Buscar

Estática dos fluidos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Aula 2 
Estática dos Fluidos 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Definição: 
 A estática dos fluidos é uma ramificação da mecânica dos fluidos que estuda 
o comportamento de um fluido em uma condição de equilíbrio estático. Ou seja 
quando não existe movimento relativo entre as porções de fluido. 
 
Definição de Pressão: 
 A pressão média aplicada sobre uma superfície pode ser definida pela 
relação entre a força aplicada e a área dessa superfície e pode ser numericamente 
calculada pela aplicação da equação a seguir: 
 
2 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Obs: Não confundir pressão com força. Veja a situação abaixo 
Note-se que em ambos os casos a força aplicada é a mesma , porém a pressão 
é diferente. 
 
3 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Teorema de Stevin 
 “A diferença de pressões entre dois pontos de um fluido em 
repouso é o produto do peso específico do fluido pela diferença de cotas 
entre os dois pontos considerados”. 
 
4 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
- “A pressão em um ponto do fluido é diretamente proporcional à profundidade 
deste ponto e ao peso específico do fluido”. 
P1 = P2 = P3 
 
5 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
- Diferença de Pressão entre 2 níveis : 
“A diferença de pressão entre dois pontos de um fluido é igual ao produto do 
peso específico do fluido pela diferença de cotas entre os dois pontos” 
 
6 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Exemplo: 
Considere os Recipientes abaixo de base quadrada com água ( g = 1000 kgf/m³ ) . 
Qual a pressão no fundo dos recipientes? 
 
7 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 8 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Observação importante: 
a) O Teorema de Stevin só se aplica a fluidos em repouso. 
b) ∆ℎ é a diferença de cotas e não a distância entre os dois pontos considerados. 
c) Todos os pontos de um fluido num plano horizontal tem a mesma pressão. 
d) A pressão independe da área, ou seja, do formato do recipiente. 
e) Se a pressão na superfície livre de um líquido contido num recipiente for nula, a 
pressão num ponto à profundidade h dentro do líquido será dada por: 𝒑 = 𝜸 . 𝒉 
f) Nos gases, como o peso específico é pequeno, se a diferença de cotas entre dois 
pontos não for muito grande, pode-se desprezar a diferença de pressão entre eles. 
9 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
LEI DE PASCAL 
 Essa lei apresenta sua maior importância em problemas de dispositivos que transmitem 
e ampliam uma força através da pressão aplicada num fluido e pode enunciada da 
seguinte forma: 
 
“A pressão aplicada em um ponto de um fluido incompressível ( líquidos ) em repouso é 
transmitida integralmente a todos os pontos do fluido.” 
 
10 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
 Em uma operação de uma prensa hidráulica, o volume de líquido ( V) 
deslocado do recipiente menor passa para o recipiente maior. Chamando de de h1 e h2 
os deslocamentos respectivos dos dois êmbolos, cujas áreas são A1 e A2 podemos 
escrever: 
𝑽 = 𝒉𝟏𝑨𝟏 𝒆 𝑽 = 𝒉𝟐𝑨𝟐 𝒕𝒆𝒎𝒐𝒔 𝒆𝒏𝒕ã𝒐 𝒒𝒖𝒆 ∶ 𝒉𝟏𝑨𝟏 = 𝒉𝟐𝑨𝟐 
Carga de pressão (h) 
 
 Pelo teorema de Stevin vimos que a altura e a pressão mant~em um relação 
constante para um mesmo fluido. É possível então expressar a pressão num certo fluido 
em unidades de comprimento. 
 
𝑷
𝜸
= 𝒉 
11 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
 Essa altura h, que, multiplicada pelo peso específico do fluido, reproduz a 
pressão num certo ponto do fluido que será chamada de “ carga de pressão”. 
 
 Pode-se dizer então, que a carga de pressão é a altura à qual pode ser elevada 
uma coluna de fluido por uma pressão P. 
 
