Buscar

APOSTILA DE MECANICA DOS SOLOS -2005

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 46 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 46 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 46 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Universidade Estadual de Campinas – C E S E T
	Professor: Hiroshi P. Yoshizane
	
 ST 409 - ST - 624
	
2005
MECÂNICA DOS SOLOS
N O T A S D E A U L A 
MECÂNICA DOS SOLOS
I - INTRODUÇÃO: Este material didático, foi trabalhado com o intuito de através de uma linguagem simples, fazer com que os leitores e usuários entendam melhor o solo, que é uma ciência relativamente recente, e requer mais e mais estudiosos para atingirmos a meta científica do desenvolvimento humano.
Os estudos da mecânica dos solos levam-nos ao conhecimento das características físicas dos solos, através de ensaios ou experiências. Na área das ciências exatas o que predomina é o conhecer o solo quanto a sua estrutura e formação, para solicitá-los e utilizá-los.
I -1- HISTÓRICO:
Período Clássico: 	Vauban -1687
			Coulomb-1773
			Rankine -1856
Neste período, os solos eram analisados com propriedade dos materiais homogêneos e estudos mais no ponto de vista matemático do que físico. Todos os estudos relativo a solos, se baseavam em dados empíricos.
Período Contemporâneo: Karl Terzaghi - 1925
Em decorrência aos insucessos das pesquisas e das análises matemáticas do período clássico, o solo passou a ser analisado experimentalmente e em observações dos fenômenos que ocorriam naturalmente. Nesta época, evidenciava –se o desenvolvimento industrial e conseqüentemente uma expansão muito grande de estradas e transportes, bem como a construção civil fazendo com que os estudos dos solos se evidenciassem também.
II – ORIGEM E FORMAÇÃO DOS SOLOS:
II– 1 – O GLOBO TERRESTRE: Segundo pesquisas, o globo terrestre se constitui de três camadas “geosferas”
II–1-1 – NÚCLEO: Camada central do Globo terrestre com formação relativamente sólida de níquel e ferro. Seu raio aproximadamente é de 3400km.	
II–1-2- MANTO: Camada intermediária com espessura aproximada de 2900 km, constituída por silicatos ferromagnésianos com alta densidade e temperatura.
II–1-3- CROSTA: Camada externa do globo com uma espessura média de 50 km, consideradas em duas partes, isto é:
Crosta inferior: Constituídas por rochas contendo silicatos ferromagnésianos.
Crosta superior: Constituídas por rochas ricas em silício e alumínio.
II – 2 – FORMAÇÃO DO SOLO:
II-2-1-INTRODUÇÃO: O objeto dos estudos da geologia e mecânica dos solos é a camada de pequena espessura e bem variável de região para região, que é resultante da composição dos elementos minerais componentes da rocha, através do intemperismo.
II-2-2-INTEMPERISMO: o intemperismo nas rochas ocorrem devido à ação de dois tipos de agentes, ou sejam:
II-2-2-1-INTEMPERISMO FÍSICO: Causado por alívio de pressões, por congelamento das águas que se depositam nas fissuras das rochas (orvalho e chuva), variação da temperatura ambiente. Na ação do intemperismo físico, não há alteração na composição química e minerológica da rocha, mas sim laterações texturais, ou seja dissociação das partículas das rochas, que conseqüentemente resultam em solo grosso.
II-2-2-2	INTEMPERISMO QUÍMICO: Causados pela ação de agentes que atacam as rochas, alterando assim a constituição mineralógica da rocha matriz. Dos agentes químicos, o mais comum é a água, que através da oxidahidratação e carbonatação, dão origem a solos com características próprias, com partículas pequenas ‘finos.”Os efeitos dos materiais orgânicos tem também um papel muito importante na formação de alguns tipos de solos, os quais são denominados solos orgânicos”.
II-2-3		GRUPO DE SOLOS: De acordo com a origem geológica, os solos são agrupados em:
II-2-3-1	SOLOS RESIDUAIS: São os que desde a sua origem até a data de análise por amostragem permaneceram no mesmo local da formação, e que se subdividem em dois grupos:
II-2-3-1-1 INORGÃNICOS: Proveniente de rochas inorgânicas, cuja característica principal é a predominância de uma textura bem grudada, isto é possuem partículas em um intervalo grande de diâmetro “solo bem grudado”.
II-2-3-1-2 ORGÃNICOS: Solos formados basicamente por restos de organismos, como animais (marga-depósito de calcário) como vegetais (turfas, argilas turfosas).
II-2-3-2 SOLOS TRANSPORTADOS: São aqueles originados em um local e transportados para outro, através de agentes transportadores.
AGENTES TRANSPORTADORES: Vento, Água, Gelo.
VENTO: “Solos eólicos”: Possuem geralmente textura ‘ partículas’ finas e uniformes compreendidas entre areias grossas e siltes.
ÁGUA: “Solos aluvionares”: 	Possuem textura condizente com a velocidade de arrasto e distância de transporte. 
GELO: “Solos glaciais”: Formados por partículas de tamanho diversificado, devido às grandes pressões desenvolvidas e à abrasão (Raspagem) durante o movimento das neves.
II – 2 – 3 – 3		PERFIL ESQUEMÁTICO DA FORMAÇÃO E TRANSPORTE DO SOLO
II-2-4- SOLOS COLUVIONARES: São formados nos pés das elevações, sendo em geral de textura grossa, heterogênea e não coesiva.
II-2-5- SOLOS ALUVIONARES: São resultantes da deposição de partículas em bacias sedimentares, cujo agente principal de transporte é as águas.
III-PARTÍCULAS:
As partículas do solo possuem várias formas.
III-1- ESFEROIDAIS: Arredondadas: Possuem forma arredondada em decorrência arrasto pelas águas (polimento, lixiviação) são típicos de solos transportados, e textura grossa.
III-2- ANGULARES: Possuem formas pontiagudas e característica de material fragmentado. São típicos de solos residuais.
III-3- LAMELARES: Possuem forma de lamelas (Folhelos).Típicos de argilas.
III-4- FIBROSAS: São solos típicos de decomposições orgânicas. Turfa.
III-5- TAMANHO DAS PARTÍCULAS: Um solo normalmente é constituído por partículas de tamanhos diversos. De acordo com a textura, o solo pode possuir partículas de pedregulhos, areias, siltes e argilas.
IV: INDICES FÍSICOS DOS SOLOS:
IV-1- DEFINIÇÃO: É uma relação entre volume e peso e vice versa, das três fases físicas que constituem um solo.
IV-2- FASES FÍSICAS:
IV-2-1-FASE SÓLIDA: Formada pelas partículas, qualquer que seja sua origem.(mineral, orgânica ou mineral-orgânica)
IV-2-2-FASE LÍQUIDA: Formadas geralmente por água contida nos vazios entre partículas componentes da fase sólida.
IV-2-3-FASE GASOSA: Formada por ar ou outros gases que ocupam os vazios entre partículas.
IV-3- ESQUEMATIZAÇÃO DE UMA AMOSTRA DE SOLO:
VOLUMES:
Onde: VT = Volume Total da Amostra
	VG = Volume dos Sólidos (partículas, grãos)
	VH2O = Volume de Água
	VAr = Volume de Ar ( gases )
PESOS:
Onde: 	P = Peso
	PH2O = Peso da água
	PG = Peso dos Sólidos
VT = VG + VAR + VH2O
P = PG + PH2O + PAR (nulo)
IV- 4 – PESOS ESPECÍFICOS APARENTES: ( ( )
 
