Buscar

Cálculo I - Capítulo 4 Integral

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 23 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 23 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 23 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Capítulo 4 – Integral
Capítulo 4
Integral
	A integral é uma operação baseada em limites cuja aplicação principal é o cálculo de áreas e volumes. Na Física, por exemplo, o trabalho realizado por uma força F que desloca um corpo de uma distância x é calculado por uma integral, ou seja, o trabalho realizado pode ser encontrado através de um cálculo de área.
	Ao longo deste capítulo, vamos mostrar que existe uma relação próxima entre a derivada e a integral de uma função. Portanto, um bom conhecimento de derivadas é pré-requisito para o estudo de cálculo integral.
CONCEITO DE INTEGRAL
	Antes de formalizar a definição de integral, vamos começar com um exemplo numérico.
Exemplo
	Encontrar a área sob a função f(x) no intervalo 0(x(1 sabendo-se que:
		
Solução
	Primeiramente, vamos mostrar graficamente a situação:
	
		Podemos perceber que a figura formada é um triângulo, portanto, o valor exato dessa área é igual a:
		
 unidades de área.
	Ou melhor:
		
 unidades de área.
	Em seguida, tentaremos encontrar essa área por aproximações sucessivas usando apenas retângulos.
	Vamos dividir o intervalo em duas partes iguais assumindo que a área do triângulo é dada aproximadamente pela soma das áreas dos dois retângulos. Visualmente fica mais fácil perceber o nosso objetivo:
	
		A área total da figura é dada por:
		
		
		
 unidades de área.
	Ou melhor:
		
 unidades de área.
	A nossa aproximação sugere que a área do triângulo é aproximadamente o valor calculado. Note que, em relação à área exata do triângulo, esse valor ainda é impreciso.
	Vamos agora dividir o intervalo em quatro partes iguais assumindo que a área do triângulo é dada aproximadamente pela soma das áreas dos quatro retângulos formados. O gráfico da situação ilustra melhor o problema:
	
		A área total da figura é dada por:
		
		
		
		
 unidades de área.
	Perceba que um número maior de retângulos aumentou a precisão da nossa aproximação do valor exato da área do triângulo. Usando o mesmo artifício, se dividirmos o intervalo em oito partes iguais, a área total será igual a 9/16. Isso indica que, se continuarmos a incluir cada vez mais retângulos a tendência natural é que a área total da figura seja exatamente igual à área do triângulo.
	Chamando de (x a base de cada retângulo, podemos montar uma tabela com os valores da base e da área calculada:
	(x
	A
		
	
		
	
		
	
		...
	...
		0
	
	Note que o cálculo da área exata da função é um processo limite dado por:
		
	Onde o símbolo 
 significa a soma das áreas de todos os n retângulos envolvidos na aproximação. O limite dado pela equação anterior é chamado integral da função f(x) no intervalo 0(x(1. Representamos a integral estudada através da notação:
		
	O símbolo é lido da seguinte maneira: “Integral de f(x) de 0 até 1”.
	A maneira que calculamos a integral é conhecida como método da exaustão e se baseia em encontrar a área sob uma função aumentando exaustivamente o número de retângulos, somando-se então as suas áreas. Por ser muito cansativo, o método da exaustão serve apenas para ilustrar a idéia fundamental da integral.
A INTEGRAL E A DERIVADA
	Isaac Newton e Gottfried Leibniz pesquisando independentemente chegaram à conclusão de que existe uma relação próxima entre a derivada e a integral.
	A constatação deles foi marcante: “A derivada e a integral são operações inversas”. Isso quer dizer que a integral de 
 é a função 
 que originou essa derivada. O esquema abaixo ajuda a esclarecer a relação entre a derivada e a integral:
	Vamos mostrar como obter a integral a partir da derivada. Considere a função dada pelo seguinte gráfico:
	