 Dessa forma, é sempre possível, dada uma coluna h de fluido, associar-lhe 
uma pressão P, dada por yh, assim como é possível, uma dada pressão P, associar-lhe 
uma altura h de fluido, dada por 
𝑃
𝛾
 , denominada carga de pressão. 
 
12 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Escalas de Pressão 
 
a) Escala efetiva (relativa): É aquela que toma como referência (zero) a pressão 
atmosférica. As pressões nessa escala dizem-se efetivas (relativas). 
 
b) Escala absoluta: é aquela que toma como referência (zero) o vácuo absoluto. As 
pressões nessa escala são chamadas absolutas. 
 
 A escala de pressões efetivas é importante, pois praticamente todos os 
aparelhos de medida de pressão ( manômetros) registram zero quando abertos à 
atmosfera, medindo, portanto, a diferença entre a pressão do fluido e a do meio em que 
se encontram. 
 
Observações importantes: 
a) A pressão absoluta é sempre positiva. 
b) A pressão efetiva pode ser positiva ou negativa. Pressão efetiva negativa = 
“depressão” ou “vácuo”. 
c) Indicação de pressão efetiva: 1 kgf/m². 
d) Indicação de pressão absoluta: 1 kgf/m² (abs). 
 
13 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Unidades de pressão 
 
a - Unidades de pressão propriamente ditas: 
 
Entre elas as mais utilizadas são: dina/cm² ; N/m² ; kgf/m² ; N/cm²; kgf/cm² . Obs: 
N/m2 = Pa; KPa=103 Pa; MPa=106Pa ; daN/cm2 = bar ( decanewton por centímetro 
quadrado) psi = lbf/pol2 
 A relação entre essas unidades é facilmente obtida por uma simples 
transformação: 
1 Kgf/cm2 = 104Kgf/m2 = 9,8 . 104Pa = 0,98 bar = 14,2 psi. 
 
14 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
b - Unidades de carga de pressão utilizadas para indicar pressões: 
 
m.c.a. (metros de coluna de água) 
m.c.o. (metros de coluna de óleo) 
mmHg, 
m. c. ar, etc. 
Assim por exemplo, 5 mca correspondem a 5m x 10.000N/m3 = 50.000 N/m2 ( onde 
10.000N/m3 é o peso específico da água). 
Ainda por exemplo, 20mmHg correspondem a 0,02 m x 136.000 N/m3 = 2.720 N/m2 ( 
onde 136000N/m3 é o peso específico do mercúrio ) 
 
15 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
c- Unidades Definidas 
 
 Entre elas, destaca-se a unidade atmosfera ( atm), que, por definição, é a 
pressãoque poderia elevar de 760 mm uma coluna de mercúrio. Logo temos: 
 
 
1 atm = 760mmHg = 101.230 Pa = 101,23 KPa = 10.330 Kgf/m2 = 1,033 Kgf/cm2 = 
1,01 bar = 14,7 psi = 10,33 mca. 
 
16N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 17 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Aparelhos medidores de pressão. 
 
 Barômetro: O barômetro de mercúrio foi inventado em 1643 por Evangelista 
TORRICELLI, e funciona porque o ar tem peso. Torricelli observou que se a abertura de 
um tubo de vidro fosse enchida com mercúrio, a pressão atmosférica iria afetar o 
peso da coluna de mercúrio no tubo. 
 
 Se um tubo cheio de líquido, fechado na extremidade inferior e aberto na 
superior, for virado dentro de uma vasilha do mesmo líquido, ele descerá até uma 
certa posição e nela permanecerá em equilíbrio. 
 
18 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
 Quanto maior a pressão do ar, mais comprida fica a coluna de mercúrio. 
Assim, a pressão pode ser calculada, multiplicando-se o peso da coluna de mercúrio 
pela densidade do mercúrio e pela aceleração da gravidade. 
 