Onde:
(S = PESO ESPECÍFICO DO SOLO
(G = PESO ESPECÍFICO DAS PARTÍCULAS
(H2O = PESO ESPECÍFICO DA ÁGUA
(nat = PESO ESPECÍFICO NATURAL
Obs: (nat é medido no campo.
IV-5- PESO ESPECÍFICO DE UM SOLO SECO ((G)
Obs: Sem a presença da água.
IV-6- DENSIDADE RELATIVA
Obs: (w = 1g/cm3 a 4oC Destilada
V - RELAÇÕES FUNDAMENTAIS:
V-1- 
 ÍNDICE DE VAZIOS
V-2- 
 
 POROSIDADE
V-3- 
 TEOR DE UMIDADE
 
V-4- 
 GRAU DE SATURAÇÃO
V-5- 
 GRAU DE COMPACTAÇÃO
V-6- 
 
 
 
 GRAU DE AERAÇÃO
V-7 – PARA SOLOS SATURADOS 
 
 ou
 
 
 
V-8- PARA SOLOS SECOS 
 
V-9- POROSIDADE (n)V-10- TEOR DE UMIDADE (w)
 
V-11- RELAÇÃO ENTRE ( e (S
 
		
 
V-12- PESO ESPECÍFICO SUBMERSO (
)
 
 
 
 
V-13- EXERCÍCIOS:
1)Tem se 1900g de solo úmido, o qual será compactado num molde, cujo volume é de 1000 cm3. O solo seco em estufa apresentou um peso de 1705g. Sabendo-se que o peso específico dos grãos (partículas) é de 2,66g/cm3 determine:
o teor de umidade
a porosidade
o grau de saturação
dados: 
	P = 1900g
	PG =1705g
	V = 1000cm3
w =?
PH2O = P - PG 		PH2O = 1900 – 1705		PH2O = 195g
	
 	w = 11,4%
n =?
		
		
		
		
	
como VV = V- VG		VV =1000 – 640,98 		VV = 359,02cm3
	
	
SR =?
 
	
		
		
		
2) De uma amostra genérica de solo, são conhecidos:
O peso específico dos grãos;
O volume total da amostra;
O grau de saturação
A porosidade.
Determinar em função destes dados acima todos os demais índices físicos.
Sabendo que: 
	(Porosidade do solo)
Então podemos deduzir que:	
	Então podemos expressar que: 	
 Porque podemos
expressar que 
 Que é o mesmo que multiplicar 
 por 
então, 
Se 		
 ( grau de saturação) , então podemos expressar que 
 e,
Substituindo 
 é o mesmo que 
 então, concluímos que: 
Se 
 , isto é o peso é o volume multiplicado pelo seu peso específico então, podemos nos expressar que:	
Se 	
 porque o peso específico dos grãos nada mais é do que o volume dos grãos multiplicado pelo seu peso específico, então podemos expressar que:
Se 
, isto é , o peso total nada mais é do que o peso da água somado ao peso dos 
grãos então, 
Com estas equações acima, (determinação de volume e peso), determinamos os outros índices, isto é:
e (índice de vazios)
Sabemos que: 
 e que 
 e que por dedução 
 ou 
,
Podemos nos expressar da seguinte maneira : 
 ou ainda 
então, finalmente concluímos que 
	
w (teor de umidade)
Sabemos que:
 e, que 
 e 
,então podemos expressar da seguinte maneira: 
 então,
( peso específico natural)
Sabemos que 
 e que 
,então podemos expressar da 
seguinte maneira:
( peso específico aparente seco)
Sabemos que 
 e que 	
 então podemos expressar da seguinte maneira:
	
( peso específico saturado)
Sabemos que 
 e que 
 e também que 
então,
Podemos expressar da seguinte maneira:
	
( peso específico submerso)
Sabemos que 
�� EMBED Equation.3 e que 
 então, podemos expressar da seguinte maneira:
2 a) Determinar w,
,
, baseado em dados laboratoriais abaixo:
Peso da cápsula + areia úmida = 258,7g
Peso da cápsula + areia seca = 241,3g
Peso da cápsula = 73,8g
Volume da cápsula = 100 cm3
Resolução:
Considerando:
 = Peso da cápsula ( 
= 258,7 - 73,8g 
=184,9g
 = Peso da cápsula ( 
= 241,3 - 73,8g 
=167,5g
Calculando w :
 
		
		
Conceituais: 		
	
		
					
					se 
 e 
					
	então: 		
Temos:
		
	
	
= Peso específico aparente: 
		
		
	
	
	
 = 10,39%
		
 = 2,03g/cm3
3 ) Conhecidos:
O Grau de Saturação;
O peso específico dos grãos;
O índice de vazios;
O volume dos grãos;
Determinar todos os demais índices físicos, bem como o volume e o peso.
Resolução:
Correlações:
1- Se 
 		
2- Se 
		
3- Se 
		
4- Se 
		
5- Se 
	
6- Se 
		
Determinação de teor de umidade “w”
Se: 
	 ( 
, temos :	
Determinação da porosidade “n”
Se: 
 ( 
, temos : 	
Determinação da 
Se: 
 ( 
, temos:
Determinação da 
Se 	
 ( 
Temos: 
	
Determinação do peso específico aparente seco 
Temos: 
 ( 
 temos :
Determinação do peso específico submerso 
Se : 
 temos:
4-Depois de executado em aterro de areia, para a implantação de uma indústria, foram determinados:
O teor de umidade;
O peso específico do aterro;
O peso específico dos grãos;
O índice de vazios máximo e mínimo
O grau de compactação específico no projeto, é de 0,5 (- 2%; ±). Verificar se o Aterro está dentro da especificação:
Dados: 
	W = 9%
	