	
	Podemos perceber pelas figuras anteriores que a área sob a função depende do ponto extremo x, logo vamos representá-la por A(x). Se deslocarmos o ponto x para um valor x+(x então a área agora será dada por A(x+(x).
	Partindo desse raciocínio, desejamos descobrir qual é a área entre x e x+(x. Conforme o gráfico, essa área é dada pela diferença entre as áreas A(x+(x) e A(x):
	Matematicamente, a área que nos interessa é aproximadamente igual à área do retângulo:
		
		
	Tomando o limite dos dois lados:
		
	O que resulta em:
		
	Sabendo-se que:
		
	Ao substituirmos A(x) na expressão anterior teremos:
		
	Essa expressão mostra que se integrarmos a função f(x) e em seguida derivarmos o resultado da integração obteremos mesma função f(x). Isso significa que a integral e a derivada são operações que se cancelam quando aplicadas simultaneamente.
	Trocando a ordem das operações na última equação:
		
		
	Essa expressão mostra que a integral de f´(x) é a função f(x), ou seja, a integral de f´(x) é a função que originou essa derivada.
PRIMITIVA
	A integral de f(x) é freqüentemente chamada de primitiva ou de integral indefinida e é representada por F(x).
	Conforme foi provado, ao derivarmos F(x) obteremos f(x), ou seja:
		
		
	Nosso objetivo daqui para frente será encontrar a expressão de F(x) cuja derivada é igual à função f(x) dada no problema – Esse é o fundamento do método conhecido como antidiferenciação.
	Para que o processo de antidiferenciação tenha valor é necessário que tenhamos um bom conhecimento de derivadas.
Exemplo
	Calcular a integral de:
		
Solução
	A integral de f(x) é a função cuja derivada é igual a 2x, logo:
		
	A princípio, você poderia pensar que 
 é a única função cuja derivada é 
, mas isso não é verdade. Por exemplo, as derivadas de 
, 
 ou 
 também são iguais a 
. Portanto, devemos sempre colocar a constante C ao final da integral já que:
		
	O valor de C representa todos os valores possíveis da constante que acompanha 
 e a sua determinação depende de alguma condição dada no problema.
	A primitiva de f(x) é então dada por:
		
PRIMITIVAS MAIS COMUNS
	O processo de integração pelo método da antidiferenciação depende da capacidade de imaginarmos a função F(x) cuja derivada é dada por f(x) que é conhecida. Isso nem sempre é tarefa fácil, portanto, começaremos a exercitar essa capacidade estabelecendo regras gerais para algumas primitivas mais comuns.
Função nula:
	A primitiva da função nula é igual à função 
, já que a derivada de uma constante é igual a zero.
Exemplo
	Encontrar a primitiva da função:
		
Solução
	A primitiva F(x) é a função que, derivada uma vez, fornece f(x), então:
		
	Já que:
		
	Não importa qual seja o valor da constante C, a derivada será sempre igual a zero.
	
		Como você pode perceber, a função nula está presente em qualquer função. Dessa forma, será obrigatório aparecer a constante C em qualquer primitiva.
	Note nos casos a seguir que sempre acrescentaremos a constante C apenas no resultado final, evitando envolvê-la nos cálculos intermediários.
Função potência de x (para n positivo):
	Considere a seguinte função:
		
	A sua primitiva é dada por:
		
	Note que:
		
	Então podemos concluir que:
		
Exemplo
	Encontrar a primitiva da função:
		
Solução
	Conforme a regra de integração:
		
	O resultado final é igual a:
		
	Confirme se a derivada de F(x) é igual a f(x).
Função raiz de x:
	Considere a seguinte função:
		
	A sua primitiva se enquadra na integral de potência de x e é dada por:
		
		
	Finalmente, acrescentando a constante C no final:
		
	Então podemos concluir que:
		
Exemplo
	Encontrar a primitiva da função:
		
Solução
	Conforme a regra de integração:
		
	Confirme se a derivada de F(x) é igual a f(x).
Função potência negativa de x (para n diferente de 1):
	Considere a seguinte função:
		