19 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
 Piezômetro: Consiste num simples tubo de vidro que, ligado ao 
reservatório, permite medir diretamente a carga de pressão. Sendo conhecido o 
peso específico do fluido, pode-se determinar a pressão diretamente. 
 
 O piezômetro apresenta três defeitos que o tornam 
de uso limitado. 
 1º - Para pressões elevadas e para líquidos de baixo 
peso específico a coluna h será muito alta. 
 
Ex: 
 
A água com pressão de 105 N/m2 e cujo peso específico é 
104 N/m3 formará uma coluna de 𝒉 = 
𝑷
𝜸
= 
𝟏𝟎𝟓
𝟏𝟎𝟒
= 𝟏𝟎 𝒎. Logo 
se torna inviável a construção de um tubo com 10 m de 
comprimento. 
 
 
20 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
2º - Não podem medir pressão de gases, pois eles escapam sem formar a coluna h. 
3º - Não se pode medir pressões efetivas negativas, pois neste caso haverá entrada 
de ar para o reservatório, em vez de haver formação de coluna. 
 
 Manômetro Metálico ou de Bourdon: Podemos medir pressões e depressões 
pela deformação sofrida pelo tubo metálico. 
 O processo de funcionamento é feito quando o tubo fica internamente 
submetido a uma pressão P que o deforma, havendo assim um deslocamento de sua 
extremidade que, ligada ao ponteiro por um sistema de alavancas, relacionará a sua 
deformação com a pressão no reservatório 
21 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 22 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
 Manômetro com tubo em U :É o manômetro de coluna que se apresenta como 
o mais simples de todos. O aparelho é construído basicamente em tubo reto em forma 
de “U” preenchido com fluído manométrico até a sua metade, sendo que as 
extremidades deste tubo devem estar abertas para a atmosfera. 
 
 Seu princípio de funcionamento consiste na aplicação de pressão num de 
seus ramos o que provocará o líquido descer por este ramo e a subir no outro. Na 
condição de repouso (sem aplicação de pressão) como ambos abertos para a 
atmosfera a força atua nas superfícies consideradas como niveladas e 
simultaneamente referenciadas ao zero da escala. 
 A pressão indicada é mostrada pela diferença de altura em função do 
movimento do fluído nos dois ramos e lida através de uma escala graduada, sendo 
que seu valor numérico é igual ao das leituras acima e abaixo do ponto médio (zero 
da escala). 
 
23 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 24 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Equação Manométrica. 
 Esta equação relaciona as pressões aplicadas nos ramos de uma coluna 
de medição e altura de coluna do líquido deslocado. A equação apresenta-se 
como a expressão matemática resultante dessa relação. 
 
Regra prática: 
 Começando do lado esquerdo, soma-se à pressão PA a pressão das 
colunas descendentes e subtrai-se aquela das colunas ascendentes. Observe que 
as cotas ( diferença de altura(h)) são sempre dadas até a superfície de separação 
de dois fluidos do manômetro. 
 
25 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
𝑷𝑨 + 𝜸𝑨 . 𝒉𝑨 − 𝜸𝟏 . 𝒉𝟏 + 𝜸𝟐 . 𝒉𝟐 − 𝜸𝟑 . 𝒉𝟑 − 𝜸𝑩 . 𝒉𝑩 = 𝑷𝑩 𝑷𝑨 + 𝜸𝑨 . 𝒉𝑨 − 𝜸𝟏 . 𝒉𝟏 + 𝜸𝟐 . 𝒉𝟐 − 𝜸𝟑 . 𝒉𝟑 − 𝜸𝑩 . 𝒉𝑩 = 𝑷𝑩 
26 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Exemplo: 
Determinar a pressão em P. Dados: 𝛾𝐻20 = 1000
𝑘𝑔𝑓
𝑚3
 𝑒 𝛾𝐻𝑔 = 13600 𝑘𝑔𝑓/𝑚
3 
 
