................... 171
9.7. Exemplos para o calculo do pH ....................................................... 174
9.7.1. Ácidos e bases muito fortes (α = 1): ......................................... 174
9.7.2. Ácidos e bases fortes ou fracos (1> α > 0,05): ......................... 175
9.7.3. Ácidos e bases fortes ou fracos (α ≤ 0,05):............................... 175
9.7.4. Ácidos polipróticos (anfotéricos) ............................................... 175
9.8. Soluções tampão ............................................................................. 176
9.9. Titulação ácido-base e indicadores.................................................. 180
9.10. Ácidos do tipo Lewis..................................................................... 182
9.10.1. Força dos ácidos do tipo Lewis (Conceito de Pearson) ........ 182
9.10.2. Tipos de ácidos e bases do tipo Lewis.................................. 184
9.10.3. Exemplos de ácidos e bases do tipo Lewis ........................... 185
9.10.4. Reações dos ácidos do tipo Lewis ........................................ 190
9.11. Solventes ácidos e básicos .......................................................... 192
9.11.1. Solventes não-aquosas......................................................... 192
9.11.2. Solventes básicos ................................................................. 192
9.11.3. Solventes ácidos ................................................................... 193
9.12. Sólidos ácidos .............................................................................. 193
9.12.1. Sólidos amorfos..................................................................... 193
9.12.2. Zeólitas.................................................................................. 194
10. Referências ......................................................................................... 203
vi
Lista das Tabelas
Tabela 1. Propriedades de partículas subatômicas, do átomo de hidrogênio e 
sua camada eletrônica. ...................................................................................... 6
Tabela 2: As séries espectroscópicas observadas para átomo de hidrogênio e 
calculadas através do modelo de Bohr ............................................................ 11
Tabela 3: Energia de ionização para sistemas semelhante ao átomo de 
hidrogênio (nbaixa = 1). ...................................................................................... 12
Tabela 4. Energias de ionização calculadas através do modelo de Bohr 
(Equação 9) e a energia de ionização observada. ........................................... 12
Tabela 5. Comprimento de onda para partículas micro - e macroscópicas...... 17
Tabela 6. Incerteza da velocidade de diferentes objetos determinado através da 
“Relação de Incerteza” (vide Figura 14). .......................................................... 20
Tabela 7. Números quânticos de momento angular (azimutais) e magnéticos 
para diferentes números quânticos principais. ................................................. 27
Tabela 8. Funções radiais de onda para átomo de hidrogênio......................... 28
Tabela 9. Funções angulares de orbitais atômicos s, p, d e suas combinações 
lineares............................................................................................................. 30
Tabela 10. Carga nuclear efetivo (Zeff) para os elementos dos três primeiros 
períodos,,. ......................................................................................................... 46
Tabela 11. Propriedades previstas 1871 por Mendelejeff para Eka – silício em 
comparação com as propriedades determinados para Germânio por Winkler em 
1886. ................................................................................................................ 59
Tabela 12. Configuração eletrônica dos transactinídeos,. ................................ 62
Tabela 13: 1ª energia de Ionização para os metais alcalinos........................... 66
Tabela 14: 1ª energia de Ionização para os elementos do 4o. período. ........... 66
Tabela 15: Afinidades eletrônicas [eV] para os elementos dos grupos principais.
......................................................................................................................... 68
Tabela 16. Eletronegatividades segundo Pauling/Mulliken para os elementos 
dos grupos principais. ...................................................................................... 69
Tabela 17. Números de oxidação mais freqüentes de elementos importantes.72
Tabela 18. Valores pKa de hidretos moleculares (ácidos binários). ................. 73
Tabela19. Razão carga/raio para os elementos com relação diagonal em 
comparação com os segundos elementos do mesmo grupo. .......................... 74
vii
Tabela 20. Exemplos de ânions comuns, seus nomes e os respectivos ácidos.
......................................................................................................................... 77
Tabela 21. Prefixos numéricos gregos. ............................................................ 78
Tabela 22. Nomes triviais de alguns compostos moleculares inorgânicos 
comuns............................................................................................................. 79
Tabela 23. Estruturas cristalinas de metais observados em condições normais.
......................................................................................................................... 87
Tabela 24. Constante de Madelung para estruturas representativas. .............. 91
Tabela 25. Comparação entre as energias reticulares calculadas pela Equação 
43 e determinadas aplicando o Ciclo de Born-Haber76 .................................... 94
Tabela 26. Energia reticular (Uret.), ponto de ebulição (Te) e fusão (Tf), 
coeficientes de expansão térmica (α) de compressibildade (κ) e dureza Mohs 
(dMohs) para típicos compostos iônicos. ............................................................ 94
Tabela 27. Momento dipolar e caractere iônico de halogênetos de hidrogênio.
......................................................................................................................... 95
Tabela 28. Compostos iônicos e suas estruturas (os compostos que derem 
nome a estrutura são em negrito). ................................................................... 99
Tabela 37. Comparação de solubilidade e caráter iônico de cloreto de prata(I) e 
ferro(II). .......................................................................................................... 100
Tabela 38. Condutividade elétrica de iodeto de prata em comparação a 
condutividade metálica (Cu) semimetalica (grafita) e solução iônica (NaCl 1M).
....................................................................................................................... 102
Tabela 29. Exemplos para estrutura de compostos do tipo AXmEn. ............... 116
Tabela 30. Elementos de simetria observados para moléculas. .................... 127
Tabela 31. Estruturas de compostos selecionados da Tabela 30. ................. 127
Tabela 32. Grupos pontuais observados para moléculas. ............................. 129
Tabela 33. Estruturas de alguns exemplos da Tabela 32. ............................. 130
Tabela 34. Configuração eletrônica e propriedades de moléculas 
homonucleares do 1o e 2o período. ................................................................ 140
Tabela 43. Produção de bases e ácidos inorgânicos em 2006 (103 toneladas).
....................................................................................................................... 151
Tabela 44. Exemplos de ácidos e bases de Lewis. ........................................ 156
Tabela 45. Constante de autoprotólise de água Kw em dependência da 
temperatura. ................................................................................................... 158
viii
Tabela 46. Valores de pH para diversas soluções aquosas........................... 159
Tabela 47. Valores pKa e pKb a 25 ºC para diferentes ácidos e suas bases 
conjugadas. .................................................................................................... 161
Tabela 48. Classificação da força de ácidos. ................................................. 162
Tabela 49. Valores pKa de hidretos moleculares (ácidos binários). ............... 163
Tabela 50. Correlação entre a força dos oxiácidos e eletronegatividade. ...... 165
Tabela 51. Estruturas e valores pKa de hidroxi- e oxiácidos. ......................... 166
Tabela 52. Correlação entre força dos oxiácidos de cloro e o numero de 
oxidação. ........................................................................................................ 166
Tabela 53. Influencia dos efeitos +I e –I aos valores pKa para ácidos 
carboxílicos. ................................................................................................... 168
Tabela 54. Correlações entre a estrutura molecular e a força do ácido. ........ 168
Tabela 55. Indicadores para titulação ácido-base. ......................................... 181
Tabela 56. Ácidos e bases duros e moles...................................................... 183
Tabela 57. Consumo de zeólitas sintéticas por área geográfica e de aplicação 
em 1998. ........................................................................................................ 199
Tabela 58. Principais estruturas zeóliticas de poros pequenos, médios, grandes 
e extragrandes e seus principais campos de aplicação em escala industrial.......