	A sua primitiva também se enquadra na integral de potência de x e é dada por:
		
	Colocando o sinal negativo em evidência no denominador e no expoente, teremos:Note que não é possível aplicar essa fórmula quando n é igual a 1 já que o denominador se tornaria igual a zero.
Exemplo
	Encontrar a primitiva da função:
		
Solução
	Conforme a regra de integração:
		
PRIMITIVAS DE OUTRAS FUNÇÕES
	Usando a técnica de antidiferenciação, podemos encontrar as primitivas de outras funções que não sejam potências de x. Na tabela abaixo mostramos algumas primitivas:
	Função
	Primitiva
		
		
		
		
		
		
		
		
		
		
	Existem livros que contém as integrais de vários tipos de função tabeladas e organizadas para consulta rápida. Com a evolução dos softwares matemáticos, os livros com as tabelas de primitivas tornaram-se obsoletos já que, com o comando apropriado, você poderá obter com facilidade praticamente qualquer primitiva.
PROPRIEDADES DA INTEGRAL INDEFINIDA
	A integral indefinida de uma função apresenta as seguintes propriedades:
	
 (integral por partes)
	Vamos provar a propriedade (c), chamada integral por partes. Primeiro, vamos lembrar da derivada do produto de duas funções f(x) e g(x):
		
	Integrando ambos os lados da igualdade:
		
	Aplicando a propriedade (b) ao lado direito da igualdade:
		
	Lembrando que a integral e a derivada são operações inversas:
		
	Logo:
		
		
Exemplo
	Calcular as integrais:
		a)
		b)
		c)
Solução
	a) Aplicando a propriedade (a):
		
	Note que acrescentamos a constante C apenas no resultado final, evitando envolvê-la nos cálculos intermediários.
	b) Aplicando a propriedade (b):
		
	Aqui também acrescentamos a constante C apenas no resultado final, evitando envolvê-la nos cálculos intermediários.
	c) Primeiro, devemos identificar as funções f(x) e g´(x) dentro da integral:
		
	Vamos então escolher:
		
, cuja derivada é 
.
		
, cuja primitiva é 
.
	O resultado da integral é dado por:
		
		
	A escolha das funções f(x) e g´(x) foi proposital. Note que, escolhendo 
, fica mais fácil calcular a integral presente no segundo termo do lado direito da propriedade (c).
	Uma boa prática consiste em escolher para f(x) a função cuja derivada se torna uma constante ou que torne a integral do primeiro membro igual à integral do segundo membro.
Exemplo
	Calcular a integral:
		
Solução
	Vamos identificar as funções f(x) e g´(x) dentro da integral:
		
, cuja derivada é 
.
		
, cuja primitiva é 
.
	O resultado da integral é dado por:
		
		
	A integral que aparece circulada também deve ser calculada por partes:
		
		
	Substituindo na integral circulada:
		
		
	Note que existem duas integrais iguais. Nesse caso, passamos a integral do segundo membro somando à integral existente no primeiro membro:
		
	Finalmente:
		
		
	Nesse exemplo, pudemos constatar que a escolha das funções f(x) e g´(x) depende de um pouco de visão e da experiência de quem está calculando a integral.
TÉCNICAS DE INTEGRAÇÃO
	Existe uma técnica adequada a cada tipo de função a ser integrada. Vamos estudar algumas dessas técnicas.
Funções trigonométricas:
	Para esse tipo de função devem ser usadas relações trigonométricas que transformem produtos ou potências em somas de funções.
Exemplo
	Calcular a integral:
		
Solução
	Para resolver esse problema, devemos encontrar uma relação trigonométrica que transforme a função elevada à potência dois em uma soma de funções. Podemos começar usando a fórmula do cosseno da soma:
		
		
		
	Conforme a relação trigonométrica fundamental:
		
	Substituindo na fórmula anterior:
		
	Portanto:
		