Solução: 
𝑃 + 𝛾𝐻2𝑜 . ℎ𝐻2𝑜 − 𝛾𝐻𝑔 . ℎ𝐻𝑔 = 𝑃𝑎𝑡𝑚 
𝑃 + 1000 𝑥 0,025 − 13600 𝑥 0,075 = 0 → 𝑃 = −25 + 1020 → 𝑷 = 𝟗𝟗𝟓 
𝒌𝒈𝒇
𝒎𝟐
 
27 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 28 
Princípio de Arquimedes 
 
 O grande cientista e inventor grego, Arquimedes,foi o descobridor do princípio 
que nos permite calcular o valor do empuxo que atua em um corpo mergulhado em um 
fluido. Arquimedes fez contribuições notáveis na Física, na Matemática e na tecnologia. 
 Arquimedes viveu no século III a. C., na cidade de Siracusa, uma colônia grega 
situada na Silícia, sul da Itália. Uma das invenções mais populares é conhecida como 
parafuso de Arquimedes, usado para elevar água 
 Arquimedes descobriu que todo o corpo imerso em um fluido em equilíbrio, 
dentro de um campo gravitacional, fica sob a ação de uma força vertical, com sentido 
oposto à este campo, aplicada pelo fluido, cuja intensidade é igual a intensidade do Peso 
do fluido que é ocupado pelo corpo. 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 29 
"Um fluido em equilíbrio age sobre um corpo nele imerso (parcial ou totalmente) com 
uma força vertical orientada de baixo para cima, denominada EMPUXO, aplicada no 
centro de gravidade do volume de fluido deslocado, cuja intensidade é igual à do peso 
do volume de fluido deslocado." 
 Considere um recipiente contendo um líquido de densidade (d) conhecida. Ao 
mergulharmos um corpo sólido nesse líquido, o nível do líquido sobe, indicando que 
certo volume do líquido foi deslocado. De acordo com o Teorema de Arquimedes, o 
empuxo E tem intensidade igual à do peso do volume de líquido deslocado pelo corpo: 
 Onde PL é o peso do líquido deslocado. 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 30 
Sabemos que a densidade de um fluido é dada pela equação: 
f
f
v
m
d 
 
, então a 
a massa pode ser dada por: 
dff
Vdm .
Assim a intensidade do empuxo é dada pela expressão: 
gmF fe .
 
 ou podemos escrever que o empuxo é: 
N O T A S D E A U L A - P R O F º D O U G L A S E ST E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 31 
Exemplo: 
Em um recipiente há um líquido de densidade 2,56g/cm³. Dentro do líquido 
encontra-se um corpo de volume 1000cm³, que está totalmente imerso. Qual o 
empuxo sofrido por este corpo? Dado g=10m/s² 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 32 
Equilíbrio de Flutuação 
 