....................................................................................................................... 200
ix
Lista das Figuras 
Figura 1. Tabela periódica dos elementos.......................................................... 1
Figura 2. Distribuição de elementos químicos: (a) no universo; (b) na terra; (c) 
na litosfera; (d) no ser humano........................................................................... 2
Figura 3. Esquema de tubo de raios catódicos (a) e de raios de canal (b). ....... 5
Figura 4. (a) Esquema do experimento de Millikan das gotinhas de óleo; (b) 
Aparelho experimental segundo referência original. .......................................... 5
Figura 5. Experimento de deflexão de partículas α de Rutherford (a) esquema; 
(b) aparelho experimental original (M = microscópio; S = tela luminescente; F = 
Folha de ouro; R = rádio, T = cano para bomba de vácuo). ............................... 7
Figura 6. Experimento de deflexão de partículas α de Rutherford (a) 
interpretação . .................................................................................................... 8
Figura 7. Modelo planetário do átomo................................................................ 8
Figura 8. Modelo Atômico de Rutherford............................................................ 9
Figura 9. Energias de ionização observadas e calculadas através do modelo de 
Bohr (Equação 9). ............................................................................................ 12
Figura 10. Florescência de raios-X (a) origem; (b) nomenclatura. ................... 13
Figura 11. (E-Kα)
1/2 para os elementos 20Ca-109Mt [l] elementos desconhecidos 
em 1913; [¡] elementos conhecidos em 1913................................................. 14
Figura 12. A Lei de Moseley para os elementos 22Ti - 31Ga com os elementos Ni 
e Co segundo o número de ordem (?) e segundo o peso atômico (?) ........... 14
Figura 13. Esquema do efeito de Compton. ..................................................... 15
Figura 14. Difração de elétrons e a aproximação da “Relação de Incerteza”.......
......................................................................................................................... 19
Figura 15. Partícula na Caixa como Modelo para Aproximação da Energia no 
Ponto Zero........................................................................................................ 20
Figura 16. Energia potencial para um elétron num potencial Coulomb. ........... 21
Figura 17. Energia cinética de um elétron em função da distancia do núcleo 
calculado pela relação de incerteza (Equação 20)........................................... 22
Figura 18. Energia total de um elétron em função da distancia núcleo elétron.23
Figura 19. Coordenadas cartesianas e esféricas polares. ............................... 24
Figura 20. Funções radiaisdo átomo de hidrogênio para n = 1 – 3. ................ 29
x
Figura 21. Funções angulares dos orbitais atômicos s, p, d, f.......................... 31
Figura 22. Esquema do experimento de Stern-Gerlach (1922 com Ag) e de 
Phipps e Taylor (1927 com H): (a) arranjo experimental (b) resultado 
observado......................................................................................................... 33
Figura 23. Comparação das funções angulares e seus respectivos quadrados 
para orbitais atômicos s e p.............................................................................. 34
Figura 24. (a) Função radial R1,s, (b) densidade de probabilidade (R1,s)
2, (c) 
distribuição radial de densidade de probabilidade 4pir2(R1,s)2 para o orbital 1s de 
hidrogênio......................................................................................................... 35
Figura 25. Elemento de integração para calculo da distribuição de densidade 
radial. ............................................................................................................... 36
Figura 26. Distribuição radial de densidade da probabilidade para os orbitais 1s, 
2s, 2p, 3s, 3p, e 3d do átomo de hidrogênio .................................................... 37
Figura 27. Orbitais s do átomo de hidrogênio (secção). ................................... 38
Figura 28. Orbitais p do átomo de hidrogênio (secção).................................... 38
Figura 29. Orbitais d do átomo de hidrogênio (secção).................................... 39
Figura 30. Orbitais f do átomo de hidrogênio (secção)..................................... 39
Figura 31. Orbitais 5g do átomo de hidrogênio. ............................................... 40
Figura 32. Orbitais 6h do átomo de hidrogênio. ............................................... 40
Figura 33. Átomos de Rydberg (comparação dos orbitais s de hidrogênio com n
= 1 e n = 21). .................................................................................................... 40
Figura 34. Esquematização da repulsão eletrônica em átomos polieletronicos43
Figura 35. Comparação dos esquemas de termos dos metais alcalinos com a 
de hidrogênio.................................................................................................... 44
Figura 36. (a) Função radial Rn,s, (b) densidade de probabilidade (Rn,s)
2, (c) 
distribuição radial de densidade de probabilidade 4pir2(Rn,s)2 para os orbitais de 
valência de H, Li e Na. ..................................................................................... 45
Figura 37. Comparação dos orbitais 1s – 3s para hidrogênio (a – c) e para 
hidrogênio, lítio e sódio (d – f). ......................................................................... 45
Figura 38. Ocupação dos orbitais atômicos de valência dos elementos do 1° 
a 3° período...................................................................................................... 47
Figura 39. Níveis de energia para átomos polieletrônicos. Em detalhe os níveis 
em torno de Z = 20 (no começo da serie dos elementos 3d) ........................... 49
xi
Figura 40. Distribuição radial da densidade de probabilidade para os orbitais 
3p, 3d e 4s de potássio calculado com Rn,l (Tabela 8) e Zeff determinado pelas 
regras de Slater................................................................................................ 50
Figura 41. Ordem da ocupação dos diversos orbitais atômicos no estado 
fundamental...................................................................................................... 51
Figura 42. Principio de Aufbau para os elementos conhecidos da Tabela 
periódica (*ainda não detectado)...................................................................... 52
Figura 43. Tabela periódica dos elementos conhecidos obtido pelo rearranjo da 
Figura 42 (*ainda não detectado). .................................................................... 53
Figura 44. Cópia da publicação original da primeira Tabela periódica. ............ 54
Figura 45. Tabela dos elementos publicada por Gmelin em 1843. .................. 55
Figura 46. Vis tellurique de Chancourtois (1862). ............................................ 56
Figura 47. Esboço da Tabela periódica de Mendelejeff. .................................. 57
Figura 48. Tabela periódica de Meyer de 1870. ............................................... 58
Figura 49. Tabela periódica de Mendelejeff de 1871. ...................................... 58
Figura 50. Tabela periódica de Meyer de 1902 (com marcas posteriores para 
indicar irregularidades na ordem de peso atômica).......................................... 60
Figura 51. Tabela periódica de Werner de 1905 (com os símbolos modernos)61
Figura 52. Tabela periódica segundo Hardt. .................................................... 61
Figura 53. Tabela periódica do futuro,. ............................................................. 62
Figura 54. Massa atômica vs. Z47..................................................................... 63
Figura 55. (a) raio metálico; (b) raio covalente ................................................. 63
Figura 56. Raios atômicos vs. número de ordem. ............................................ 64
Figura 57. Raio iônico. ..................................................................................... 64
Figura 58. Comparação entre os raios atômicos e catiônicos para os grupos 1, 
2 e 13. .............................................................................................................. 65
Figura 59. Comparação entre os raios atômicos e aniônicos para os grupos 
15,16 e 17. ....................................................................................................... 65
Figura 60. Raios iônicos vs. Z. ......................................................................... 66
Figura 61. 1ª Energia de ionização vs. Z.......................................................... 67
Figura 62. 2ª Energia de ionização vs. Z.......................................................... 67
xii
Figura 63. 3ª Energia de ionização vs. Z.......................................................... 68
Figura 64. Afinidades Eletrônicas vs. Z (valores tirados da ref. ). .................... 69
Figura 65. Eletronegatividade de Pauling vs. Z. ............................................... 70
Figura 66. Ponto de fusão vs. Z. ...................................................................... 71
Figura 67. Ponto de ebulição vs. Z................................................................... 71
Figura 68. Os números de oxidação para (a) os grupos principais e (b) os 
metais de transição em dependência do número de ordem............................. 72
Figura 69. Relação diagonal para os primeiros elementos dos grupos 1, 2 e 13.