	A partir das relações trigonométricas, podemos substituir a função mais complicada de ser integrada por duas funções mais simples de operar:
		
	Aplicando as propriedades das integrais:
		
	Sabemos que:
		
		
	Finalmente, após acrescentar a constante C:
		
	Existem outros tipos de integrais cuja solução também depende do conhecimento das relações trigonométricas:
		( 
		( 
		( 
	Para resolver essas integrais necessitamos das seguintes relações:
		
		
		
		
	Por exemplo, ao somarmos as fórmulas do cosseno da soma e da diferença teremos:
		
	Então:
		
	Devemos substituir a expressão acima na integral e calcular o resultado.
Exemplo
	Calcular a integral:
		
Solução
	Primeiro, encontramos a relação trigonométrica que define a multiplicação de dois cossenos:
		
		
	Substituindo na integral:
		
	Aplicando as propriedades da integral:
		
	Onde:
		
		
	O resultado final é igual a:
		
Exemplo
	Calcular a integral:
		
Solução
	Ao subtrairmos as fórmulas do cosseno da diferença e da soma teremos:
		
	Portanto:
		
		
	Substituindo na integral:
		
	Aplicando as propriedades da integral:
		
	Onde:
		
		
	O resultado final é igual a:
		
Mudança de variável:
	Essa técnica consiste em transformar um problema aparentemente complicado em um problema mais simples apenas pela mudança de variável da integral. A mesma abordagem já foi utilizada quando estudamos a regra da cadeia nos problemas de derivada.
	A técnica de mudança de variável consiste em trocar a integral do tipo:
		
	Por:
		
	Chamando:
		
		
Exemplo
	Calcular a integral:
		
Solução
	Quando olhamos para dentro da integral, percebemos que é possível chamar:
		
		
	Isso tornará a integral igual a:
		
	Cujo resultado final é dado por:
		
	Voltando com o valor de u:
		
Exemplo
	Calcular a integral:
		
Solução
	Primeiro devemos chamar:
		
		
	Isso tornará a integral igual a:
		
	Cujo resultado final é dado por:
		
	Voltando com o valor de u:
		
Exemplo
	Calcular a integral:
		
Solução
	Primeiro devemos chamar:
		
		
	Note que o valor da derivada de u aparece explicitamente dentro da integral. Essa mudança de variável faz com que:
		
	Finalmente, voltando com o valor de u no resultado:
		
Exemplo
	Calcular a integral:
		
Solução
	Primeiramente, chamaremos:
		
		
	Substituindo na integral:
		
	Cujo resultado é igual a:
		
	Voltando com o valor de u, teremos:
		
INTEGRAL DEFINIDA (TEOREMA FUNDAMENTAL DO CÁLCULO)
	A integral indefinida ou primitiva é uma função que fornece a área genérica sob f(x). Isso significa que precisamos definir dois extremos, o limite inferior “a” e o limite superior “b”, para que possamos calcular o valor numérico da área entre esses dois pontos. O que acabamos de descrever é o que se conhece como integral definida.
	A área em cinza no gráfico abaixo é a integral definida de f(x) no intervalo de “a” até “b”:
	Representamos a integral definida da seguinte forma:
		
	Segundo o teorema fundamental do cálculo, essa integral pode ser calculada por:
		
	Alguns autores costumam a representar o cálculo da integral definida pela notação:
		
	
		Nesse momento, é importante perceber que a constante C que aparece na primitiva deve desaparecer quando subtraímos F(b) de F(a).
Exemplo
	Calcular a área da função:
		
	Do ponto x=1 até o ponto x=2.
Solução
	O objetivo do problema consiste em encontrar a integral definida:
		
	Nosso primeiro passo será encontrar a primitiva da função:
		
	Logo após, vamos aplicar o limite inferior e o superior na primitiva:
		
		
	Por fim, vamos subtrair esses valores:
		