	
	
1) Devemos determinar inicialmente o valor do índice de vazios: 
 e 	
Sabemos que 
 	teremos 
Portanto: 
		
		
		
		
		1,7+ 1,7 e = 2,89
e = 
		e = 0,700
Sabemos que:
		
		
		
O grau de compacidade especificado pelo projeto é: 2% abaixo
O aterro não atende a especificação.
5 - Sabendo se que:
w = 24%
Determinar: 
, 
, 
, 
 então 	 
portanto, 
 (I)
	
 (II)
Portanto substituindo (I) em (II), teremos:
		
 Substituindo:
	
	
		
		
		
		
6 ) Uma amostra arenosa, colhida em um frasco com capacidade volumétrica de 594cm3,pesou 1280g. O peso deste frasco coletor é de 350g. Feita a secagem em estufa à 105oC, a amostra passou a pesar 870g. Sabendo-se que o peso específico dos grãos é de 2,67g/cm3 determine:
a) O índice de vazios;
b) A porosidade;
c) O teor de umidade;
d) O grau de saturação;
Resolução comentada:
Dados iniciais:
	(frasco + amostra arenosa)
	(capacidade volumétrica do frasco)
	
	(peso do frasco (tara))
1- Determinação dos pesos:
- Como determinar o peso da amostra:
- Como determinar o peso da água da amostra:
Sabemos que o peso da amostra após secagem em estufa, passou a ser de 870g, isto quer afirmar que os pesos da fração sólida junto com a porção aquosa, era de 930g antes de secar. Então, para se saber qual o peso em água na amostra, basta deduzirmos assim:
	
	
Obs: Até aqui, trabalhamos numericamente para definir e determinar os dados de peso. Agora, passaremos a trabalhar numericamente para definir e determinar os dados volumétricos.
2- Determinação dos dados volumétricos:
Sabemos que a densidade é uma relação entre peso e volume, isto é:
		unidade	
Sendo assim, poderemos determinar qual é o volume da fração ou porção sólida contida na amostra, da seguinte maneira:
-A densidade dos grãos é dada:
-O peso dos grãos foi determinado: 
então, o volume dos grãos 
 é determinável assim:
		
		
Obs: Definidos os valores numéricos relacionados a peso e volume, passaremos tranqüilamente a determinação dos índices físicos questionados, da seguinte maneira e ordem:
3- Determinação do volume de vazios contidos na amostra 
I - 
	 
	então: 	
Portanto agora poderemos determinar qual é o índice de vazios desta amostra arenosa assim:
Sabemos que 		
		então,		
		
Vamos alongar a equação:
Se 	
		e,	
, 	vamos então substitui-lo:
	é o mesmo que:	
	então:		
	II
Quando não temos o valor volumétrico dos grãos 
, podemos determiná-lo da seguinte maneira:
	(da mesma forma utilizada anteriormente no item 2)
Porém, incorremos muitas vezes na necessidade de utilizarmos fórmulas correlacionadas, que para o índice de vazios é:
	III
I = II = III
 = 
 = 
4- Como determinaremos a porosidade (n)
		
		ou	
		
5- Como determinaremos o teor de umidade (w)
		
		
6- Como determinaremos o grau de saturação (
)
		
		
		
V – ESTRUTURA DOS SOLOS
V - 1- INTRODUÇÃO:
Nos estudos da engenhariados solos, representamos os solos como agregados de partículas.
Devido a grande diversidade das dimensões e formas das partículas, podemos resumir o que ocorre entre partículas em termos de ação das forças peso e forças superficiais de correntes da ação elétrica estrutural.
A ação ou sob ação da força peso das partículas, podemos analisar o comportamento dos solos granulados, sem coesão, e sob ação da força superficial elétrica o comportamento dos solos coesivos.
Sabe-se, porém, que existe umas parcelas apreciáveis de solos, que se situam intermediárias a este extremo acima mencionado, isso faz crer que haverá uma consolidação de partículas não coesivas, isto é, grãos de silte ou areia formando uma estrutura contínua, em cujos interstícios, apresentam uma massa argilosa (finos).
	É muito importante saber que nos solos tanto residuais como transportadores, as formas estruturais sempre estão evolutivas, onde a presença da água exerce a função de intemperismo “hidrólise” nas partículas minerais, mantendo os sempre em equilíbrio com o meio ambiente, ou até mesmo, formando uma película de revestimento nas que já se encontram em equilíbrio com o meio ambiente.
	Assim sendo, podemos considerar os solos granulares como estacionarias, pois é notória a desproporção entre o volume de água e o volume das partículas.
	Nos solos finos argilosos, a fração líquida é considerada pelo fato de seu potencial elétrico, que influi diretamente no seu comportamento mecânico.
	Resumimos então que enquanto nos solos com partículas maiores, o efeito da água pode ser considerado independente da natureza mineralógica da fração sólida, nos solos argilosos a água e o mineral formam um conjunto mútuo.
V-2- SOLOS GRANULARES:
V-2-1- MODELO DE ESFERAS:
	
