Buscar

FISICA EXP I FORÇA ELESTICA ROLDANAS

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 20 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 20 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 20 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

FACULDADE TERRA NORDESTE - FATENE 
CURSO DE ENGENHARIA DE PRODUÇÃO 
DICIPLINA: FÍSICA GERAL E EXPERIMENTAL I 
PROFESSOR: ANDRE HENRIQUE PINHEIRO ALBUQUERQUE 
 
 
 
 
 
 
 
 
 
 
RELATÓRIO II 
FORÇA ELÁSTICA 
ROLDANAS MOVEL E FIXA 
EXPERIMENTO PRÁTICO - LABORATÓRIO 
 
 
 
 
 
 
 
 
RENATO PAZ SOUZA 
WAGNER LIMA DO NASCIMENTO 
 
 
 
 
 
 
 
 
 
 
CAUCAIA – CE 
NOVEMBRO / 2015
1. Introdução: 
O objetivo geral deste trabalho é apresentar de forma prática a aplicação 
de fórmulas e cálculos para, utilização de molas e ligas elásticas, assim como 
utilização de roldanas móveis e fixas. 
2. Resumo: 
2.1. Força elástica: 
Fizemos experimentos para determinar a constante elástica de molas e 
ligas elásticas. Este experimento visa à análise experimental da Lei de Hooke 
através do uso de molas, liga elástica e pesos em diversos modos de 
associação. Tal lei pode ser comprovada pela variação linear obtida das 
medições (distensão da mola) com o aumento dos pesos. Para isto montamos 
um equipamento que continha um suporte de fixação, régua milimetrada e a 
mola em questão. Era medido o comprimento inicial da mola, o comprimento 
final, e depois era retirado o peso e feita uma análise para ver se houve 
deformação na mola. Por último foi feito os devidos cálculos que eram 
necessários. 
2.2. Roldanas fixas e móveis: 
Fizemos experimentos para demonstrar que as roldanas têm sido 
usadas desde os tempos mais remotos, sempre com a função de ajudar a 
elevar objetos pesados, como por exemplo: Nos poços de água, para alterar o 
sentido da força que puxa o balde; Na construção civil, para colocar os 
materiais no topo das obras; Nos barcos para controlar as velas; Nos 
elevadores dos poços das minas, para descer os mineiros e recolher o minério. 
 
3. Introdução Teórica: 
3.1. Força elástica: 
Quando falamos de força elástica nos referimos ao estudo da Lei de 
Hooke, que é quando uma mola é esticada de uma distância x, a partir de uma 
posição em que está frouxa, que a força que ela exerce é dada por, 
Fx = -k x (Lei de Hooke), onde a constante positiva k, chamada de 
constante de força (ou constante elástica da mola), é uma medida da dureza da 
mola. Um valor de x significa que a mola foi comprimida de uma distância |x| a 
partir da posição em que esta frouxa. O sinal negativo significa que quando a 
mola esta distendida (ou comprimida) em um sentido, a força que ela exerce 
está no sentido oposto, daí, ficando esta relação conhecida como a lei de 
Hooke (Tipler, 2009). 
Entre as forças de interação que figuram mais freqüentemente nos 
processos que se desenvolvem ao nosso redor figuram as chamadas forças 
elásticas, isto é, forças que são exercidas por sistemas elásticos quando 
sofrem deformações. 
Esta mesma lei descreve muito precisamente o comportamento de 
muitas molas, desde de que o deslocamento não seja muito grande. O valor de 
k é uma medida da rigidez da mola (Serway, 2004). 
Portanto, o objetivo deste trabalho é encontrar a constante elástica da 
mola, para as associações paralelos, utilizando a Lei de Hooke. 
Como mostra a figura: 
 
3.2. Roldanas fixas e móveis: 
Ao longo de sua história, o ser humano procurou melhorar suas 
condições de trabalho, principalmente no que se refere à redução de seu 
esforço físico. Para isso, o homem utilizou, inicialmente, meios auxiliares que 
lhe permitissem realizar trabalhos de modo mais fácil e com o menor gasto 
possível de sua força muscular. Esses primeiros meios foram a alavanca, a 
roda e o plano inclinado que, por sua simplicidade, ficaram conhecidos como 
máquinas simples. 
As máquinas simples são dispositivos que, apesar de sua absoluta 
simplicidade, trouxeram grandes avanços para a humanidade e se tornaram 
base para todas as demais máquinas (menos ou mais complexas) criadas ao 
longo da história. 
A roldana é uma roda que gira ao redor de um eixo que passa por seu 
centro. Na borda da roldana existe um sulco em que se encaixa uma corda ou 
um cabo flexível, ou corrente. O sulco é conhecido como garganta, gola ou 
gorne. 
 