	Perceba que a constante é desnecessária no cálculo, pois sempre será eliminada na subtração. A partir de agora vamos desconsiderar a constante que aparece na primitiva quando estivermos calculando uma integral definida.
	A integral definida é então dada por:
		
	O valor encontrado corresponde à área sob a função 
 do ponto x=1 até o ponto x=2.
	Algumas vezes a integral definida fornece um valor negativo, issosignifica que a área está abaixo do eixo x. Contudo, o valor da área continua sendo positivo, já que não existe área negativa.
Exemplo
	Calcular a integral da função:
		
	Do ponto x=( até o ponto x=2(.
Solução
	O objetivo do problema consiste em encontrar a integral definida:
		
	O resultado é a primitiva:
		
	Note que desconsideramos a constante C por simplicidade. Logo após, vamos aplicar o limite inferior e o superior na primitiva:
		
		
	Finalmente, vamos subtrair esses dois valores:
		
		
	O valor negativo significa que a área está abaixo do eixo x. Nesse caso, o valor da área é igual a 2. A área cinza no gráfico abaixo corresponde à integral da função seno do ponto x=( até o ponto x=2(:
PROPRIEDADES DA INTEGRAL DEFINIDA
	A integral definida de uma função apresenta as seguintes propriedades:
	
 para c entre a e b.
	Vamos demonstrar a propriedade (d). Sabendo-se que:
		
	Portanto:
		
Exemplo
	Calcular a integral da função:
		
	Do ponto x=0 até o ponto x=2.
Solução
	O objetivo do problema consiste em encontrar a integral definida:
		
	Conforme a propriedade (c), fazendo c=1, podemos separar essa integral em duas outras:
		
	Onde:
		
		
	O resultado é então dado por:
		
MUDANÇA DE VARIÁVEL NA INTEGRAL DEFINIDA
	Quando mudamos a variável dentro da integral, o limite inferior e superior também devem mudar conforme a mudança de variável realizada.
Exemplo
	Calcular a integral definida:
		
Solução
	Primeiro devemos chamar:
		
		
	Conforme a variável u, os limites devem mudar para:
		Quando 
, 
.
		Quando 
, 
.
	Essa mudança de variável faz com que a integral se torne:
		
Exemplo
	Calcular a integral definida:
		
Solução
	Primeiro devemos chamar:
		
		
	Usando a expressão da variável u, os limites devem mudar para:
		Quando 
, 
.
		Quando 
, 
.
	A mudança de variável faz com que a integral se torne:
		
O CÁLCULO DE ÁREAS USANDO A INTEGRAL
	O cálculo de áreas através da integral definida pode nos levar a conclusões erradas se imaginarmos que o resultado sempre será a área total sob a função entre o limite inferior e o superior.
Exemplo
	Calcular a integral da função abaixo no intervalo 0(x(2(:
		
Solução
	O problema requer o cálculo da seguinte integral definida:
		
	O resultado é a primitiva:
		
	Aplicando o limite inferior e o superior na primitiva:
		
		
	Finalmente, vamos subtrair esses dois valores:
		
	Então:
		
	Se interpretarmos que essa é a área da função seno no intervalo de 0 a 2( então estaremos afirmando que o seu valor é igual a zero. Observando o gráfico da função, podemos constatar que a área não é realmente igual a zero:
	Vamos analisar o problema aplicando a propriedade (c) da integral definida:
		
	As duas integrais definidas são iguais a:
		
 e 
	O resultado positivo na primeira integral significa que a área está acima do eixo x e tem valor igual a 2. O resultado negativo da segunda integral significa que a área está abaixo do eixo x e também tem valor igual a 2. Matematicamente, o que está acontecendo nesse caso é que as áreas estão se cancelando por causa do sinal que indica se estão acima ou abaixo do eixo x.
	Na realidade, o sinal que aparece no resultado da integral definida deve ser desconsiderado no cálculo da área. Dessa forma, a área sob a função seno no intervalo de 0 a 2( é igual a 4.
	Sob uma forma mais geral, a área da função num intervalo dado pode ser calculada pela seguinte integral definida:
		