	Inicialmente, partiremos de um arranjo de esferas de dimensões iguais, com superfície de contato entre as esferas representando um sistema granular de solos. Nota-se que à medida que o diâmetro é aumentado, o contato entre as esferas diminui em termos de área de contato, o que representa notavelmente a instabilidade entre elas.
	Esse modelo traz no seu contexto, algumas limitações como:
1 – A variação das dimensões e o formato não esférico das partículas.
2- O atrito entre as partículas, depende muito da natureza mineralógica e o grau de alteração desses minerais.
V-2-2- MODELO MACROMERÍTICO:
Este modelo assimila os solos a líquidos macromeríticos (moleculares) tendo em vista que tanto os solos como os líquidos possuem estrutura aleatória e tem atrito interno. Este estudo relaciona as forças interpartículas, que nos líquidos são predominantemente forças de Van der Waals e que podem ser simuladas nos solos granulares mediante aplicação de forças externas. Sendo assim, um solo granular pode ser considerado um líquido em potencial, uma vez que a sua passagem para o estado líquido pode processar-se mediante uma quantidade de energia fornecida o suficiente para modificar a sua estrutura.
Força Van der Waals: forças intermoleculares existentes em todos os pares de átomos e moléculas que não estão quimicamente ligados.
São responsáveis pelo surgimento de sólidos e líquidos e afetam a tensão superficial e a viscosidade dos líquidos, e são também as responsáveis pelo esfriamento dos gases quando estes se expandem de forma súbita.
Esta força tem três determinantes ou fatores, isto é, o número de elétrons, o tamanho das moléculas e a forma das moléculas.
Johanes Diderik Van der Waals –Químico Holandês(1837 –1923)- Prêmio Nobel de Química 1910.
V- 3 – SOLOS COESIVOS:
São representados geralmente por conjuntos geométricos de partículas coloidais delgadas, de superfícies planas. No primeiro estudo destas superfícies, podemos concluir que há presença de camadas duplas na interface do sólido e líquido. Por se tratar de partículas extremamente pequenas, torna –se muito complexo interpretar as propriedades físicas dessa fração sólida.
Em princípio considerando-se que uma partícula de argila apresenta distribuição de carga elétrica negativa uniforme em toda sua superfície, ocorrerá em meio líquido com teores eletrolíticos, uma camada de cátions que se distribuirá envolto à partícula, neutralizando ás cargas negativas. Há também uma força atrativa pela força de Van der Waals.
Em virtude da existência dessas suas forças, atrativas e repulsivas, chega-se a conclusão de que a distância superficial é a que determina a sua conformação ou sua posição estrutural, isto é, à pequena distância, da superfície as forças atrativas predominam sobre as repulsivas, mas a partir de certa distância, haverá a predominância das forças repulsivas.
Concluímos então que, quando a força predominante for a da atração, o sistema tenderá para a floculação e o caso contrário a dispersão.
Considerando agora que as partículas argilosas lamelares ou em forma de bastões possuem em sua superfície algumas cargas positivas nos extremos, a interligação se apresentará de forma floculada, com partículas dispostas de forma perpendicular entre si.
Quando houver uma predominância das forças atrativas, e de forma uniforme, formará uma estrutura floculada com partículas aproximadamente alinhadas, denominada “floculada salina”, pois quimicamente sabemos que necessitará de uma grande concentração de eletrólitos para que a força de atração predomine. 
Ao caso contrário, a estrutura floculada será do tipo “floculada não salina”.
V - 4- GRUPOS MINERAIS PRESENTES NO SOLO:
Os argilominerais são formados pela combinação de duas unidades básicas.
Uma camada de silicatos, denominada Tetraédrica.
Uma camada de alumínio ou magnésio, denominada Octaédrica. 
Pela combinação dessas camadas, em diferentes proporções, formam-se os vários minerais de argila, que ocorrem pela substituição do oxigênio no ápice livre dos tetraedros de Si 044, pelo OH da camada octaédrica.
V-4-1- PRINCIPAIS GRUPOS: ( Goulart/ Frasão 1976)
V-4-1 A -GRUPO DA CAULINITA: É a combinação de uma camada tetraédrica com uma octaédrica, intercaladas, com espaçamento basal de 7A. Esta superposição forma a caulita, dickita e nacrita, cuja formulação é: Al2O3. 2 e SiO2 .2H2O estável em presença de água.
V-4-1-B -GRUPO DAS ESMECTITAS: É a combinação de uma camada octaédrica justaposta a duas tetraédricas, com espaçamento basal de 14A para as condições normais de hidratação e quando aquecido, esse espaçamento pode ser reduzido a 10A. Dentre os representantes dessa combinação, temos como exemplo a Montemorilonita, cuja formulação química é Al2O3. 4 SiO2.H2O expansiva em presença de água.
V-4-1-C –GRUPO DAS CLORITAS E ILITAS: É basicamente formado por duas camadas tetraédricas e uma octaédrica, semelhante ao grupo das esmectitas, porém melhor compensada sendo assim menos expansiva e não apresenta água intralamelar. As micas de maior interesse são a muscovita K2O. 3 Al2O3.6 Si O2.2 H2O e a biotita K2O.6(Mg,Fe)O.Al O3.6SiO2.2H2O.
V-4-1-D –GRUPO DAS CLORITAS: estrutura semelhante a das micas, porém apresentando no espaço intralamelar um camada de brucita Mg (OH)2, de constituição estrutural semelhante à de uma camada octaédrica. 
VI-CARACTERIZAÇÃO MORFOLÓGICA DOS SOLOS:
São muito importantes e indispensáveis para a identificação, classificação e interpretações dos resultados analíticos dos solos.Para a execução das descrições morfológicas, procede-se a abertura de trincheiras em locais ausentes de barrancos de estrada ou outras exposições de perfis de solos. Estes locais citados se prestam quando se nota a não deterioração pelo tempo.
VI-1- ESCOLHA DO LOCAL PARA AMOSTRAGEM:
Deve –se escolher considerando as variações locais ou regionais. Deve ser feita em solos representativos e que realmente possibilitem uma verdadeira amostragem da classe a que pertencem.
	A seqüência ideal para ser amostrada deve ser em três posições fundamentais como: baixada, encosta e elevação.
	A posição recomendávelpara a amostragem de solos normais, é aquela para a qual o trabalho da erosão não supera o da formação original.
VI-2- IDENTIFICAÇÃO DOS HORIZONTES:
	Horizontes são camadas diferenciadas que se sucedem em profundidade, o qual define o perfil de um solo. É de salientar que nem todos os solos possuem horizonte.
	Cada horizonte se distingue pelas características tais como “cor”, “textura”, “estrutura”, “consistência” e formações especiais como concreções, adensamentos, carbonatos, etc..
	A identificação de um horizonte é feita pela caracterização morfológica de campo, e complementando com análise de laboratório. Assim na descrição de perfis de solos, coletam-se amostras representativas de cada horizonte diferenciável, para a confirmação e caracterização analítica de laboratório. Cada horizonte é identificado por símbolo, identificando o através da característica visual e pelas transformações do material de origem do solo.
VI-3- NOMENCLATURA DOS HORIZONTES:
São os seguintes conforme ( Soil Survey Staff)
Letras maiúsculas: O; A; B; C e R.
O – Horizonte Orgânico.
A e B –Horizontes Minerais
C –Camada do Regolito (fragmentos rochosos)
R –Rocha
Algarismos arábicos:
Referem –se aos Sub-horizontes:
A1, A2, B1, B2.
Para horizontes minerais A e B, os algarismos 3 e 1 , indicam a transição
A3 –B1
Para horizontes D, os algarismos indicam uma seqüência vertical C1, C2, C3...
Algarismos romanos:
Indicam e designam as descontinuidades litológicas, tanto em horizonte como em camadas.
IB2, IIC1, IIIC2 ...
Letras minúsculas:
Indicam características complementares ou associadas às reveladas pelas maiúsculas.
b - Horizontes cobertos, enterrados;
ca - Acumulação de carbonato de cálcio;
cs - Acumulação de sulfato de cálcio;
cn – Acumulações de concreções;
i – Congelamento de solo;
g – Fortes manchas escuras embutidas;
h- Acumulação de húmus por sedimentação anelar;
ir – Acumulação de ferro por sedimentação anelar.;
m – Forte cimentação;
p –Distúrbios conseqüentes da aração;
as- Acumulação de sais mais solúveis que o carbonato de cálcio;
si – Cimentação sílica “ valida somente para horizontes C”;
a – Acumulação de argila por sedimentação anelar;
x – presença de limo “fragipan”
VI - 4 – A COR DO SOLO:
VERMELHA: Associa-se à presença de óxidos de ferro hidratados e devido a isto, este tipo de solo tem boa drenagem interna.
AMARELA: Associa-se à presença de óxidos de ferro hidratados. Quando solos amarelos se encontram associados a vermelhos, estes ocupam posições altas e são bem drenados e as que se expõe em baixadas são mal drenadas.
CINZA: Freqüente nos solos permanentemente saturados.
VI-5 – IMPORTÂNCIA DA PEDOLOGIA NA ENGENHARIA DOS SOLOS E ENGENHARIA RODOVIÁRIA:
Nos países tropicais, a pedologia pode ser utilizada na engenharia rodoviária e engenharia dos solos, em especial na estabilização dos solos, como elemento complementar às técnicas clássicas de análises de solos, influindo na definição do número de ensaios necessários para a caracterização das ocorrências.
Na pedologia, um outro fator considerável é de que solos semelhantes ocorrem em geral em condições análogas de materiais, inclinações e desgastes, oque leva elementos como padrões de drenagem superficiais, características erosivas e cor a refletirem aspectos da natureza e do comportamento do solo.
VI-6- TABELA PARA IDENTIFICAÇÃO DO SOLO NO CAMPO
	
