Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

Testes de hipóteses no Excel e no Instat 
 
1) Roteiro no Excel: 
Conforme visto em sala existem diversos tipos de testes de hipóteses, já que dependem da 
forma em que foi realizado o estudo (se as amostras são independentes ou pareadas) e do tipo 
de dado obtido (quantitativo ou qualitativo). Aqui serão apresentados os principais deles e que 
foram estudados em sala. 
1.1 Teste t para dados independentes 
Para esse teste temos dados quantitativos e independentes. Suponha o exemplo abaixo, em 
que se tem uma amostra referente à idade de alunos de curso noturno da UFMG e outra de 
alunos de curso diurno e o objetivo é avaliar se podemos concluir que a idade dos alunos dos 
cursos noturnos é maior que dos alunos dos cursos diurnos. 
Com os dados organizados, deve-se clicar na opção Análise de Dados dentro da guia Dados, 
conforme mostra a tela abaixo. 
 
A seguir, deve-se selecionar a opção “Teste-T: duas amostras presumindo variâncias 
equivalentes”, conforme mostrado na tela abaixo. 
 
Selecione os dados amostrados da população 1 e 2, apenas clicando sobre os mesmos. Na 
opção “Hipótese da diferença de média”, digite o valor 0, conforme mostrado na tela abaixo. 
Se quiser que os resultados apareçam na mesma planilha em que estão os dados, clique na 
opção “Intervalo de saída” e clique sobre a célula que deseja que os resultados apareçam. Em 
seguida, dê OK. 
 
Através dos resultados apresentados abaixo, pode-se fazer a conclusão do teste. Se o teste é 
bilateral, ou seja, a hipótese alternativa contém o sinal de ≠, a conclusão deve ser feita através 
do valor “P(T<=t) bi-caudal”. Se o teste é unilateral, deve-se avaliar o valor “P(T<=t) uni-
caudal”. Lembre-se: a conclusão deve ser feita através da comparação desse valor p com o α 
(nível de significância), que geralmente é 5%. Se o valor p for inferior a 5%, então rejeita-se a 
hipótese nula, como conclui-se nesse exemplo. 
1.2 Teste t para dados pareados 
Nesse tipo de teste os dados são dependentes ou pareados. O exemplo utilizado refere-se aos 
dados fictícios de uma amostra de peso de um indivíduo antes e após seguir uma dieta 
estabelecida por nutricionista. 
Seguindo o mesmo link anterior, você deve clicar na guia Dados, na opção “Análise de Dados”. 
 
Em seguida, selecione a opção “Teste-T: duas amostras em par para médias”, conforme 
mostrado na tela abaixo. 
 
Selecione os dados para a variável 1 e 2, conforme mostrado na tela a seguir e coloque 0 na 
opção “Hipótese da diferença de média:” 
 
A conclusão deve ser feita através do valor p da mesma forma que o teste anterior 
apresentado. Como o valor p é menor que 0,05, deve-se rejeitar a hipótese nula de que a 
diferença média entre os pesos antes e após a dieta é nula. Em outras palavras, existe 
evidência de que a dieta proposta pela nutricionista é realmente eficaz. 
 
 
 
2) Roteiro no Instat: 
2.1 Teste t para dados independentes 
O Instat disponibiliza os mesmos testes de comparação já apresentados no Excel. Para fazer o 
teste de comparação de médias de duas populações independentes, deve-se clicar em 
“Statistics”, “Simple Models” e em seguida em “Normal, Two Samples...”, conforme 
apresentado na tela abaixo. 
 
Em seguida, você deve selecionar os dados para as opções “Data Column” e “2nd Data 
Column”. Apenas confirme que em “Parameter” está selecionada a opção “Means (t-interval) e 
marque a opção “Significance test”. Se o teste for bilateral, marque a opção “Two sided” e, em 
seguida, dê OK. 
 
Observe que no resultado abaixo são colocados diversos resultados, mas a conclusão deve ser 
feita através do valor p, identificada aqui como “Significance level”. No caso como o valor p é 
0,01%, que é menor que o nível de significância α adotado (5%), rejeita-se a hipótese nula de 
que as 2 populações possuem a mesma idade média. 
 
2.2 Teste t para dados pareados 
Para fazer o teste quando estamos trabalhando com dados dependentes ou pareados, o 
caminho inicial é o mesmo que no teste para populações independentes: “Statistics”, “Simple 
Models” e “Normal, Two Samples...” 
 
A diferença será que na próxima tela, além de selecionar as colunas com os dados e marcar a 
opção “Significance test” deve-se marcar a opção “Paired”. 
 
A conclusão baseada no valor p, aqui identificado como “Significance level”, dará conclusões 
sobre o estudo realizado. Nesse caso, em que o valor p é 0%, menor que o nível de 
significância α adotado, rejeita-se a hipótese nula de não haver diferença entre as médias 
populacionais (antes e após a dieta).

Mais conteúdos dessa disciplina