	O módulo da função f(x) faz com que a integral definida tenha sempre valor positivo já que as áreas sempre estarão acima do eixo x:
	
	
	Função f(x)
	Módulo da função f(x)
A INTEGRAL E O CÁLCULO DE VOLUMES
	Além de áreas, podemos calcular volumes de sólidos de revolução através da integral. Os chamados sólidos de revolução são aqueles cuja rotação de uma figura plana em torno de um eixo produz um sólido tridimensional. O exemplo mais simples de um sólido de revolução é o cilindro:
	O cilindro pode ser construído a partir da rotação de um retângulo em relação a um dos seus lados. O seu volume é dado pela seguinte fórmula:
		
	Onde r é o raio da base e h é a altura do cilindro.
	O cálculo de volumes por integral baseia-se na aproximação do volume de um sólido de revolução qualquer pela somatória dos volumes de cilindros. Por exemplo, considere a função 
 cujo gráfico no intervalo 0(x(h é mostrado abaixo:
	Ao girarmos o retângulo cinza em relação ao eixo x, o volume do cilindro formado será:
		
	A somatória de todos os volumes dos n cilindros entre 0 e h é dada por:
		
	Tomando o limite dessa soma quando 
 teremos o volume exato da figura correspondente à rotação do triângulo cinza em torno do eixo x:
		
	Conforme a figura, a revolução do triângulo em relação ao eixo x produz um cone:
	O raio da base desse cone é dado por:
		
	Dessa relação concluímos que:
		
	Sabemos que o volume dado pelo limite anterior representa a seguinte integral definida:
		
	Fazendo 
, a integral se torna:
		
	Substituindo o valor de a no resultado final da integral, teremos o volume do cone:
		
	Essa é a famosa equação para o cálculo do volume de um cone que aprendemos no curso inicial de geometria plana e espacial.
Exemplo
	A equação de meia circunferência de raio r é dada por:
		
	O gráfico dessa função é mostrado abaixo:
	Encontrar o volume do sólido de revolução dessa função em torno do eixo x.
Solução
	Conforme o gráfico, a revolução da função f(x) em torno do eixo x produzirá uma esfera. O volume dessa figura geométrica é calculado pela seguinte integral:
		
	Substituindo o valor da função na integral:
		
		
	Aplicando as propriedades da integral:
		
		
		
		
	Essa é a equação para o cálculo do volume de uma esfera que aprendemos no curso de geometria plana e espacial.
APLICAÇÕES DO CONCEITO DE INTEGRAL
	No capítulo de derivadas, encontramos as seguintes relações entre a posição s(t), a velocidade v(t) e a aceleração de um objeto se movimentando em MUV:
		
		
	Essas equações significam que basta conhecermos a expressão da posição do móvel em função do tempo para calcularmos a sua velocidade e aceleração através da derivada.
	Por outro lado, se conhecermos a expressão da aceleração do móvel em função do tempo então também podemos calcular a sua velocidade e posição através das integrais:
		
		
	No MUV, por exemplo, a aceleração do móvel é constante, ou seja:
		
	Dessa forma, a velocidade do móvel é dada por:
		
	Quando 
s, o valor de v(0) é chamado velocidade inicial e é representado por v0:
		
		
	Portanto:
		
	Sendo a velocidade instantânea dada pela expressão acima, então a posição do móvel é dada pelo seguinte cálculo:
		
	Quando 
s, o valor de s(0) é chamado posição inicial e é representado por s0:
		
		
	Dessa forma, temos que:
		
 INTEGRAIS NO MATHEMATICA
	Integrais podem ser facilmente calculadas no Mathematica através dos comandos:
Integrate[função, variável de integração]: esse comando calcula a integral indefinida da função dada dentro dos colchetes em relação à variável de integração.
Exemplo
	Integrate[Sin[x],x]
	Integrate[a^2,a]
	Integrate[Exp[z]*Sin[z],z]
Integrate[função, {variável de integração, mín, máx}]: esse comando calcula a integral definida dada por:
		