PROPRIEDADES
	TIPOS DE SOLOS
	
	ARENOSOS
	SILTOSOS
	ARGILOSOS
	TURFOSOS
	Granulação
	Grossa (olho nu)
	Fina (tato)
	Muito Fina
	Fibrosa
	Plasticidade
	Nenhuma
	Pouca
	Grande
	Média a Pouca
	Compressibilidade
(carga estática)
	Pouca
	Média
	Grande
	Muito Grande
	Compressibilidade
(carga vibrada)
	Pouca
	Média
	Grande
	Muito Grande
	coesão
	Nenhuma
	Média
	Grande
	Pouca
	Resistência ao Solo Seco
	Nenhuma
	Média
	Grande
	Média a Pouca
	Resumo para caracterização
	Tato
Visual
	Tato
Quando seco se esfarela
Se imergir uma porção seca na água desagrega
	Tato
Se molhar torna-se bem plástico
Se imergir na água, mesmo depois de seca não desagrega.
	Pela cor escura (preta)
Quando Molhado, é bem plástico.
Nota-se ser um material fibroso
cheiro
VII – CLASSIFICAÇÃO GRANULOMÉTRICA DOS SOLOS
VII –1 GRANULOMETRIA:
A medida do tamanho das partículas constituintes de um solo é feita através da análise granulométrica e o resultado se observa através do lançamento ou plotagem numa planilha, resultando assim numa curva de distribuição granulométrica conforme demonstrado a seguir:
A maneira prática de representar o resultado de análise granulométrica é por intermédio de gráfico semilogarítmico. Coloca-se em abscissa os logaritmos dos diâmetros dos grãos e em ordenadas as porcentagens, em peso, dos grãos de diâmetros inferiores aos da abscissa correspondente.
O solo representado pela curva granulométrica – 1 – tem 90% dos seus grãos de diâmetro inferiores a 2mm; 60% de diâmetros inferiores a 0,2mm; 10% de diâmetros inferiores a 0,002mm.
A parte inferior da figura acima foi desenha em escala granulométrica (Escala Granulométrica Internacional) que estabelece os diâmetro de grãos das diferentes frações de solo. 
 Pedregulho ( 
 ); Areia Grossa 
; Areia Fina 
; Silte 
; Argila 
.
A curva – 1 – é 10% de areia grossa, 40% de areia fina; 40% de silte; e 10% de argila.
O solo da curvas – 2 – tem todos seus grãos de diâmetro variando entre valores muito próximo. Ele é composto de 100% de areia fina. É chamado um solo uniforme – uma areia fina uniforme.
Duas curvas granulométricas paralelas, por exemplo as curvas – 1 – e – 1a – e -2 – e – 2a – correspondem a solos em que os diâmetros médios de frações que entrem em mesma porcentagem nos dois, são proporcionais entre si. Os dois solos terão assim distribuições granulométricas semelhantes, mas tamanhos de grãos diferentes. A curva mais deslocada para a esquerda representará o solo mais fino.
O solo da curva – 1 – terá um diâmetro efetivo de 0,002mm e da curva – 1a – 0,02mm. O solo da curva – 2 – tem diâmetro efetivo de 0,11mm e o da curva – 2ª - 0,17mm. 
As outras curvas são especiais cuja forma é dita de “Talbot”. São solos cujas curvas granulométricas de vários solos típicos que ocorrem no território brasileiro. 
As curvas são lançadas no gráfico semilogarítmico onde nas abscissas, tem-se o logaritmo do tamanho das partículas e nas ordenadas, a esquerda, a % retida acumulada, isto é, o porcentual do solo em massa que é maior que um certo diâmetro, à direita o inverso.
A Granulometria do solo, portanto, é a distribuição dos seus grãos pelos diversos tamanhos em porcentagem em relação ao peso do material seco.O estudo granulométrico se faz por peneiramento conforme peneiras, de malhas quadradas onde os materiais grossos vão se retendo até os retidos na peneira 200, com malha de 0,074mm que corresponde a areia fina.(ver quadro peneiras)
Os materiais que passam por esta peneira (silte e argila) só podem ter sua granulometria estudada por sedimentação, que se baseia na lei de Strokes, segundo a qual, a velocidade de sedimentação é proporcional ao diâmetro da partícula. Assim, vão se precipitando primeiro as partículas maiores, e quanto menor a partícula, maior será o tempo necessário para a sua precipitação.
VII – 2- CLASSIFICAÇÕA GRANULOMÉTRICA
VII-2-1- INTERNACIONAL
	Areia Grossa
	Areia Fina
	Silte
	Argila
	Colóides
	2,0
	0,2
	0,02
	0,002
	0,0002
Diâmetro das partículas em mm.
VII-2-2- CLASSIFICAÇÃO “MIT” (BOSTON)
	Pedregulho
	Areia
	Silte
	Argila
	Finos
	