 
A roldana pode ser fixa ou móvel. 
 
 
Na roldana fixa, o eixo é preso a um suporte qualquer. Quando em uso, 
ela não acompanha a carga. 
 
Em uma das extremidades do cabo aplica-se a força P e na outra 
extremidade, a força R. As roldanas fixas servem para elevar pequenas cargas 
com comodidade e segurança, além de possibilitarem mudança de direção e 
sentido das forças aplicadas. 
A roldana móvel pode deslocar-se juntamente com a carga, e emprega-
se menos força que na roldana fixa para a realização do mesmo trabalho. 
 
Vantagem mecânica (Vm): Exprime a existência ou não da redução de 
esforço, ou seja: 
Vm = 1: não há nem vantagem nem desvantagem mecânica, isto é, não 
há redução nem acréscimo de esforço para equilibrar ou deslocar a força 
resistente; 
Vm >1: que é a situação mais interessante, pois nesse caso a máquina 
reduz esforço; 
Vm < 1: temos uma desvantagem mecânica, então neste caso não 
haverá interesse em se utilizar ou empregar a máquina. 
Roldana fixa: É uma máquina simples, cuja finalidade é alterar a direção 
e o sentido de forças transmitidas por cordas, sem alterar o módulo das 
mesmas. Esta definição é válida para roldanas ideais, que não tem atrito, e 
cuja massa é desprezível. A influência da massa da roldana só é importante 
em sistemas acelerados. 
 
 
Vantagem mecânica roldana fixa: Neste sistema de roldanas, vale 1, sua 
função como máquina simples e apenas a de inverter o sentido da força 
aplicada, isto é, se aplicamos uma força de cima para baixo numa das 
extremidades da corda, a polia transmite à carga, para levantá-la, com uma 
força de baixo para cima. Isso é vantajoso, porque podemos aproveitar o nosso 
próprio peso (ou um contrapeso) para cumprir a tarefa de levantar um corpo. 
Assim sendo para que a carga suba de "1 m" o operador deve puxar seu ramo 
de corda para baixo, de "1 m". 
Roldanas móveis: Diminuem a intensidade do esforço necessário para 
sustentar um corpo, pois parte desse esforço é feito pelo teto, que sustenta o 
conjunto. 
Observe na figura a baixo, como a roldana móvel pode facilitar o 
trabalho: 
 
Com uma roldana móvel, a força necessária para equilibrar a carga é 
dividida por dois (2¹); 
Com duas roldanas móveis, a força necessária é dividida por quatro (2²); 
Com três, é dividida por oito (2³), e assim sucessivamente. 
Vantagem mecânica roldana móvel: A polia móvel raramente é utilizada 
sozinha, dado o inconveniente de ter que puxar o ramo de corda da potência 
para cima. Normalmente vem combinada com uma polia fixa. Para tal 
montagem tem-se F = R/2; VM = 2 e dm = 2.dr. Assim, para que a carga suba 
de "1 m" o operador deve puxar seu ramo de corda para baixo, de "2 m". 
Talha Exponencial: É uma máquina simples e uma das mais antigas 
ferramentas utilizadas pelo homem. É composta de um sistema de roldanas. A 
roldana fixa pode ser observada no ponto de apoio e é importante para inverter 
o sentido de aplicação da força. Observa-se também a presença de roldanas 
móveis no sistema, que são úteis pelo fato de diminuírem a intensidade da 
força necessária para levantar os pesos. 
 
 
Cadernal Paralelo: Associação de várias polias fixas num único bloco 
com várias polias móveis (todas numa mesma chapa). 
 