 Quando um bloco de madeira na superfície de uma piscina, ele começa a 
afundar na água porque é puxada para baixo pela força gravitacional. A medida que o 
bloco desloca mais e mais água é deslocada e o módulo da força de empuxo, que 
aponta para cima aumenta. Finalmente, FE se torna igual ao módulo da Fg e madeira 
para de afundar. A partir desse momento o bloco de madeira permanece em equilíbrio 
estático, e dizemos que está flutuando na água. Em todos os casos, 
A figura um corpo que flutua em um fuido neste caso podemos afirmar 
que FE = Fg. 
Assim temos: 
Fg = m f . g ( flutuação ) 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 33 
 Ocasionalmente, algumas embarcações ou navios podem ser modificadas, 
introduzindo-se mastros maiores ou canhões mais pesados; nestes casos, eles se 
tornam mais pesados e tendem a emborcar em mares mais agitados. Os "icebergs" 
muitas vezes também viram quando derretem parcialmente. Estes fatos sugerem que, 
além das forças, os torques destas forças também são importantes para o estudo do 
equilíbrio de flutuação. 
 Quando um corpo está flutuando em um líquido, ele está sujeito à ação de 
duas forças de mesma intensidade, mesma direção (vertical) e sentidos opostos: a 
força-peso e o empuxo. Os pontos de aplicação dessas forças são, respectivamente, o 
centro de gravidade do corpo G e o centro de empuxo C, que corresponde ao centro de 
gravidade do líquido deslocado ou centro de empuxo. 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 34 
 Se o centro de gravidade G coincide com o centro de empuxo C, situação 
mais comum quando o corpo está totalmente mergulhado, o equilíbrio é 
INDIFERENTE, isto é, o corpo permanece na posição em que for colocado. 
 Quando um corpo flutua parcialmente imerso no fluido e se inclina num 
pequeno ângulo, o volume da parte da água deslocada se altera e, portanto, o centro 
de empuxo muda de posição. 
 Para que um objeto flutuante permaneça em equilíbrio ESTÁVEL, seu centro 
de empuxo deve ser deslocado de tal modo que a força de empuxo (de baixo para 
cima) e o peso (de cima para baixo) produzam um torque restaurador, que tende a 
fazer o corpo retornar a sua posição anterior. 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 35 
 Quando o centro de gravidade G estiver acima do centro de empuxo C, o 
equilíbrio pode ser estável ou não. Vai depender de como se desloca o centro de 
empuxo em virtude da mudança na força do volume de líquido deslocado. 
 As figuras (6a) e (6b) mostram essa situação, onde o centro de gravidade G 
está acima do centro de empuxo mas, ao deslocar o corpo da posição inicial, o centro 
de empuxo muda, de modo que o torque resultante faz com que o corpo volte para sua 
posição inicial de equilíbrio. 
Fig 6 (A) Fig 6 (B) 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 36 
Obs.: A diferença conceitual entre centro de empuxo e centro de gravidade é que a 
posição do centro de gravidade não se altera em relação ao corpo, a menos que ele 
seja deformado. Mas o centro de empuxo do corpo flutuante muda de acordo com a 
forma do líquido deslocado porque o centro de empuxo está localizado no centro de 
gravidade do líquido deslocado pelo corpo. 
 
 As figuras abaixo mostram o equilíbrio chamado INSTÁVEL. Movimentando o 
corpo (oscilando)de sua posição inicial, o deslocamento do centro de empuxo faz com 
que o torque resultante vire o corpo. A tarefa de um engenheiro naval consiste em 
projetar os navios de modo que isto não ocorra. 
 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 37 
Peso aparente 
 Conhecendo o princípio de Arquimedes podemos estabelecer o conceito de 
peso aparente, que é o responsável, no exemplo dado da piscina, por nos sentirmos 
mais leves ao submergir. 
 Peso aparente é o peso efetivo, ou seja, aquele que realmente sentimos. 
No caso de um fluido: 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
Exercícios: 
 
1-Determinar a pressão (efetiva) em kgf/m2 a uma profundidade de 8,5 m 
abaixo da superfície livre de um volume de água. R = 𝟖𝟓𝟎𝟎 
𝑲𝒈𝒇
𝒎𝟐
 
 
 
38 
2-Determinar a pressão em kgf/m2 a uma profundidade de 17 m em um óleo de 
densidade igual a 0,75. R = 𝟏𝟐. 𝟕𝟓𝟎
𝑲𝒈𝒇
𝒎𝟐
 
 
3- Que profundidade de óleo, com densidade 0,85 , produzirá uma pressão de 4,6 
kgf / cm2 .Qual a profundidade em água ? 
 R = Para o óleo 𝒉 = 𝟓𝟒𝟏𝟏 𝒄𝒎 = 𝟓𝟒, 𝟏𝟏 𝒎 Para Água 𝒉 = 𝟒𝟔𝟎𝟎 𝒄𝒎 = 𝟒𝟔 𝒎 
4 - -Converter a altura de carga de 6,5 m de água para metros de óleo (densidade 
de 0,75). R = 𝟖, 𝟕 𝒎 
5 - Converter a pressão de 640 mmHg para metros de óleo (densidade = 0,75). R = 
11,6 m 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
6 - Em um tanque de querosene, tem-se uma diferença de pressão igual a 0,288 kgf 
/ cm2 entre dois pontos da massa líquida, distanciados de 4 metros na vertical. 
Obter o peso específico do querosene (𝛾). R = 𝟕𝟐𝟎
𝒌𝒈𝒇
𝒎𝟑
 