......................................................................................................................... 73
Figura 70. Distribuição de probabilidade radial relativística ( ) e não –
relativística ( ---- ) dos 7s elétrons de valência de 105Db. ................................. 75
Figura 71. Níveis de energia relativísticos (rel.) e não – relativísticos (nr) para 
os orbitais de valência ns e (n – 1)d do grupo 6............................................... 75
Figura 72. Modelo de “mar” de elétrons para explicar a maleabilidade de 
metais............................................................................................................... 80
Figura 73. Brilho metálico causado pela excitação e relaxação dos elétrons no 
mar de elétrons. ............................................................................................... 80
Figura 74. Formação do empacotamento compacto hexagonal....................... 81
Figura 75. Formação do empacotamento compacto cúbico.............................81
Figura 76. Cela unitária do empacotamento compacto hexagonal (esquerdo) e 
cúbico (direito).................................................................................................. 81
Figura 77. Seqüência das camadas no: (a) empacotamento compacto 
hexagonal e (b) empacotamento compacto cúbico. ......................................... 82
Figura 78. Formação de buracos tetraédricos e octaédricos num 
empacotamento compacto,. ............................................................................. 82
Figura 79. Localização dos buracos octaédricos (a) e tetraédricos (b) no 
empacotamento compacto cúbico (c) acentuação de ¼ buraco octaédrico 
localizado numa das arrestas do cubo. ............................................................ 83
Figura 80. Buracos tetraédricos e octaédricos num empacotamento compacto.
......................................................................................................................... 83
Figura 81. Células unitárias, mostrando a participação das esferas: a) cúbica de 
faces centradas e b) cúbica de corpo centrado................................................ 84
Figura 82. Buracos octaédricos ( ) e tetraédricos(s, r) na cela unitária do 
empacotamento compacto hexagonal.............................................................. 84
xiii
Figura 83. Comparação de diversas celas unitárias para descrição de uma 
estrutura cristalina. ........................................................................................... 85
Figura 84. Comparação entre as estruturas cúbicas de face centrada (a) e de 
corpo centrado (b). ........................................................................................... 86
Figura 85. Representação da estrutura de ferro (cúbico de corpo centrado) em 
escala 1 : 150 × 109 construído para exposição mundial em Bruxelas 1958.... 86
Figura 86. Estrutura cúbica primitiva. ............................................................... 86
Figura 87.As estruturas dos metais sob condições normais (1,013 bar, 298 K; 
elementos em itálico não formam uma das estruturas indicadas); (kubisch 
dichteste Packung = empacotamento cúbico compacto; hexagonal dichteste 
Packung = empacotamento cúbico compacto; kubisch raumzentrierte Packung
= cúbico de corpo centrado)............................................................................. 87
Figura 88. Fragilidade dos compostos iônicos contra força mecânica. ............ 88
Figura 89. Reação de NaCl com água antes (esquerda) e depois (direita) da 
solvatação. ....................................................................................................... 89
Figura 90. Modelo unidimensional para estimação da energia reticular........... 90
Figura 91. Decurso da energia potencial na formação de uma ligação iônica 
entre ânion e cátion.......................................................................................... 91
Figura 92. Ciclo de Born-Haber para MgO....................................................... 93
Figura 93. Caráter iônico vs. diferença das eletronegatividades (∆χab) (?) 
valores aproximados (?) valores experimentais para halogênetos de Lítio e 
Hidrogênio77. .................................................................................................... 96
Figura 94. Estrutura de sal de rocha. ............................................................... 97
Figura 95. Estrutura de cloreto de césio........................................................... 97
Figura 96. Estrutura de blenda de zinco........................................................... 97
Figura 97. Estrutura de wurtzita. ...................................................................... 97
Figura 98. Estrutura de fluoreto de cálcio (Fluorita). ........................................ 98
Figura 99. Estrutura de rutila. ........................................................................... 98
Figura 100. Estrutura de Corindo. .................................................................... 98
Figura 101. Estrutura de perovskita. ................................................................ 98
Figura 102. Estrutura de espinélio.................................................................... 99
Figura 103. Estrutura de espinélio inverso (Fe3O4). ......................................... 99
xiv
Figura 159. Estrutura de: (a) γ-AgI; (b) β-AgI; (c) α-AgI.................................. 101
Figura 160. Comparação de condutores iônicos (M = ponto de fusão). ......... 103
Figura 161. Empacotamento dos ânions de oxigênio em β-Al2O3. ................. 104
Figura 162. Efeitos pontuais: (a) defeito Schottky; (b) defeito Frenkel; (c) 
dopagem; (d) centro de cor (centro-F). .......................................................... 105
Figura 163. (a) quartzo; (b) quartzo fumado contendo centros-F, resultando de 
radiação ionizante. ......................................................................................... 106
Figura 164. (a) cristal ideal; (b) cristal com deslocação linear; (c) cristal com 
deslocação helicoidal; (d) inserção de camada numa deslocação linear, (e) 
micrografia de uma deslocação helicoidal na superfície de um cristal. .......... 106
Figura 165. Crescimento de cristais. .............................................................. 107
Figura 104. „Das Graue Haus“ era a casa-mãe da família dos condes de 
Greiffenclau, cujo arvore genealógico pode ser documentado ate o ano 1097 d 
C..................................................................................................................... 110
Figura 105. Descrição da cor do „Das Graue Haus“ (Figura 104) utilizando 
estruturas (cores) de ressonância. ................................................................. 110
Figura 106. Estruturas de ressonância para SO4
2-. ........................................ 111
Figura 107. Complexação de cloreto por oxigênio. ........................................ 113
Figura 108. Complexação de Xe, S2-, P3- e Si4- análoga a Cl-........................ 114
Figura 109. Estruturas de ressonância para trifluoreto de boro (BF3). ........... 115
Figura 110. Complexação de receptor de elétrons......................................... 115
Figura 111. Estruturas de complexos de receptores de elétrons. .................. 115
Figura 112. Arranjos para diversos números de pares de elétrons n com 
distâncias máximas. ....................................................................................... 117
Figura 113. Estruturas das moléculas do tipo AXmEn com 2 ??????????? ....... 118
Figura 114. Ângulos X-A-X nas estruturas AX3 na presença de uma ligação 
dupla. ............................................................................................................. 119
Figura 115. Ângulos X-A-X nas estruturas AX4 na presença de uma ligação 
dupla. ............................................................................................................. 120
Figura 116. Interação entre par isolado e vizinho na posição (a) equatorial e (b) 
axial ................................................................................................................ 120
Figura 117. Exemplos de simetria em arte e arquitetura. ............................... 122
xv
Figura 118. Proporções agradaveis. .............................................................. 122
Figura 119. Seqüência gerada por operação de simetria............................... 123
 Figura 120. Continuação da seqüência da Figura 119.................................. 123
Figura 121. Eixos de rotação num cubo. ........................................................ 123
Figura 122. Exemplos para eixos Cn: (a) H2O (C2); (b) NH3 (C3); (c) XeF4 (C4); 
(d) ânion ciclopentadienil (C5) (e) benzeno (C6); (f) OCS (C∞). ...................... 124
Figura 123. Planosde reflexão: (a) σv (H2O); (b) σh (B(OH)3); (c) σd. ............ 125
Figura 124. Exemplo para um centro de inversão (SF6)................................. 126
Figura 125. Eixo de rotação – reflexão: (a) S4; (b) S6..................................... 126
Figura 126. (a) eixo S1 (equivalente à reflexão no plano σ); (b) eixo S2
(equivalente à inversão no centro i). .............................................................. 126
Figura 127. Elementos de simetria de um octaedro. ...................................... 127
Figura 128. Esquema para determinação do grupo pontual. ......................... 131
Figura 129. Exemplo para determinação do grupo pontual (PF5). ................. 131
Figura 130. Exemplo para determinação do grupo pontual (S8)..................... 132
Figura 131. Resumo de formas correspondendo a grupos pontuais diferentes.