Vantagem Mecânica do Cadernal Paralelo: A vantagem mecânica do 
cadernal paralelo é igual ao número de polias que o compõem. 
4. Materiais: 
01 Mola grande; 
03 Molas pequenas; 
01 Conjunto mecânico com tripé; 
01 Liga elástica; 
01 Pesode 0,25N; 
06 Pesos de 0,5N; 
01 Régua milimetrada; 
02 Suporte de apoio para pesos; 
01 Conjunto de roldanas fixa; 
03 Roldanas moveis; 
01 Roldana cadernal paralela; 
04 Linhas para montar esquema de roldanas. 
 
5. Metodologia: 
Em laboratório de física experimental, utilizando um tripé mecânico, 
aplicando uso de molas, liga elástica, roldanas móveis e fixas juntamente com 
pesos de 0,5N, foi montado esquemas de demonstração da Lei de Hooke, 
onde podemos visualizar exemplo de força elástica. 
Para demonstração da redução de força mecânica foi montado esquema 
de roldanas utilizando pesos que variam de 0,25N à 0,5N, também foi usada 
roldana de cardernal paralelo, onde foi demostrado a eficiência do uso dessas 
roldanas no dia a dia. 
 
6. Desenvolvimento: 
6.1. Força elástica: 
6.1.1. Uso de uma mola: 
Inicialmente foi calculado a posição inicial xo = 86,00mm (milimetros), 
daí foi, adicionados pesos de 0,5N, 1,0N, 1,5N e 2,0N, obtendo, 
respectivamente, diferentes comprimentos diferentes, como pode ser 
observado na tabela 01: 
PARA UM MOLA
Peso (N) xo (mm) x (mm) Δx (m) k (N/m)
- 86,00 86,00 - - 
0,50 86,00 110,00 0,024 20,83 
1,00 86,00 137,00 0,051 19,61 
1,50 86,00 164,00 0,078 19,23 
2,00 86,00 191,00 0,105 19,05 
MÉDIA 19,68 
 
Tabela 01 
 
 
 
Calculando a constante elástica k (tabela 01), para as respectivas 
variações de comprimento, por: 
F = k Δx  K = F 
 Δx 
K1 = 0,50 = 20,83N/m 
 (24/1000) 
K2 = 1,00 = 19,61N/m 
 (51/1000) 
 
K3 = 1,50 = 19,23N/m 
 (78/1000) 
K4 = 2,00 = 19,05N/m 
 (105/1000) 
 
Então, calculou-se a média das constantes elásticas, por: 
K = K1 + K2 + K3 + K4 , temos: 
 4 
K = 20,83 + 19,61 + 19,23 + 19,05  K = 78,72  K = 19,68N/m 
 4 4 
6.1.2. Uso de duas molas: 
E para a associação em paralelos de duas molas), calculou-se a posição 
inicial xo = 81,00mm (milímetros), daí foram adicionados pesos de 0,5N, 1,0N, 
1,5N e 2,0N, obtendo, respectivamente, diferentes comprimentos diferentes, 
como pode ser observado na tabela 02. 
PARA DUAS MOLA
Peso (N) xo (mm) x (mm) Δx (m) k (N/m)
- 81,00 81,00 - - 
0,50 81,00 96,00 0,015 33,33 
1,00 81,00 110,00 0,029 34,48 
1,50 81,00 124,00 0,043 34,88 
2,00 81,00 139,00 0,058 34,48 
MÉDIA 34,30 
 
Tabela 02 
 
 
Calculando a constante elástica k (tabela 02), para as respectivas 
variações de comprimento, por: 
F = k Δx  K = F 
 Δx 
K1 = 0,50 = 33,33N/m 
 (15/1000) 
K2 = 1,00 = 34,48N/m 
 (29/1000) 
 
K3 = 1,50 = 34,88N/m 
 (43/1000) 
K4 = 2,00 = 34,48N/m 
 (58/1000) 
Então, calculou-se a média das constantes elásticas, por: 
K = K1 + K2 + K3 + K4 , temos: 
 4 
K = 33,33 + 34,48 + 34,88 + 34,48  K = 137,18  K = 34,30N/m 
 4 4 
 
6.1.3. Uso de três molas: 
E para a associação em paralelos de três molas, calculou-se a posição 
inicial xo = 77,00mm (milímetros), daí foram adicionados pesos de 0,5N, 1,0N, 
1,5N e 2,0N, obtendo, respectivamente, diferentes comprimentos diferentes, 
como pode ser observado na tabela 03. 
PARA TRÊS MOLA
Peso (N) xo (mm) x (mm) Δx (m) k (N/m)
- 77,00 77,00 - - 
0,50 77,00 87,00 0,010 50,00 
1,00 77,00 97,00 0,020 50,00 
1,50 77,00 107,00 0,030 50,00 
2,00 77,00 116,00 0,039 51,28 
MÉDIA 50,32 
 