	Grossa
	Média
	Fina
	Grosso
	Médio
	Fino
	Grossa
	Média
	Fina
	
		2,0	0,6	0,2 0,06 0,02 0,006 0,002 0,0006 0,0002
		Diâmetro das partículas em mm.VII –2-3- CLASSIFICAÇÃO A. A S.H. O.
	Pedregulho
	Areia
	Silte
	Argila
			2,0			0,074			0,005
			Diâmetro das partículas em mm.
 VII-2-4-CLASSIFICAÇÃO DA ABNT
	Pedregulho
	Areia
	Silte
	Argila
	
	Grossa
	Média
	Fina
	
			4,8	2,0	0,4	 0,05			0,005
			Diâmetro das partículas em mm.
VII-2-5- LEI DE STOKES
= velocidade da queda
= peso específico do material solo
= peso específico da água
= diâmetro da esfera
= viscosidade da água
18 = constante multiplicativa
= altura
= tempo
Portanto determinaremos 
 por:
VI-3- PENEIRAS DNER
	Designações
	
	TOLERÂNCIA NA ABERTURA
	FIOS
	Usual
	Alternativa
	Abertura
Nominal
	Média
	Para no máximo 5% das aberturas
	Máxima individual
	Diâmetro
	Tolerância
	----
	----
	mm
	%
	%
	%
	mm
	%
	1
	2
	3
	4
	5
	6
	7
	8
	108 mm
	4,24 pol
	108
	±3
	+4
	+5
	6,40
	5
	100 mm
	4 pol
	100
	±3
	+4
	+5
	6,30
	5
	90 mm
	3 ½ pol
	90
	±3
	+4
	+5
	6,08
	5
	76 mm
	3 pol
	76
	±3
	+4
	+5
	5,80
	5
	64 mm
	2 ½ pol
	64
	±3
	+4
	+5
	5,50
	5
	54 mm
	2,12 pol
	54
	±3
	+4
	+5
	5,15
	5
	50 mm
	2 pol
	50
	±3
	+4
	+5
	5,05
	5
	45 mm
	1 ¾ pol
	45
	±3
	+4
	+5
	4,85
	5
	38 mm
	1 ½ pol
	38
	±3
	+4
	+5
	4,59
	5
	32 mm
	1 ¼ pol
	32
	±3
	+4
	+5
	4,23
	5
	27 mm
	1,06 pol
	27
	±3
	+5
	+6
	3,90
	5
	25 mm
	1 pol
	25
	±3
	+5
	+6
	3,80
	5
	22,5 mm
	7/8 pol
	22,5
	±3
	+5
	+6
	3,50
	5
	19 mm
	¾ pol
	19
	±3
	+5
	+6
	3,30
	5
	16 mm
	5/8 pol
	16
	±3
	+5
	+6
	3,00
	5
	13,5 mm
	530 pol
	13,5
	±3
	+5
	+6
	2,75
	5
	12,5 mm
	½ pol
	12,5
	±3
	+5
	+6
	2,67
	5
	11,2 mm
	7/16 pol
	11,2
	±3
	+5
	+6
	2,45
	5
	9,5 mm
	3/8 pol
	9,5
	±3
	+5
	+6
	2,27
	5
	8,0 mm
	3/16 pol
	8,0
	±3
	+5
	+6
	2,07
	5
	6,8 mm
	265 ¼ pol
	6,8
	±3
	+5
	+6
	1,87
	5
	6,3 mm
	¼ pol
	6,3
	±3
	+5
	+6
	1,82
	5
	5,6 mm
	Nº 3 ½
	5,6
	±3
	+5
	+10
	1,68
	5
	4,8 mm
	Nº 4
	4,8
	±3
	+5
	+10
	1,54
	5
	4,0 mm
	 Nº 5
	4,0
	±3
	+5
	+10
	1,37
	5
	3,4 mm
	 Nº 6
	3,4
	±3
	+5
	+10
	1,23
	5
	2,8 mm
	 Nº 7
	2,8
	±3
	+5
	+10
	1,10
	5
	2,4 mm
	 Nº 8
	2,4
	±3
	+5
	+10
	1,00
	5
	2,0 mm
	 Nº 10
	2,0
	±3
	+5
	+10
	0,900
	5
	1,7 mm
	Nº 12
	1,7
	±3
	+5
	+10
	0,810
	5
	1,4 mm
	Nº 14
	1,4
	±3
	+5
	+10
	0,725
	5
	1,2 mm
	Nº 16
	1,2
	±3
	+5
	+10
	0,650
	5
	1,0 mm
	Nº 18
	1,0
	±5
	+7,5
	+15
	0,580
	5
	0,840 mm
	Nº 20
	0,840
	±5
	+7,5
	+15
	0,510
	5
	0,700 mm
	Nº 25
	0,700
	±5
	+7,5
	+15
	0,450
	5
	0,600 mm
	Nº 30
	0,600
	±5
	+7,5
	+15
	0,390
	10
	0,500 mm
	Nº 35
	0,500
	±5
	+7,5
	+15
	0,340
	10
	0,420 mm
	Nº 40
	0,420
	±5
	+12,5
	+25
	0,290
	10
	0,350 mm
	Nº 45
	0,350
	±5
	+12,5
	+25
	0,247
	10
	0,300 mm
	Nº 50
	0,300
	±5
	+12,5
	+25
	0,215
	10
	0,250 mm
	Nº 60
	0,250
	±5
	+12,5
	+25
	0,180
	10
	0,210 mm
	Nº 70
	0,210
	±5
	+12,5
	+25
	0,152
	10
	0,175 mm
	Nº 80
	0,175
	±6
	+20
	+40
	0,131
	10
	0,150 mm
	Nº 100
	0,150
	±6
	+20
	+40
	0,110
	10
	0,125 mm
	Nº 120
	0,125
	±6
	+20
	+40
	0,091
	10
	0,105 mm
	Nº 140
	0,105
	±6
	+20
	+40
	0,076
	15
	0,088 mm
	Nº 170
	0,088
	±6
	+20
	+40
	0,064
	15
	0,075 mm
	Nº 200
	0,075
	±7
	+30
	+60
	0,053
	15
	0,063 mm
	Nº 230
	0,063
	±7
	+30
	+60
	0,044
	15
	0,053 mm
	Nº 270
	0,053
	±7
	+30
	+60
	0,037
	15
	0,044 mm
	Nº 325
	0,044
	±7
	+30
	+60
	0,030
	15
	0,037 mm
	Nº 400
	0,037
	±7
	+30
	+60
	0,025
	15
VII-4- DIÂMETRO EFETIVO “
”
Corresponde como 
, a quantidade de 10% em peso total, de todas as partículas inferiores a ele isto é:
�
VII-5- COEFICIENTE DE UNIFORMIDADE “
”
É a relação dos diâmetros correspondentes a 60% e 10%, tomados na curva de distribuição granulométrica.
Um solo se comporta granulométricamente como uniforme quando a relação 
, mediamente uniforme quando 
 e não uniforme quando
.
VII-6- COEFICIENTE DE CURVATURA “CC”
CC =
Quanto mais inclinada for a curva, mais uniforme será o solo.
VII –7-EXERCÍCIOS:
OBS: Para melhor entendimento, o aluno deverá sempre acompanhar e lançar os dados no gráfico da curva de distribuição granulométrica.
VII-7-1- Baseados nos resultados de um ensaio de laboratório “classificação granulométrica conjunta”, pede-se:
	No da Peneira
	10
	40
	60
	140
	200
	__
	__
	__
	Abertura (mm)
	2,000
	0,420
	0,250
	0,105
	0,074
	0,050
	0,005
	0,0001
	% que passa
	100
	96
	89
	76
	66
	60
	18
	6
Traçar a curva granulométrica;
Determinar o diâmetro efetivo;
Determinar o coeficiente de uniformidade;
Determinar o coeficiente de curvatura;
Classificar o solo.