....................................................................................................................... 132
Figura 132. Sobreposição esquematizada dos orbitais 1s de dois átomos de 
hidrogênio (a) construtiva ⇒ MO ligante; (b) destrutiva ⇒ MO antiligante..... 135
Figura 133. Diagrama de níveis de energia para LCAO de dois orbitais 1s
resultando da sobre posição de AO de átomos de hidrogênio ou de hélio com a 
configuração eletrônica do estado fundamental de H2. .................................. 136
Figura 134. LCAO de orbitais ns e npz: (a) formação de OM σ; (b) formação de 
OM σ*. ............................................................................................................ 137
Figura 135. LCAO de dois orbitais npz: (a) formação de OM σ; (b) formação de 
OM σ*. ............................................................................................................ 137
Figura 136. LCAO de orbitais 2px,y (OM de ligação pi).................................... 138
Figura 137. Sobreposição de orbitais horizontais e perpendiculares (a) s e px,y; 
(b) pz e px,y(OM não ligantes). ........................................................................ 138
Figura 138. Diagrama dos níveis de energia dos MO das moléculas 
homonucleares do 2o período ate N2 (configuração eletrônica de N2 indicada).
....................................................................................................................... 139
xvi
Figura 139. Diagrama dos níveis de energia dos MO das moléculas 
homonucleares do 2o período de O2 e F2 (configuração eletrônica de O2
indicada)......................................................................................................... 139
Figura 140. Variação dos níveis de energia para as moléculas homonucleares 
do 2o período.................................................................................................. 140
Figura 141. Diagrama esquemático dos MO para LiH e HF........................... 141
Figura 142. Diagrama esquemático dos MO para CO. .................................. 142
Figura 143. Ilustração esquemática dos MO ligantes da molécula de metano 
(CH4). ............................................................................................................. 143
Figura 144. Ilustração esquemática dos MO localizados da molécula de metano 
(CH4)
106. ......................................................................................................... 144
Figura 145. Formação de hidrogênio metálico unidimensional. ..................... 145
Figura 146. Formação de banda de condução e de valência para Lítio. ........ 146
Figura 147. Sobreposição da banda s (banda de valência, completamente 
ocupada) e da banda p (banda de condução, completamente vazia) em metais 
(alcalinos terrosos) do grupo 2. ...................................................................... 147
Figura 148. Modelo de bandas para isolador, semicondutor e condutor. ....... 148
Figura 149. (a e b) semicondutor inerente (exemplo Si); (c e d) semicondutor 
tipo n dopado com átomo doador (exemplo Si com As); (e e f) semicondutor 
tipo p dopado com átomo aceitor (exemplo Si com In). ................................. 149
Figura 183. Aminoácidos de ocorrência natural e suas abreviações. ............ 151
Figura 184. Bases nucléicas (pirimidinas e purinas). ..................................... 152
Figura 185. Íon hidrogênio [H9O4]
+. ................................................................ 154
Figura 186. Carga de aminoácido como função do pH: (a) pH < pI; (b) pH = pI 
(ponto isoéletronico); (c) pH > pI. ................................................................... 156
Figura 187. Constante de autoprotólise de água Kw (a) e pKw (b) em 
dependência da temperatura.......................................................................... 159
Figura 188. Estruturas de (a) hexaquaferro(III) e (b) hexaquaalumínio(III) como 
exemplos de aquaácidos................................................................................ 164
Figura 189. Correlação entre pKa e parâmetro eletrostático ξ para aquaácidos.
....................................................................................................................... 164
Figura 190. Exemplos de oxiácidos substituídos: (a) ácido fluorosulfurico; (b) 
ácido aminosulfurico....................................................................................... 167
xvii
Figura 191. Formação de óxidos básicos, ácidos e anfotéricos pelos elementos 
dos grupos principais (elementos em círculos formam óxidos anfotericos, 
independente de seu número de oxidação, elementos em quadrados formam 
óxidos anfotéricos somente em seus estados de oxidação baixos). .............. 170
Figura 192. Influência do número de oxidação no caráter ácido/básico dos 
metais de transição do primeiro período da Tabela periódica. ....................... 171
Figura 193. Grau de ionização α como função do valor de pKa e da 
concentração a 25 ºC calculado com Equação 66. ........................................ 173
Figura 194. Grau de ionização α como função do valor de pKa e da 
concentração a 25 ºC calculado com Equação 66 e Equação 67. ................. 174
Figura 195. Valor de pH como função da fração molar da base conjugado para 
diversos ácidos a 25 ºC calculado com Equação 72. ..................................... 178
Figura 196. Faixa de pH de diversas soluções-tampão. ................................ 180
Figura 197. Curvas idealizadas de pH para titulação de um ácido muito forte 
(HCl), de um ácido forte (HF) e de um ácido fraco (CH3COOH) com uma base 
muito forte (NaOH). ........................................................................................ 182
Figura 198. Relação entre a separação dos orbitais de fronteira duma molécula 
e sua dureza molecular ηM . ........................................................................... 183
Figura 199. Formação de orbital pi nos compostos BX3. ................................ 186
Figura 200. Estrutura de (CH3)2COBr2 ........................................................... 190
Figura 201. Exemplos de solventes básicos: (a) acetonitrila; (b) dimetisulfoxido; 
(c) dimetilformamida....................................................................................... 192
Figura 202. Sítios ácidos na superfície de sílica: (a) Sítios do tipo Brønsted; (b) 
Sítios do tipo Lewis. ....................................................................................... 193
Figura 203. Axel Frederik Cronstedt (1722 - 1765) ........................................ 194
Figura 204. Exemplos de construção e representação de SBUs. .................. 195
Figura 205. Exemplos de construção de estruturas zeólitcas por SBUs e 
PerBUs. .......................................................................................................... 196
Figura 206. Número de estruturas aprovadas pela IZA.................................. 196Figura 207. Efeito “peneira molecular” de zeólitas. ........................................ 197
Figura 208. Comparação dos diâmetros de poros de zeólitas aplicados em 
processos industriais e de silicatos mesoporosos ordenados com os diâmetros 
cinéticos de hidrocarbonetos (*poros cilíndricos, †dietilpropano; ‡dibutilnonano).
....................................................................................................................... 197
xviii
Figura 209. (a) Estrutura zeólitica com cátions de compensação; (b) Estrutura 
zeólitica com sítios ácidos do tipo Brønsted................................................... 198
Figura 210. Representação artística da catalise ácida numa zeólita-Y. ......... 198
Figura 211. Barril autorefrigerante.................................................................. 199
xix
Lista das Equações
Equação 1. Carga de gota como função da massa e do diâmetro no 
experimento de Milikan. ..................................................................................... 6
Equação 2. Reação de formação de nêutrons observados por Chadwick. ........ 6
Equação 3. Modelo de Rutherford...................................................................... 9
Equação 4. Postulado de Bohr........................................................................... 9
Equação 5. Raio de Bohr. ................................................................................ 10
Equação 6. Equação de Rydberg..................................................................... 10
Equação 7. Energia do elétron no átomo de hidrogênio (modelo de Bohr). ..... 10
Equação 8. Diferença de energia entre estados permitidos no modelo de Bohr.
......................................................................................................................... 11
Equação 9. Energia de ionização no modelo de Bohr...................................... 11
Equação10. Lei de Moseley. ............................................................................ 13
Equação 11. Resolução de microcopio ótico (Lei de Abbe). ............................ 15
Equação 12. Efeito de Compton....................................................................... 16
Equação 13. Incerteza causadapelo efeito de Compton. ................................. 16
Equação 14. Comprimento de onda de Broglie................................................ 17
Equação 15. Relação de incerteza para partícula na caixa. ........................... 20
Equação 16. Energia cinética para partícula na caixa...................................... 21
Equação 17. Energia potencial para um elétron no campo de um próton........ 21
Equação 18. Relação de incerteza de Heisenberg. ......................................... 22
Equação 19. Estimação do momento de um elétron (modelo de Kimball). ...... 22
Equação 20. Energia cinética de um elétron (modelo de Kimball). .................. 22
Equação 21. Energia total de um elétron no átomo de hidrogênio (modelo de 
Kimball). ........................................................................................................... 23
Equação 22. Raio de átomo de hidrogênio (modelo de Kimball). .................... 23
Equação 23. Equação de Schrödinger estacionaria para átomo de hidrogênio.