Tabela 03 
 
 
Calculando a constante elástica k (tabela 03), para as respectivas 
variações de comprimento, por: 
F = k Δx  K = F 
 Δx 
K1 = 0,50 = 50,00N/m 
 (10/1000) 
K2 = 1,00 = 50,00N/m 
 (20/1000) 
 
 
K3 = 1,50 = 50,00N/m 
 (30/1000) 
K4 = 2,00 = 51,28N/m 
 (39/1000) 
 
Então, calculou-se a média das constantes elásticas, por: 
K = K1 + K2 + K3 + K4 , temos: 
 4 
K = 50,00 + 50,00 + 50,00 + 51,28  K = 201,28  K = 50,32N/m 
 4 4 
6.1.4. Uso de uma liga elástica: 
E para a associação em paralelos de três molas, calculou-se a posição 
inicial xo = 35,00mm (milímetros), daí foram adicionados pesos de 0,5N, 1,0N, 
1,5N, 2,0N, 2,5N e 3,0N obtendo, respectivamente, diferentes comprimentos 
diferentes, como pode ser observado na tabela 04. 
PARA UMA LIGA ELÁSTICO
Peso (N) xo (mm) x (mm) Δx (m) k (N/m)
- 35,00 35,00 - - 
0,50 35,00 39,00 0,004 125,00 
1,00 35,00 49,00 0,014 71,43 
1,50 35,00 62,00 0,027 55,56 
2,00 35,00 80,00 0,045 44,44 
2,50 35,00 100,00 0,065 38,46 
3,00 35,00 118,00 0,083 36,14 
MÉDIA 61,84 
 
Tabela 04 
 
 
Calculando a constante elástica k (tabela 04), para as respectivas 
variações de comprimento, por: 
F = k Δx  K = F 
 Δx 
K1 = 0,50 = 125,00N/m 
 (4/1000) 
K2 = 1,00 = 71,43N/m 
 (14/1000) 
 
 
K3 = 1,50 = 55,56N/m 
 (27/1000) 
K4 = 2,00 = 44,44N/m 
 (45/1000) 
 
 
K5 = 2,50 = 38,46N/m 
 (65/1000) 
K6 = 2,00 = 36,14N/m 
 (83/1000) 
 
 
Então, calculou-se a média das constantes elásticas, por: 
K = K1 + K2 + K3 + K4 + K5 + K6, temos: 
 6 
K = 125,00+71,43+55,56+44,44+38,46+36,14  K = 371,03  K = 61,84N/m 
 6 6 
 
6.2. Roldanas fixas e móveis: 
6.2.1. Uso de roldanas fixas: 
6.2.1.1. Experimento com uma roldana fixa: 
O experimento foi realizado de acordo com os seguintes passos: 
Ajustou-se o suporte para que o mesmo não ficasse inclinado; 
Montou-se um sistema com uma rolada fixa; 
Colocou-se um peso de 0,50N no lado força peso; 
Para manter equilíbrio acrescentou-se o peso de 0,50N no lado da força 
resultante: 
Observe a figura do esquema: 
 
No uso de uma roldana fixa, puxando-se o peso até uma determinada 
altura e acrescentando-se um peso igual na outra extremidade iremos manter o 
equilíbrio e os peso não iram se deslocar até que um dos pesos seja diferente 
ou seja exercida uma força para mover os pesos; 
Roldana fixa; 
Força peso de 0,50N = Força resultante 0,50N; 
Força peso de 0,50N = Força resultante 0,50N; 
6.2.1.2. Experimento com duas roldanas fixa: 
O experimento foi realizado de acordo com os seguintes passos: 
Ajustou-se o suporte para que o mesmo não ficasse inclinado; 
Montou-se um sistema com duas roladas fixa; 
Colocou-se um peso de 0,50N no lado força peso; 
Para manter equilíbrio acrescentou-se o peso de 0,50N no lado da força 
resultante: 
Observe a figura do esquema:No uso de duas roldanas fixas, puxando-se o peso até uma determinada 
altura e acrescentando-se um peso igual na outra extremidade iremos manter o 
equilíbrio e os peso não iram se deslocar até que um dos pesos seja diferente 
ou seja exercida uma força para mover os pesos; 
 