VII-7-2- Num peneiramento, de dois tipos de solo, o resultado obtido quanto aos percentuais passantes foram:
	No da Peneira
	4
	10
	30
	60
	100
	200
	__
	__
	Abertura (mm)
	4,76
	2,0
	0,595
	0,250
	0,149
	0,074
	finos
	finos
	% que passa-Solo A
	72
	69
	49
	32
	21
	5
	3
	2
	% que passa-Solo B
	100
	96
	78
	42
	14
	9
	6
	0
Pede-se:
Traçar a curva granulométrica:
CC
Classificar o solo granulométricamente
Citar uma aplicação para cada tipo de solo
VIII –PLASTICIDADE E ESTADOS DE CONSISTÊNCIA DOS SOLOS
VIII-1- PLASTICIDADE: Uma classificação de um solo baseada somente na granulometria, não retrata fielmente as suas características de trabalhabilidade ou de uma maneira mais simples, sua plasticidade pelo maior ou menor porcentagem e tipo de argila presente no solo.
Como definição, Plasticidade em mecânica do solo, é entendida como sendo a propriedade que o solo apresenta, de suportar deformações rápidas, sem variações volumétrica notáveis, muitas menos deformações por fissuração ou desmoronamento.
VIII-2- LIMITES DA CONSISTÊNCIA: É o fator quantidade de água presente no solo, importante nas obras de terraplenagem, estradas e fundações do tipo sapata corridos.
	É através deste índice que se determina qual o tipo de solo mais adequado.
VIII-3- LIMITES: São baseados no conceito de que um solo é constituído por partículas de pequeno tamanho ou diâmetro, os quais se concentram e se encontram em qualquer dos estados seguintes:
Sólidos: Inerte, sem variação volumétrica.
Semi – Sólidos: Forma sólida e não se retrai ao secamento.
Plástico: Moldável
Líquido: Forma de Lama ou de aparência fluida.
A Passagem de um estado para o outro, é gradual, sendo que os teores de um estado para o outro, são denominados “Limites de Consistência dos Solos”.
Então:
O Limite de Consistência do Estado Plástico para o estado Líquido, é denominado de Limite de Liquidez do Solo “L.L.”
O Limite de Consistência do Estado Semi-Sólido para o estado Plástico, é denominado de Limite de Plasticidade “L.P.”.
O Limite de Consistência do Estado Semi-Sólido para o Sólido, é denominado de Limite de Contração “L.C.”.
Esquema demonstrativo: � 
VIII-4- INDICES DE CONSISTÊNCIA DOS SOLOS: “IC”
VIII-4-1- INDICE DE PLASTICIDADE: “IP”
Corresponde ao intervalo entre LL e LP
O solo se encontra no estado Plástico.
VIII-4-2- INDICE DE CONTRAÇÃO: “IC”
É a diferença entre os Limites de Plasticidade e Limite de Contração.
IC = LP – LC
VIII-4-3- INDICE DE LIQUIDEZ “IL”
IL = 
 onde w = umidade natural
VIII – 4- 4 – FÓRMULA FINAL PARA DETERMINAÇÃO DE “IC”
IC = 
Sendo w as umidades naturais da argila, que mede a consistência de uma argila em função da umidade.
Determinações:
Quando	IC < 0 – muito mole
Quando	0 < IC < 0,5– mole
Quando	0,5 < IC < 0,75 – médias
Quando	0,5 < IC < 0,75 – médias.
Quando	IC >1 – duras
VIII – 5 – EXERCÍCIOS:
VIII-5-1- Um solo tem:
LL = 57%
LP = 28%
WNAT = 32%
Classifique este solo quanto a sua consistência
VII-5-2- O Solo escolhido para compor um aterro, apresentou:
LL = 60%
LP = 27%
WNAT = 32%
Determine:
Qual o seu índice de consistência;
Qual o seu índice de plasticidade;
Classifique este solo quanto a sua consistência.
VIII-5-3- Com as seguintes informações para os solos A; B; C e D.
A = 	w = 16%
		LL = 32%
		LP = 12%
B = 	w = 7%
		LL = 4%
		LP = 6%
C = 	w = 10%
		LL = 12%
		LP = 7,5%
D= 	w = 20%
		LL = 20%
		LP = 15%
Classifique o solo quanto a sua consistência: 	
IX-CLASSIFICAÇÃO UNIFICADA DOS SOLOS
IX –1 – INTRODUÇÃO: Baseia-se na identificação dos solos, de acordo com a sua textura e plasticidade, e no grupamento dos solos, de acordo com seu comportamento sob a ação das cargas e das intemperizações, e para essa classificação, devem ser basicamente considerados:
Percentual de cascalho
Percentual de areias
Percentual de finos
Forma da curva granulométrica
Características de compressibilidade
Características de plasticidade
IX –2 –NOMENCLATURA TÉCNICA DOS COMPONENTES DO SOLO:
Pedras 			--	Cobbles
Cascalhos ou pedregulhos	--	Gravel
Areia 	 			--	Sand
Finos 	--	silte 		--	Silt
Argila		--	Clay
Obs: A distinção entre o silte e a argila se faz pela:
Silte – Plasticidade Baixa
Argila –Plasticidade Alta
IX – 3 – DENOMINAÇÃO E SIMBOLOS ISOLADOS:
G = Gravel – pedregulho (cascalho)
S = Sand - areia
C = Clay –argila
W = Well Graded – bem graduado
P = Poor Graded – mal graduado
F = Fines –fino (partículas com diâmetro inferior a 0,074(P200))