......................................................................................................................... 24
Equação 24. Equação de Schrödinger separada para o átomo de hidrogênio.25
xx
Equação 25. Função de onda para o átomo de hidrogênio (solução da equação 
de Schrödinger)................................................................................................ 26
Equação 26. Níveis de energia permitidos no átomo de hidrogênio. ............... 27
Equação 27. Funções de onda Ψ para ms = ½ e -½. ....................................... 32
Equação 28. Equação de Dirac considerando o caráter relativístico do elétron.
......................................................................................................................... 32
Equação 29. Distribuição radial da densidade de probabilidade. ..................... 36
Equação 30. Probabilidade de encontrar um elétron num dado espaço. ......... 36
Equação 31. Equação de Schrödinger para átomo polielêtronico.................... 42
Equação 32. Equação de Schrödinger estacionaria para átomo de hélio. ....... 42
Equação 33. Carga nuclear efetiva e constante de blindagem σ. .................... 43
Equação 34. Energia de elétron como função da carga nuclear efetiva. ......... 43
Equação 35. Eletronegatividade segundo Pauling. .......................................... 70
Equação 36. Eletronegatividade segundo Mulliken.......................................... 70
Equação 37. Eletronegatividade segundo Allred – Rochow............................. 70
Equação 38. Efeito relativístico para massa do eltrons. ................................... 74
Equação 39. Efeito relativístico para raio do orbital do eltron........................... 74
Equação 40. Formação de um cátion de sódio e de um ânion de cloro na fase 
gasosa.............................................................................................................. 90
Equação 41. Potencial de Coulomb. ................................................................ 90
Equação 42. Calculo do potencial Coulomb para um retículo unidimensional. 91
Equação 43. Equação de Born – Mayer para energia reticular. ....................... 92
Equação 44. Equação de Born – Landé para energia reticular. ....................... 92
Equação 45. Momento dipolar e caráter iônico ................................................ 95
Equação 46. Caráter iônico como função da diferença de eletronegatividade. 96
Equação 48. (a) Energia reticular como função de raios iônicos (b) Entalpia de 
hidratção como função de raios iônicos. ........................................................ 101
Equação 47. Ordem de ligação. ..................................................................... 140
Equação 50. Definição de ácido segundo Liebig............................................ 153
xxi
Equação 51. Exemplos de ácido, base e neutralização na terminologia de 
Arrhenius. ....................................................................................................... 153
Equação 52. Dissociação de um ácido (HCl) segundo a definição de 
Brønsted/Lowry em: ....................................................................................... 154
Equação 53. Neutralização ............................................................................ 156
Equação 54. Propriedades anfotéricas de água (a) receptor de prótons (b) 
doador de prótons. ......................................................................................... 157
Equação 55. Autoprotólise de água. .............................................................. 157
Equação 56. Constante de equilíbrio para autoprotólise de água. ................. 157
Equação 57. Constante de autoprotólise da água.......................................... 158
Equação 58. Constante de autoprotólise da água na forma logaritmizada. ... 158
Equação 59. (a) reações de ácido com água, (b) constante de equilíbrio...... 160
Equação 60. (a) reações de base com água, (b) constante de equilíbrio. ..... 161
Equação 61. (a) constante de acidez Ka; (b) constante de basicidade Kb...... 161
Equação 62. Relação entre pKa e pKb de um par de ácido – base conjugada.
....................................................................................................................... 162
Equação 63. Equilíbrio de protólise em água. ................................................ 172
Equação 64. Grau de ionização α para.......................................................... 172
Equação 65. Valor pH para. ...........................................................................172
Equação 66. Lei de diluição de Ostwald: ....................................................... 172
Equação 67. Calcula simplificado para grau de ionização (α ≤ 0,05) para:.... 174
Equação 68. Calculo simplificado para o pH com α ≤ 0,05 para:................... 174
Equação 69. Constante de acidez considerando a segunda dissociação 
(exemplo H2SO4). ........................................................................................... 176
Equação 70. Equação de Henderson – Hasselbalch. .................................... 176
Equação 71. Fração molar de um ácido (a) e sua base conjugada (b) .......... 177
Equação 72. Valor de pH como função da fração molar da base conjugada. 177
Equação 73. Formação de complexos pelo ácido de Lewis SnCl4................. 188
Equação 74. Formação de adutos entre ácido e Lewis e base. ..................... 190
xxii
Equação 75. Substituição de uma base num complexo ácido e Lewis – base.
....................................................................................................................... 191
Equação 76. Substituição dupla em complexos ácido de Lewis – base......... 191
1
1. Estrutura atômica
Daß ich erkenne, was die Welt
Im Innersten zusammenhält,
Schau’ alle Wirkenskraft und Samen, 
Und tu’ nicht mehr in Worten kramen.1,*
1.1.Conceitos básicos 
1.1.1. Desenvolvimento histórico dos termos elemento e átomo
Figura 1. Tabela periódica dos elementos2.
A Figura 1 mostra a Tabela periódica contendo todos os elementos 
químicos conhecidos ordenados pelo seu respectivo número de ordem indicado 
convencionalmente como subscrito no lado esquerdo. Porém destes 112 
elementos somente 88 elementos, que são estáveis ou primordiais, são 
responsáveis para a formação dos compostos químicos conhecidos. Os 22 
elementos restante podem ser preparados somente tecnicamente, e às vezes 
foram detectados somente alguns átomos, como por exemplo, no caso dos 
elementos 107Bh 108Hs e 109Mt com 6, 3, e 1 núcleos detectados com tempos de 
meia-vida (t1/2) de 4,7, 1,8 e 3,5 ms, respectivamente
*Para que apreenda o que a este mundo/ Liga em seu âmogo profundo,/ Os germes veja e as vivas bases,/E não 
remexqa mais em frases.
2
Olhando para distribuição dos elementos na composição do universo, da 
terra, da litosfera, e do homem (Figura 2) vemos que o universo consiste 
praticamente de hidrogênio e de hélio (99%) enquanto os outros 88 elementos 
estáveis ou primordiais resultam somente em 1 % da matéria do universo 
(Figura 2a). Na composição da terra (Figura 2b) observa-se que mais da 
metade da terra consiste somente de três elementos Ferro (no núcleo da terra), 
Oxigênio e Silício (79,36%). Estes dois últimos são com 74,32% os principais 
componentes da litosfera (Figura 2c). Interessantemente todos os elementos 
da litosfera formam somente 100.000 compostos inorgânicos, enquanto os 31 
elementos encontrados na biosfera, principalmente (C, H, O, N, S e P), que 
fazem parte da composição química do corpo humano (Figura 2d) formam 4 - 6 
milhões de compostos orgânicos conhecidos. 
Figura 2. Distribuição de elementos químicos: (a) no universo3; (b) na terra4; (c) na 
litosfera5; (d) no ser humano6.
Para ordenar e classificar as diversas formas da matéria observadas 
diversas idéias de reduzir-las á um número pequeno de elementos básicos 
foram desenvolvidos. Embora alguns dos elementos químicos, como C, Cu, Sn, 
Fe, Pb, Ag, Au, Hg, S, Sb, As, Pt* e Zn† já eram conhecidos na Antigüidade a 
variedade da natureza animada e inânime era reduzida pelo Chineses ca. 