6.2.2. Uso de roldanas móveis: 
6.2.2.1. Experimento com uma roldanas móvel: 
O experimento foi realizado de acordo com os seguintes passos: 
Ajustou-se o suporte para que o mesmo não ficasse inclinado; 
Montou-se um sistema com uma rolada fixa e uma roldana movel; 
Roldana fixa; 
Força peso de 0,50N = Força resultante 0,50N; 
Força peso de 0,50N = Força resultante 0,50N; 
Roldana fixa; 
Colocou-se um peso de 1,00N no lado força peso; 
Calculo para saber a ser usado no lado da força resultante: 
Fr = Fp 
 2nr Onde “Fr” Força resultante, “Fp” Força peso e “2nr” dois elevado 
a quantidade de roldanas móveis, logo: 
Para um esquema que utilizamos, temos uma roldana móvel, assim: 
Fr = 1N  Fr = 1N  Fr = 0,50N 
 21 2 
Observe a figura do esquema: 
 
No uso de uma roldana móvel, puxando-se o peso até uma determinada 
altura e para manter o equilíbrio utiliza-se menos esforço, pois a roldana móvel 
reduz por 2nr da a força peso e os peso não iram se deslocar até que um dos 
pesos seja modificado ou seja exercida uma força para mover os pesos; 
 
6.2.2.2. Experimento com duas roldanas móveis: 
O experimento foi realizado de acordo com os seguintes passos: 
Ajustou-se o suporte para que o mesmo não ficasse inclinado; 
Montou-se um sistema com uma rolada fixa e duas roldanas móveis; 
Colocou-se um peso de 2,00N no lado força peso; 
Calculo para saber a ser usado no lado da força resultante: 
Roldana fixa; 
Força peso de 1,00N; 
Força resultante Fr = 1N  Fr = 1N  Fr = 0,50N 
 21 2 
 
Roldana móvel; 
Fr = Fp 
 2nr Onde “Fr” Força resultante, “Fp” Força peso e “2nr” dois elevado 
a quantidade de roldanas móveis, logo: 
Para um esquema que utilizamos, temos uma roldana móvel, assim: 
Fr = 2N  Fr = 2N  Fr = 0,50N 
 22 4 
Observe a figura do esquema: 
 
No uso de duas roldanas móveis, puxando-se o peso até uma 
determinada altura para manter o equilíbrio utiliza-se menos esforço, pois as 
roldanas móveis reduz por 2nr da força peso e os peso não iram se deslocar até 
que um dos pesos seja modificado ou seja exercida uma força para mover os 
pesos; 
 
6.2.2.3. Experimento com três roldanas móveis: 
O experimento foi realizado de acordo com os seguintes passos: 
Ajustou-se o suporte para que o mesmo não ficasse inclinado; 
Montou-se um sistema com uma rolada fixa e três roldanas móveis; 
Colocou-se um peso de 2,00N no lado força peso; 
Calculo para saber a ser usado no lado da força resultante: 
Roldana fixa; 
Força peso de 4,00N; 
Força resultante Fr = 2N  Fr = 2N  Fr = 0,50N 
 22 4 
 
Roldanas móveis; 
Fr = Fp 
 2nr Onde “Fr” Força resultante, “Fp” Força peso e “2nr” dois elevado 
a quantidade de roldanas móveis, logo: 
Para um esquema que utilizamos, temos uma roldana móvel, assim: 
Fr = 2N  Fr = 2N  Fr = 0,25N 
 23 8 
Observe a figura do esquema: 
 
No uso de três roldanas móveis, puxando-se o peso até uma 
determinada altura para manter o equilíbrio utiliza-se menos esforço, pois as 
roldanas móveis reduz por 2nr da força peso e os peso não iram se deslocar até 
que um dos pesos seja modificado ou seja exercida uma força para mover os 
pesos; 
 
Roldana fixa; 
Força peso de 2,00N; 
Força resultante Fr = 2N  Fr = 2N  Fr = 0,25N 
 23 8 
 