, se a variável de integração for x.
Exemplo
	Integrate[Sin[x],{x,-Pi,Pi}]
	Integrate[a^2,{a,0,1}]
	Integrate[Exp[z]*Sin[z],{z,0,1}]
Integrate[Abs[função], {variável de integração, mín, máx}]: esse comando calcula a área total sob a função dada pela integral:
		
, se a variável de integração for x.
Exemplo
	Integrate[Abs[Sin[x]],{x,0,Pi}]Integrate[Abs[a^3],{a,-1,1}]
	
		Essa integral torna positivas as partes negativas da função f(x), evitando o cancelamento das áreas por causa do sinal.
Integrate[Pi*função^2, {variável de integração, mín, máx}]: esse comando calcula o volume do sólido de revolução, em torno do eixo x, dado pela integral:
		
, se a variável de integração for x.
Exemplo
	Integrate[Pi*(a*x)^2,{x,0,h}]
	Integrate[Pi*(Sqrt[r^2-x^2])^2,{x,-r,r}]
Área que nos interessa
A(x+(x)
A área entre 0 a 2( é a soma dessas duas áreas cinza.
A(x)
página � PAGE �22�
_1147455475.unknown
_1147781735.unknown
_1147802708.unknown
_1147968654.unknown
_1148197245.unknown
_1148290645.unknown
_1148290736.unknown
_1148290966.unknown
_1148291180.unknown
_1148291284.unknown
_1148889962.unknown
_1148890999.unknown
_1148291220.unknown
_1148291068.unknown
_1148290823.unknown
_1148290937.unknown
_1148290706.unknown
_1148290660.unknown
_1148200746.unknown
_1148202018.unknown
_1148290472.unknown
_1148201866.unknown
_1148197376.unknown
_1148199081.unknown
_1148197351.unknown
_1148196249.unknown
_1148196330.unknown
_1148197212.unknown
_1148196263.unknown
_1147969972.unknown
_1147970117.unknown
_1147970898.unknown
_1147970214.unknown
_1147970050.unknown
_1147969360.unknown
_1147969933.unknown
_1147969152.unknown
_1147924237.unknown
_1147963594.unknown
_1147964676.unknown
_1147964798.unknown
_1147963994.unknown
_1147963605.unknown
_1147963543.unknown
_1147963584.unknown
_1147963245.unknown
_1147963346.unknown
_1147963206.unknown
_1147846268.unknown
_1147846283.unknown
_1147846312.unknown
_1147846277.unknown
_1147846220.unknown
_1147846227.unknown
_1147846194.unknown
_1147800143.unknown
_1147800762.unknown
_1147802588.unknown
_1147802681.unknown
_1147802696.unknown
_1147802672.unknown
_1147800959.unknown
_1147800989.unknown
_1147800926.unknown
_1147800445.unknown
_1147800581.unknown
_1147800648.unknown
_1147800545.unknown
_1147800313.unknown
_1147800442.unknown
_1147800195.unknown
_1147794380.unknown
_1147794897.unknown
_1147794941.unknown
_1147794974.unknown
_1147800076.unknown
_1147794778.unknown
_1147794828.unknown
_1147794875.unknown
_1147794733.unknown
_1147794055.unknown
_1147794101.unknown
_1147794167.unknown
_1147794082.unknown
_1147792441.unknown
_1147793859.unknown
_1147793730.unknown
_1147792336.unknown
_1147782231.unknown
_1147779962.unknown
_1147781011.unknown
_1147781344.unknown
_1147781516.unknown
_1147781624.unknown
_1147781703.unknown
_1147781536.unknown
_1147781376.unknown
_1147781487.unknown
_1147781095.unknown
_1147781236.unknown
_1147781246.unknown
_1147781212.unknown
_1147781141.unknown
_1147781035.unknown
_1147781054.unknown
_1147781019.unknown
_1147780569.unknown