600 a.C. aos 5 elementos “Água, Fogo, Madeira, Metal e Terra”. Na Grécia 
antiga Empedokles (484 -430 a.C.) usou os 4 Elementos “Fogo, Água, Ar e
Terra”, que correspondem aos estados da matéria (plasma, líquido, gás, e 
sólido) dos tempos modernos.
*na América Central, em Europa somente a partir de 1750.
†na China, na Europa somente a partir da 2a metade do século 16.
3
No 5o século a.C. Leukippos (ca. 470 a.C.) e Demokritos (460 - 371 a.C) 
achavam que os corpos macroscópicos eram formados por aglomeração em 
densidades diferentes de partículas microscópicos, indivisíveis e não 
transformáveis, que poderiam ser diferenciados somente por suas formas e 
seus tamanhos, que eles chamavam: ατοµος. Com este modelo Demokritos 
era capaz de explicar entre outros a densidade diferente das substancias.
Aristóteles (384 - 322 a.C) supunha que o mundo era formado por uma 
matéria prima (piρωτον) e os 4 princípios fundamentais “quente”, “frio”, “seco”, 
“úmido”. A combinação do piρϖτον ?? ???? ??? ???? ??????? ?? ???????????
fundamentais está resultando nos 4 elementos de Empedokles (e.g.: piρϖτον + 
(quente/seco) = Fogo). Durante a Idade Média os conceitos de Aristóteles 
estavam amplamente aceitos, mas supunhava-se (Paracelsus 1493 - 1541 d.C) 
que os 4 Elementos da Antigüidade eram compostos dos três elementos 
simbólicos “Sal” (solubilidade em água e sabor salgado), “Sulphur” 
(combustibilidade) e “Mercurius” (propriedades metálicas). Nos conceitos 
modernos estes três elementos simbólicos podem representar os diferentes 
tipos de ligação (iônica, covalente, e metálica).
Estes conceitos da Antigüidade (“Fogo”, “Água”, “Ar”, “Terra”, piρϖτον ???
“quente”, “frio”, “seco”, “úmido”) e da Idade Média (“Sal”, “Sulphur”, “Mercurius”) 
foram questionados por Robert Boyle (1627-1691) no seu diálogo imaginário 
“The Sceptical Chemist” entre “Aristóteles”, “Paracelsus” e “O Químico 
Céptico”. Este último defendeu como já Joachim Jungius (1587-1657) a idéia 
que a matéria é formada por diferentes elementos, que são substancias 
simples e homogêneas formadas por partículas idênticas que não podem ser 
decompostas e que a transmutação da matéria é resultado da adição 
eliminação, ou substituição dessas partículas nos diferentes compostos. A 
procura para estes elementos incentivada por Boyle resultou em seguir na 
descoberta de novos elementos químicos, além dos conhecidos na Antigüidade 
e de Bi descoberto no século 15 e P descoberto em 1669. Baseados nestes 
resultados Antoine Lavoisier (1743-1794) publicou a primeira lista de elementos 
contendo os verdadeiros elementos: Sb, Bi, Pb, Co, Fe, Au, C, Cu, Mn, Mo, Ni, 
P, Pt, Hg, O, S, N, H, W, Zn, Sn (Sem Ag! e As) ao lado de compostos 
altamente estáveis como corindo (Al2O3), barita (β-BaSO4), cal (CaO), 
magnésia (MgO) e quartzo (SiO2).
“Ressuscitando” a idéia de Demócritos que a matéria é formada por 
ατοµος ou seja, partículas microscópicas, indivisíveis e intransformáveis, John 
Dalton (1776 - 1844) desenvolveu a “hipótese atômica” moderna:
(1) Todos os átomos de um dado elemento são idênticos;
(2) Os átomos de diferentes elementos têm massas diferentes;
(3) Um composto é uma combinação especifica de átomos de mais um 
elemento;
(4) Em uma reação química, os átomos não são criados nem destruídos 
mas trocam de parceiros para produzir novas substancias.
4
Resumindo podemos constatar: 
Toda a matéria é composta de várias combinações de formas simples da 
matéria chamadas de elementos químicos. Um elemento químico é uma 
substancia que consiste de uma única espécie de átomo.
Especialmente a idéia que os átomos seriam partículas indivisíveis 
resultou em muitas criticas dessa hipótese, porque ela não pode 
esclarecer as diferenças entre os elementos químicos e a natureza da 
formação de diferentes compostos. 
O filosofo contemporâneo Arthur Schopenhauer (1788 – 1860) por 
exemplo escreveu: “… wenn die chemischen Atome im eigentlichen Sinn, also 
objektiv und als real verstanden werden, so gibt es im Grunde gar keine 
eigentliche chemische Verbindung mehr; sondern eine jede läuft zurück auf ein 
sehr feines Gemenge verschiedener und ewig geschieden bleibender Atome, 
während der eigentümliche Charakter einer chemischen Verbindung gerade 
darin besteht, daß ihr Proukt ein durchaus homogenerKörper sei, d.h. ein 
solcher, in welchem kein selbst unendlich kleiner Teil angetroffen werden kann, 
der nicht beide verbundene[n] Substanzen enthielte ... daher eben ist Wasser 
so himmelweit verschieden von Knallgas, weil es die chemische Vereinigung 
der beiden Stoffe ist, die in diesem sich bloß als das feinste Gemenge 
zusammenbefinden. … Überhaupt aber, wenn es Atome gäbe, müßten sie 
unterschiedslos sein, und eigenschaftslos sein, also nicht Atome Schwefel und 
Atome Eisen usw., sondern bloß Atome Materie; weil die Unterschiede die 
Einfachheit aufheben, z.B. das Atom Eisen irgend etwas enthalten müßte, was 
dem Atom Schwefel fehlt, demnach nicht einfach, sondern zusammengesetzt 
wäre und überhaupt die Änderung der Qualität nicht ohne die Änderung der 
Quantität statthaben kann. Ergo: Wenn überhaupt Atome möglich sind, so sind 
sie nur als die letzten Bestandteile der absoluten oder abstrakten Materie, nicht 
aber der bestimmten Stoffe denkbar.”*,7
1.1.2. Partículas elementares
Que os átomos realmente não são os “últimos componentes da matéria 
absoluta ou abstrata” foi revelado a partir das investigações de raios catódicos 
* … se os átomos, químicos são entendidos no senso verdadeiro, ou seja, como objetivo e real, 
não há mais compostos químicos, mas cada uma é no fundo, uma mistura muito fina de 
átomos diferentes e eternamente separados, enquanto o caráter singular de um composto 
químico existe exatamente nisto, que seu produto é um corpo inteiramente homogêneo, isto é 
um corpo em qual nenhum mesmo infinitamente pequeno parte pode ser encontrado que na 
contem ambas substancias ligadas… justamente por isso água é tão longe diferente do gás 
detonante, porque ele é a união química das duas matérias, que no outro se encontram 
somente como uma mistura muito fina. … Mas de todo, se havia átomos, eles deveriam ser 
sem diferenças e sem propriedades, portanto não átomos de enxofre e átomos de ferro etc., 
mas sim somente átomos da matéria; porque as diferenças anulam a simplicidade, por 
exemplo, o átomo de ferro precisaria conter algum que falta do átomo de enxofre, portanto não 
seria simples, mas composto e de todo a mudança da qualidade não pode realizar-se sem
mudança da qualidade. Ergo: Se de todo átomos são possíveis, eles são imagináveis somente 
como partes últimas da matéria absoluta ou abstrata, não, porém de compostos definidos.