Roldanas móveis; 
6.2.3. Cardenal Paralelo 
O experimento foi realizado de acordo com os seguintes passos: 
Ajustou-se o suporte para que o mesmo não ficasse inclinado; 
Montou-se um sistema de roldanas conhecido como cadernal paralelo 
referente à um conjunto de 3 roldanas móveis; 
Colocou-se um peso de 2,00N no lado força peso; 
Calculo para saber a ser usado no lado da força resultante: 
Fr = Fp 
 2nr Onde “Fr” Força resultante, “Fp” Força peso e “2nr” dois elevado 
a quantidade de voltas no cadernal, logo: 
Para um esquema que utilizamos temos 3 voltas assim: 
Fr = 2N  Fr = 2N  Fr = 0,25N 
 23 8 
Observe a figura do esquema: 
 
 
 
 
Roldana cadernal paralela fixa; 
Roldana cadernal paralela móvel 3 voltas; 
Força peso de 2,00N; 
Força resultante de 0,25N; 
7. Conclusão: 
7.1. Força elástica: 
Tendo em vista todo o desenvolvimento do experimento pode-se concluir 
que os sistemas de força elástica estão de acordo com a lei de Hooke. E que a 
partir dos valores de e que são iguais é possível calcular as constantes 
de sem enormes diferenças de resultados. Nos gráficos obtidos, 
pode-se observar que não houve grandes erros no ajuste linear pelo fato da 
variação de comprimento está relacionado com a quantidade de massas no 
sistema. Conclui-se ainda que segundo a lei de Hooke a força elástica varia 
linearmente com a distância que a mola é comprimida, onde pôde-se 
comprovar no decorrer do experimento. De acordo com a equação, na qual k é 
a constante de deformação da mola e X a deformação sofrida, enunciada pela 
lei de Hooke. 
Outro ponto observado é que em nenhum dos experimentos realizados a 
mola ultrapassou seu limite de elasticidade, uma vez que, ao serem retirados 
os pesos, as molas retornaram para a posição inicial. Na associação de molas 
em paralelo, o valor da constante é maior que a simples. No uso de liga 
elástica deu para notar que o gráfico não gera um função linear. 
 
7.2. Uso de roldanas: 
Podemos concluir que no esquema que utiliza roldanas fixas, a força 
resultante para movimentar ou equilibrar a força peso deve ser exatamente 
igual a força peso, assim não temos nenhuma redução no esforço, mais sim, 
fomente a facilidade de deslocar o peso em estudo. 
No esquema que utiliza roldanas móveis podemos notar que a força 
resultante para movimentar ou equilibra a força peso é menor, sedo reduzida 
pela divisão da força peso por dois elevado a quantidade de roldanas móveis. 
No esquema que utiliza cadernal paralelo utiliza polias em paralelo 
proporcionando assim a vantagem da redução do peso de acordo com a 
quantidade de polias utilizadas. Esse tipo de sistema possui a vantagem da 
utilização de várias roldanas, pois por serem paralelas o sistema torna-se 
compacto. 
Em suma, o uso de roldanas vem para facilitar o deslocamento de 
cargas e redução de esforço por combinação de roldanas móveis e cadernal 
paralelo, que hoje é muito utilizado. 
 
8. Bibliografia: 
DANTAS, Valter. “Equilibrio dos sistemas de Forcas”; Edah. Disponivel 
em <http://www.ebah.com.br/content/ABAAABQMUAI/equilibrio-dos-sistemas-
forcas>. Acesso em 08/11/2015. 
FERRER, Felipe de et al. “Trabalho de fisica experimental roldanas”/ 
JESUS, Marcelo....[et al.]; Edah. Disponível em <http://www.ebah. 
com.br/content/ABAAAe9jQAC/trabalho-fisica-experimental-roldanas>. Acesso 
em 08/11/2015. 
SALES, Priscila de et al. “Força Elástica” / MELO, Polyana....[et al.]; 
Edah. Disponível em http://www.ebah.com.br/content/ABAAAe5ksAE/forca-
elastica>. Acesso em 08/11/2015. 
SOUSA, João. “Relatório Física Experimental Determinação constante 
Elastica Massa-mola – 3”; Edah Disponivel em <http://www.ebah. 
com.br/content/ABAAABSY4AA/relatorio-fisica-experimental-determinacao-
constante-elastica-massa-mola-3>. Acesso em 08/11/2015.

Continue navegando