 
39 
7 - Numa prensa hidráulica, o êmbolo menor tem raio 10 cm e o êmbolo maior, raio 
50 cm. Se aplicarmos no êmbolo menor uma força de intensidade 20N, deslocando-o 
15 cm, qual é a intensidade da foça no êmbolo maior e seu deslocamento? R : F2 = 
500N e h2 = 0,6 cm 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
8 - Um êmbolo com uma seção reta a é usado em uma prensa hidráulica para 
exercer uma pequena força força de módulo f sobre um líquido que está em 
contato, através de um tubo de ligação, com um êmbolo maior de secção reta A 
conforme a figura. 
 
a) Qual o módulo da força F que deve ser 
aplicada ao êmbolo maior para que o 
sistema fique em equilíbrio? R: F = (A/a)f 
 
b) Os diâmetros dos êmbolos são 3,80 cm e 53,0 cm, qual é o módulo da força que deve 
ser aplicada ao êmbolo menor para equilibrar uma força de 20,0 KN aplicada ao êmbolo 
maior? R = 103 N 
 
40 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
9 - Um adestrador quer saber o peso de um elefante. Utilizando uma prensa hidráulica, 
consegue equilibrar o elefante sobre um pistão de 2000cm2 de área, exercendo uma 
força vertical F equivalente a 200N, de cima para baixo, sobre o outro pistão da prensa, 
cuja área é igual a 25cm2 . Calcule o peso do elefante. R: 16000N 
 
41 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M AI L . C O M 
10 - O elevador hidráulico de um posto de automóveis é acionado através de um cilindro 
de área 3.10-5 m2 . O automóvel a ser elevado tem massa 3.103 kg e está sobre o êmbolo 
de área 6.10-3 m2 Sendo a aceleração da gravidade g = 10 m/s2 determine a intensidade 
mínima da força que deve ser aplicada no êmbolo menor para elevar o automóvel. R = 
150 N 
 
42 
11 - Aplica-se uma força de 200N na alavanca AB, como é mostrada na figura. Qual é a 
força F que deve ser exercida sobre a haste do cilindro para que o sistema permaneça 
em equilíbrio? R : F = 1.000 Kgf = 10.000N = 10 KN 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
3 - Determinar a pressão de 3,5 atm nas outras unidades de pressão na escala efetiva 
e sendo a pressão atmosférica local 740mmHg, determinar a pressão absoluta em 
todas unidades de pressão. 
14) No manômetro da figura o Fluido A é a água e o B o Mercúrio. Qual a pressão de 
P1. Dados ( 𝛾𝐻𝑔 = 136000 𝑁/𝑚
3) e (𝛾𝐻20 = 10.000
𝑁
𝑚3
) . R : 13335 kgf/m2 
 
12 - Qual a altura da coluna de mercúrio ( 𝛾𝐻𝑔 = 136000 𝑁/𝑚
3) que irá produzir na 
base a mesma pressão de uma coluna de água de 5m de altura? (𝛾𝐻20 = 10.000
𝑁
𝑚3
) ( R: 
0,367m ou 367mm 
 
1 
43 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
15) No manômetro diferencial da figura o fluido A é água , B é óleo e o fluído 
manométrico é mercúrio. Sendo h1= 25cm, h2 = 100 cm, h3 = 80cm e h4 = 10 cm, 
qual a diferença de pressão PA-PB? Dados: ( 𝛾𝐻𝑔 = 136000 𝑁/𝑚
3) ; ( 𝛾𝐻20 =
10.000
𝑁
𝑚3
) e ( 𝛾ó𝑙𝑒𝑜 = 8000 𝑁/𝑚
3) . (𝑃𝐴 − 𝑃𝐵 = −132.100 𝑃𝑎 𝑜𝑢 − 132,1 𝐾𝑃𝑎). 
 