5
e dos raios anódicos ou raios de canal. A Figura 3 mostra o principio dos tubos 
utilizados para investigação de raios catódicos e anódicos. J.J. Thomson (1856 
– 1940) estudou principalmente os raios catódicos que podem ser desviados 
por campos eletromagnéticos. Ele mostrou que estes raios catódicos são 
formados por corpúsculos com carga negativa e que a razão carga/massa era 
igual (1,759 × 1011 C/kg) independente do material usado como cátodo. Este 
fato o levou a conclusão que estes partículas, que ele chamou de elétrons, 
faziam parte de todos os átomos. Os raios anódicos ou de canal também 
podem ser desviados por campos eletromagnéticos e possuem cargas 
positivas, com valores que são múltiplos inteiros do valor absoluto da carga dos 
elétrons. Ao contrario dos raios catódicos os raios de canal ou anódicos 
possuem a massa molecular do gás presente no tubo. A menor razão 
carga/massa (9,579•107 C/kg) pode ser observada para hidrogênio como gás 
de enchimento. Em 1920 Rutherford (1871 – 1937) cunhou em imitação da 
matéria prima de Aristóteles (piρϖτον) o nome próton para esta partícula que 
também faz parte de todos os átomos.
Figura 3. Esquema de tubo de raios catódicos (a) e de raios de canal (b)8.
(a) (b)
Figura 4. (a) Esquema do experimento de Millikan das gotinhas de óleo; (b) Aparelho 
experimental segundo referência original9.
A carga elementar do elétron foi determinado em 1909 por R. Millikan 
(1868 – 1953) num experimento esquematizado na Figura 4. Primeiramente ele 
determinou a velocidade de sedimentação das gotinhas na ausência do Campo 
elétrico. Utilizando a lei de Stokes ele poderia determinar a força gravitacional 
(FG). Em seguir ele aplicou um campo elétrico cuja força (Fel.) deixou as 
6
gotinhas suspensas. Assim Equação 1 permite a determinação da carga das 
gotinhas. Millikan encontrou que as cargas observadas eram múltiplos inteiros 
de uma carga mínima (elementar) com o valor de e = 1,6022 × 10-19 C. Uma 
vez determinada a carga elementar permite a determinação da massa do 
elétron (me) e do próton (mp) através das razões e/me e e/mp determinadas pelo 
desvio dos raios catódicos e de canal em campos eletromagnéticos com os 
valores me = 9,1094 × 10-31 kg e mp = 1,6726 × 10-27 kg.
Equação 1. Carga de gota como função da massa e do diâmetro no experimento de 
Milikan.
U
dgm
QFgm
d
UQ
F gotaG
gota
.el
⋅⋅
=⇒=⋅=
⋅
=
Por volta de 1920 Rutherford suponha além dos elétrons e prótons 
partículas neutras como componente dos átomos. J. Chadwick (1891 – 1974) 
observou na reação nuclear de Berílio com partículas α, ilustrada na 
Equação 2, a emissão de partículas neutras com uma massa (mn) 
aproximadamente igual à massa dos prótons, que foram batizadas de nêutrons. 
Embora a física nuclear descobrisse, entretanto mais que 100 partículas 
elementares ou subatômicas os três partículas descrito aqui, e cujas 
propriedades são resumidas na Tabela 1, são para a química geralmente 
suficiente na descrição das propriedades da matéria. 
Equação 2. Reação de formação de nêutrons observados por Chadwick.
nCHeBe 10
12
6
4
2
9
4 +→+
Tabela 1. Propriedades de partículas subatômicas, do átomo de hidrogênio e sua camada 
eletrônica. 
Partícula Símbolo Carga (C) Massa (kg) raio* (m) ρ (g/cm3)
elétron e- -1,60218·10-19 9,10939·10-31 2,8·10-15 9,9·109
próton p +1,60218·10-19 1,67262·10-27 1,4·10-15 1,5·1014
nêutron n 0 1,67493·10-27 - -
Átomo de 
hidrogênio
H 0 1,67353·10-27 5,29·10-11 2,69
Camada 
eletrônica de 
hidrogênio*
- - - 5,29·10-11 1,47·10-3
* Como raio de elétron clássico (re) entende-se o raio de uma esfera com a carga |e| que possui 
uma energia de campo na ordem da energia de repouso do elétron calculado por (1); o raio do 
próton calcula-se por (2) formula empírica para raio do núcleo atômico (rn) derivado do 
experimento de difração de Rutherford (vide Figura 6) com o número de massa do núcleo A = 
1, raio de hidrogênio = raio de Bohr (vide Equação 5b).
(1)
15
2
00
2
108,2
4
−⋅==
cm
e
r
e
e εpi
(2)
315104,1 Arn ×⋅=
−
7
1.2.Modelos atômicos
1.2.1. O modelo de Rutherford
Uma primeira idéia sobre a estrutura subatômica da matéria foi 
desenvolvida por Rutherford depois dos experimentos de deflexão de partículas 
α atirado contra folha de metais com espessuras na faixa de centenas de nm o 
que corresponde de poucos milhares de camadas atômicas. O esquema desse 
experimento é ilustrado na Figura 5 e na Figura 6. Como pode ser visto na 
Figura 6 a maioria das partículas α praticamente não sofre deflexão enquanto 
passa pela folha de metal. Porém uma pequena fração (1 em 20.000) sofre 
uma deflexão de mais de 90º e alguns são refletido até 180º. 
Rutherford explicou estas observações assumindo, que um átomo 
consiste de uma carga positiva no centro (núcleo), formado por prótons e 
nêutrons, também chamado de núcleons, circundada por um grande volume de 
espaço vazio onde seriam espalhados os elétrons. Com a análise matemática 
das deflexões observadas por metais diferentes ele conseguiu demonstrar, que 
os raios dos núcleos atômicos podem ser estimados pela Equação (2) dada na 
nota de rodapé*. Para ilustrar a grande diferença entre o núcleo, que contêm 
praticamente a massa total do átomo e a camada eletrônica a Tabela 1 mostra 
as respectivas “densidades” ρ do próton e da camada eletrônica de hidrogênio. 
Para ter uma idéia da grandeza desses valores deve-se considerar que 
a maiordensidade observada por matéria comum é em torno de 22,42 g/cm3
para irídio é a densidade de um vácuo comum de laboratório (ca. 15 mbar para 
bomba a jato de água) é de aproximadamente 1,1·10-5 g/cm3. 
(a) (b)
Figura 5. Experimento de deflexão de partículas α de Rutherford (a) esquema10; (b)
aparelho experimental original11 (M = microscópio; S = tela luminescente; F = Folha de 
ouro; R = rádio, T = cano para bomba de vácuo). 
A diferença entre o raio do núcleo e o raio da camada eletrônica ou raio 
atômico e ilustrado na Figura 7 que mostra o átomo como um sistema solar. 
Assumindo um diâmetro nuclear igual ao diâmetro do sol a órbita do elétron, ou 
* densidade do átomo de hidrogênio sem núcleo 
8
seja, o raio de Bohr (vide b abaixo) seria de 27,8·109 km, ou seja, mais que 
cinco vezes o raio da órbita do último planeta (netuno) de nosso sistema solar 
que é em torno de 4,5·109 km.
Figura 6. Experimento de deflexão de partículas α de Rutherford (a) interpretação 12.
órbita do elétron 
(2,6 x 1010 km)
órbita do netuno 
(4496,6 x 106 km)
órbita da terra 
(149,6 x 106 km)
Figura 7. Modelo planetário do átomo.
O modelo planetário para o átomo de hidrogênio proposto por Rutherford 
é ilustrado na Figura 8. Neste modelo o elétron encontra-se como um planeta 
numa órbita do núcleo (próton) como centro solar. A força eletrostática que está 
atraindo o elétron para o núcleo é compensada pela força centrifuga como é 
ilustrado na Figura 7 e na Equação 3.
9
Figura 8. Modelo Atômico de Rutherford.