_1147780828.unknown
_1147780909.unknown
_1147780998.unknown
_1147780862.unknown
_1147780697.unknown
_1147780721.unknown
_1147780608.unknown
_1147780115.unknown
_1147780523.unknown
_1147780555.unknown
_1147780489.unknown
_1147780004.unknown
_1147780053.unknown
_1147779985.unknown
_1147698861.unknown
_1147701642.unknown
_1147760202.unknown
_1147779719.unknown
_1147779879.unknown
_1147760218.unknown
_1147760118.unknown
_1147760194.unknown
_1147758914.unknown
_1147700575.unknown
_1147701529.unknown
_1147701634.unknown
_1147700978.unknown
_1147699525.unknown
_1147700133.unknown
_1147700532.unknown
_1147699919.unknown
_1147698868.unknown
_1147698875.unknown
_1147698500.unknown
_1147698589.unknown
_1147698704.unknown
_1147698854.unknown
_1147698672.unknown
_1147698536.unknown
_1147545554.unknown
_1147545560.unknown
_1147455539.unknown
_1147457137.unknown
_1147457362.unknown
_1147455570.unknown
_1147455526.unknown
_1146722228.unknown
_1147328873.unknown
_1147356185.unknown
_1147357132.unknown
_1147361475.unknown
_1147361525.unknown
_1147361449.unknown
_1147356304.unknown
_1147356860.unknown
_1147356228.unknown
_1147330235.unknown
_1147330489.unknown
_1147355776.unknown
_1147356141.unknown
_1147330252.unknown
_1147330083.unknown
_1147330131.unknown
_1147328916.unknown
_1146804322.unknown
_1147023525.unknown
_1147025293.unknown
_1147324972.unknown
_1147325321.unknown
_1147325752.unknown
_1147326327.unknown
_1147326781.unknown
_1147326310.unknown
_1147325733.unknown
_1147324990.unknown
_1147325320.unknown
_1147324979.unknown
_1147324929.unknown
_1147324963.unknown
_1147324916.unknown
_1147023604.unknown
_1147024940.unknown
_1147024974.unknown
_1147024880.unknown
_1147024935.unknown
_1147023625.unknown
_1147023570.unknown
_1147022904.unknown
_1147023348.unknown
_1147023419.unknown
_1147022962.unknown
_1147023168.unknown
_1146807578.unknown
_1146807745.unknown
_1147022630.unknown
_1146804348.unknown
_1146723976.unknown
_1146725882.unknown
_1146804200.unknown
_1146725453.unknown
_1146723753.unknown
_1146723799.unknown
_1146722716.unknown
_1146723393.unknown
_1146121243.unknown
_1146223449.unknown
_1146231491.unknown
_1146689821.unknown
_1146691193.unknown
_1146231609.unknown
_1146231712.unknown
_1146231549.unknown
_1146225432.unknown
_1146227792.unknown
_1146223501.unknown
_1146224414.unknown
_1146223494.unknown
_1146217884.unknown
_1146219135.unknown
_1146223394.unknown
_1146223367.unknown
_1146218066.unknown
_1146147231.unknown
_1146217698.unknown
_1146147178.unknown
_1145965085.unknown
_1145966389.unknown
_1145997694.unknown
_1146121227.unknown
_1145966406.unknown
_1145965474.unknown
_1145965529.unknown
_1145966114.unknown
_1145965482.unknown
_1145965445.unknown
_1145965462.unknown
_1145964413.unknown
_1145964972.unknown
_1145965077.unknown
_1145964889.unknown
_1145964942.unknown
_1145964466.unknown
_1145963403.unknown
_1145964373.unknown
_1117213695.unknown
_1145963076.unknown
_1115490332.unknown
_1117213683.unknown
_1115476147.unknown

Continue navegando