44 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
16) Calcular a leitura no manômetro A da figura. ( 𝛾𝐻𝑔 = 136000
𝑁
𝑚3
 ). (𝐑 ∶ 𝟕𝟗, 𝟔 𝑲𝑷𝒂) 
45 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
17) Um tanque fechado contém ar comprimido e um óleo que apresenta densidade 
0,9. O fluido utilizado no manômetro em “U” conectado ao tanque é mercúrio ( 
densidade 13,6 ). Se h1 = 914 mm, h2 = 152 mm e h3 = 229 mm, determine a leitura 
do manômetro localizado no topo do tanque. (𝑷𝒂𝒓𝒄𝒐𝒎𝒑 = 𝟐𝟏𝟏𝟏𝟗 𝑷𝒂 𝒐𝒖 𝟐𝟏, 𝟏𝟏𝟗 𝑲𝑷𝒂 
 
 
46 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 
18) No piezômetro inclinado da figura, temos γ1 = 800 Kgf/m
2 e γ2 = 1700 Kgf/m
2 , 
L1 = 20 cm e L2 = 15 cm , α = 30º. Qual é a pressão em P1 ? ( R: P1 = 207,5 
kgf/m2) 
 
19) Qual a pressão manométrica dentro de uma tubulação onde circula ar se o 
desnível do nível do mercúrio observado no manômetro de coluna é de 4 mm? 
 
47 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 48 
20)Determine a massa de uma esfera maciça de chumbo com raio de 2,00 cm. A 
densidade do ferra é 11,3.103 Kg/m3. R = 0,379 Kg 
21)Um bote flutuando em água doce desloca um peso de água igual a 35,6 KN. 
a) Qual seria o peso da água que esse bote deslocaria se ele estivesse flutuando em 
água salgada com massa específica de 1,1x103 kg/m3? R = 35,6 KN 
b) O volume da água deslocada mudaria? Se isso acontecesse, de quanto? R = 0,33 
m3. 
22)Uma âncora de ferro com massa específica igual a 7870 kg/m3 parece 200 N 
mais leve na água do que no ar. 
a) Qual o volume desta âncora? R = 
b) Quanto ela pesa no ar sabendo que a densidade do ferro é 7,9x103 kg/m3? R = 
321004,2 mx N310.6,1
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 49 
23)Um bloco de madeira flutua em água doce com dois terços do seu volume 
submerso. Em óleo, o bloco flutua com 0,90 do seu volume submerso. Encontre : 
a) a massa específica da madeira. R = 
b) a massa específica do óleo. R = 
3/67,666 mkg3/741 mkg
24)Um dirigível está se deslocando lentamente a baixa altitude, cheio, incluindo a 
tripulação e carga, é de 1280 Kg. O volume do espaço interno preenchido com hélio é 
de 5000m3. A massa especifica do gás hélio é igual a 0,16 Kg/m3 e a massa 
específica do hidrogênio é de 0,081 Kg/m3. Quanta carga a mais o dirigível poderia 
transportar se o hélio fosse substituído por hidrogênio? (Por que não se faz isso?) 
 
25)Cerca de um terço do corpo de uma pessoa flutuando no Mar Morto estará 
acima da linha d’água. Supondo que a massa específica do corpo humano seja de 
0,98 g/cm3 , determine a massa específica da água no mar Morto. (Por que ela é 
tão maior do que 1,0 g/cm3?) R = 
3/5,1 cmglíquido 
FIM 
N O T A S D E A U L A - P R O F º D O U G L A S E S T E V E S C O N T A T O : 
M A T E M A T Y C O 2 0 1 0 @ G M A I L . C O M 50

Outros materiais