Equação 3. Modelo de Rutherford.
elétron-núcleodistância
mAsV108,854vácuododadepermissivi
kg109,110elétrondomassa
C101,602elementarcarga
Hidrogênioparaordemdenúmero
1112
o
31
19-
centrifugaForça
icaeletrostátForça
=
⋅==
⋅==
⋅==
==
⋅
=
⋅
−−−
−
r
m
e
Z
r
vm
r
eZ
e
e
ε
piε
)1(
4
2
2
0
2
321
48476
1.2.2. O modelo de Bohr
O modelo proposta por Rutherford, porém contradiz os modelos da Física 
clássica, porque partículas carregadas em movimento deveriam emitir radiação 
eletromagnética. Por causa dessa radiação, os elétrons deveriam perder 
constantemente energia o que resultaria numa diminuição da velocidade, 
resultando numa diminuição da forca centrifuga, o que resultaria na queda dos 
elétrons no núcleo e no colapso da matéria. Niels Bohr (1885 – 1962) 
“resolveu” este problema postulando o movimento do elétron em estados 
“permitidos” onde o movimento não é acompanhado pela radiação (OBS: Este 
postulado não explica por que o elétron não emite radiação nos estados 
“permitidos”!).
Segundo Bohr os estados “permitidos” são caracterizados pela 
“quantificação” do momento angular (L) do elétron, como é ilustrado em 
Equação 4.
Equação 4. Postulado de Bohr.
{ }
Js)(100551
2
;Js)(10626,6Planckdeconstante
)(principalquânticanúmero321
2
3434 −− ⋅==⋅==
∈
=⇒=⋅=⋅⋅=
,
?
h
h
,...,,n
r
n
vmn
?
h
 nv rmL ee
h
h
h
10
Substituindo mev na Equação 4 é resolução da equação para r os raios 
das órbitas permitidas são obtidos como é ilustrado na Equação 5a. Para o 
estado fundamental do átomo de hidrogênio o número quântica principal é 
n = 1, e o raio chamado “raio de Bohr” (rbohr), é determinado por constantes 
universais (Equação 5b).
Equação 5. Raio de Bohr.
)(10529,0
4
)(
)(
10
2
2
0
2
0
2
2
0
22
m
meme
h
rb
mZe
hn
ra
ee
Bohr
e
−⋅===
=
hpiε
pi
ε
pi
ε
Embora o átomo em forma de disco não pode ser considerado uma 
representação ideal da realidade o Modelo de Bohr permitiu a descrição 
quantitativa (para átomo e hidrogênio) e qualitativa (para os outros átomos)de 
algumas observações espectroscópicas. Na segunda metade do século 19º foi 
observado que os elementos emitem e adsorbem radiação eletromagnética 
somente em partes discretas (espectro de linhas). Embora já existam formulas 
empíricas (Equação 6 mostra a formula para o espectro de serie de hidrogênio) 
para o calculo dessas energias a razão desse fenômeno importante, que 
resultou entre outras coisas na descoberta de diversos elementos como Cs, In, 
Rb, Th e os gases nobres, não eram esclarecidos.
Equação 6. Equação de Rydberg.
( )22~ 111 mnR −⋅== ∞λν
R∞ = constante de Rydberg = 10973731,534 m
-1, n < m = números inteiros. 
Bohr sugeriu que a adsorção e emissão de energia pelo átomo 
correspondem da transição entre os estados ou órbitas permitidos 
caracterizados pelo número quântico principal. Utilizando a Equação 4 e a 
Equação 5 a energia total (Etot.) do elétron no átomo de hidrogênio pode ser 
expressa (Equação 7) como função da carga do núcleo (Z) e do número 
quântica principal. 
Equação 7. Energia do elétron no átomo de hidrogênio (modelo de Bohr).
]eV[606,13)(
]J[10180,2)(
8
)(
2
2
.
2
2
18
.
2
2
22
0
4
.
n
Z
Ec
n
Z
Eb
n
Z
h
em
Ea
tot
tot
e
tot
⋅−=
⋅⋅−=
⋅−=
−
ε
11
O modelo de Bohr permite calcular as energias observadas no espectro de 
hidrogênio, que são iguais das diferenças de energias dos diferentes estados 
“permitidos” e podem ser expressos por Equação 8.
Equação 8. Diferença de energia entre estados permitidos no modelo de Bohr.
eV][606,13606,13
[J]10180,210180,2
2
2
2
2
2
2
18
2
2
18






⋅+⋅−=






⋅⋅+⋅⋅−=−=∆ −−
baixaalta
baixaalta
baixaalta
n
Z
n
Z
n
Z
n
Z
EEE
A Tabela 2 mostra as energias calculadas com Equação 8 e observadas 
experimentalmente. 
Tabela 2: As séries espectroscópicas observadas para átomo de hidrogênio e calculadas 
através do modelo de Bohr
nalta nbaixa ∆Ecalc (10
-18 J) ∆Eexp (10
-18 J)
Série de Lyman
2 1 1,635 1,634
3 1 1,938 1,936
4 1 2,044 2,043
5 1 2,093 2,092
6 1 2,119 2,118
Série de Balmer
3 2 0,3028 0,3027
4 2 0,4088 0,4086
5 2 0,4578 0,4577
6 2 0,4844 0,4843
7 2 0,5005 0,5004
8 2 0,5109 0,5108
9 2 0,5181 0,5179
10 2 0,5232 0,5230
Série de Paschen
4 3 0,1060 0,1059
5 3 0,1550 0,1550
6 3 0,1817 0,1816
7 3 0,1977 0,1977
8 3 0,2082 0,2081
Série de Brackett
5 4 0,04905 0,04905
6 4 0,07569 0,07553
Série de Pfund
6 5 0,02664 0,02684
A ionização é a eliminação de elétron do átomo, neste caso o número 
quântico é infinito (n =?????????????????? ???????ão (Eion) é calculado segundo 
Equação 8 como é mostrado em Equação 9.
Equação 9. Energia de ionização no modelo de Bohr.
][eV
1
60613
11
60613
2
2
22
2
baixabaixa
ion. n
Z,
n
Z,E ⋅⋅−=





∞
−⋅⋅−=
12
Tabela 3: Energia de ionização para sistemas semelhante ao átomo de hidrogênio (nbaixa
= 1).
Átomo ou Cátion Z Ecalc. (eV) Eobs. (eV)
H 1 13,606 13,6
He+ 2 54,423 54,4
Li2+ 3 122,452 122,4
Be3+ 4 217,693 217,7
B4+ 5 340,145 340,1
C5+ 6 489,809 489,8
N6+ 7 666,684 666,8
O7+ 8 870,771 871,1
F8+ 9 1102,070 1100,0
Ne9+ 10 1360,590 1350,0
A Tabela 3 mostra as energias de ionização para sistemas semelhantes 
ao hidrogênio (sistemas unielétronaís). A Tabela 3 mostra que o modelo de 
Bohr estar conforme com os dados experimentais para sistemas semelhantes 
ao átomo de hidrogênio. Por outro lado ele não permite o calculo da energia de 
ionização ou das energias observadas na espectroscopia para átomos ou íons 
que contém mais de um elétron, nestes casos o modelo de Bohr somente leva 
a uma descrição muito aproximativa como pode ser visto na Tabela 4 e na
Figura 9.
Figura 9. Energias de ionização observadas e calculadas através do modelo de Bohr 
(Equação 9).
Tabela 4. Energias de ionização calculadas através do modelo de Bohr (Equação 9) e a 
energia de ionização observada. 
Átomo Z nbaixa Ecalc. (eV) Eobs. (eV)
H 1 1 13,606 13,6
He 2 1 54,424 24,6
Li 3 2 30,614 5,3
Be 4 2

Outros materiais