M = MO –Limo (areia fina)
O = Organic –matéria orgânica
PT = Peat –turfa
L = Low Liquid Limit –baixo limite de liquidez
H = High Liquid Limit –alto limite de liquidez
IX-4- DENOMINAÇOES E SIMBOLOS DOS GRUPOS:
GW = Denominação para cascalho (pedregulho)
	Bem graduado cascalho (pedregulho) e areia sem muito finos;
GP = Para cascalho (pedregulhos), cascalho e areia sem muito finos, mal graduados;
GM = cascalho (pedregulhos) siltoso com areia;
GC = cascalho com argila e areia;
SW = areia bem graduada, com cascalho e sem muito finos;
SP = areia mal graduada, com cascalho e sem muito finos;
SC = areia argilosa, mistura de areia e argila;
ML = material siltoso e areias muito finas, pó de pedra, areia fina, siltosa ou argilosas, ou siltes argilosos com baixa plasticidade;
CL = Argila magra, argila de plasticidade baixa ou média, argila com cascalhoou com silte ou com areia;
OL = Siltes orgânicos, com ou sem argila, porém com plasticidade baixa;
CH = Argilas de plasticidade média alta;
MH = Siltes, limos, areias finas micáceas ou diatomáces;
OH = Argilas orgânicas de plasticidade média ou alta, siltes orgânicos;
PT = Turfa e outros solos altamente orgânicos;
IX – 5- SIMBOLOGIA (LEGENDA), CARACTERISTICAS FÍSICAS E MECÂNICAS E APLICAÇÕES:
IX-5-1 – “GW”
SIMBOLOGIA:
COMPACTAÇÃO: Boa (com equipamentos adequados)
COR: vermelho
COMPRESSIBILIDADE: mínima
PERMEABILIDADE: K> 10-2cm /s
EXPANSIBILIDADE: quase nenhuma
PESO ESPECÍFICO APARENTE SECO MÁX: 2000 a 2240kg/m3
DRENAGEM: excelente
C.B.R.: 40 a 80 ( California Bearing Ratio)
PERCOLAÇÃO: Controláveis por muros interceptantes
MÓDULO DE REAÇÃO K: K + 6,6 a 6,3 kg/cm2
Obs: Este módulo de reação do subleito “K”, é o coeficiente de recalque ou a pressão capaz de produzir deformação unitária no ensaio com placa de carga tendo 0,80 metros de diâmetro, método este descrito pela ABCP, no dimensionamento de pavimentos rígidos.
RESISTÊNCIA AO CISALHAMENTO: Alta quando bem compactado
GRANULOMETRIA: Solos bem graduados, com cascalho, areias e com menos de 5% passando pela peneira 200.
APLICAÇÕES “USOS”: “Aterros, fundações, estradas, aeroportos”.
Barragens: Muito estável e ótima para compor as capas permeáveis
Fundações: Boa capacidade de suporte
Estrada: 	Sub Leito: Excelente quando não sujeito a congelamento.
		Sub Base: Idem
		Base: Bom quando não sujeito a congelamento.
-EQUIPAMENTOS PARA COMPACTAÇÃO: Rolo pneumático, rolo liso e rolo vibrado.
IX-5-2- “GP”
SIMBOLOGIA:
COMPACTAÇÃO: Boa (com equipamentos adequados)
COR: vermelho
COMPRESSIBILIDADE: mínima
PERMEABILIDADE: K> 10-2cm /s
EXPANSIBILIDADE: mínima
PESO ESPECÍFICO APARENTE SECO MÁX: 1760 a 2240kg/m3
DRENAGEM: excelente
C.B.R.: 30 a 60 
PERCOLAÇÃO: Controláveis por muros interceptantes
MÓDULO DE REAÇÃO K: K + 6,6 a 6,3 kg/cm2
GRANULOMETRIA: Solos mal graduados, contendo cascalho e areia, sem muitos finos( menos de 5% passando na peneira 200).Típicos cascalhos uniformes, areias uniformes ou misturas desuniformes de material muito grosso e areia fina faltando, portanto as partículas intermediárias.
RESISTÊNCIA AO CISALHAMENTO: Alta quando bem compactado
APLICAÇÕES “USOS”: “Aterros, fundações, estradas, aeroportos”.
Aterros: Razoavelmente estáveis para compor as capas permeáveis de barragens
Fundações: Boa capacidade de suporte
Estrada: 	Sub Leito: Bom a excelente.
		Sub Base: Bom
		Base: Regular a Bom quando não sujeito a congelamento.
-EQUIPAMENTOS PARA COMPACTAÇÃO: Trator, rolo pneumático, rolo liso e rolo vibrado.
IX-5-3- “GM”
SIMBOLOGIA:
COMPACTAÇÃO: Boa com controle apurado.
COR: amarelo
COMPRESSIBILIDADE: média (dependendo da fração finos)
PERMEABILIDADE: K= 10-3 a 10-6cm /s
EXPANSIBILIDADE: pouca
PESO ESPECÍFICO APARENTE SECO MÁX: 1920 a 2350kg/m3
DRENAGEM: regulares a más
C.B.R: 40 a 60
PERCOLAÇÃO: Trincheiras de pé de talude
MÓDULO DE REAÇÃO: 5,6 a 6,3
GRANULOMETRIA: compreendem cascalhos e areias, com maior quantidade de finos, isto é mais de 12% passando pela peneira 200.
APLICAÇÕES “USOS”: “Aterros, fundações, estradas, aeroportos”.
Barragens: Estabilidade razoável, pouco indicada para capas, pode ser aplicada em cut-off.
Fundações: Boa capacidade de suporte
Estrada: 	Sub Leito: Bom a excelente.
		Sub Base: Bom
		Base: Regular a Bom
EQUIPAMENTOS PARA COMPACTAÇÃO: Rolo pneumático, pé de carneiro vibrado, exige controle apurado de umidade.
	
	PROPRIEDADES
	G
R
U
P
O
	Permeabilidade quando compactado
	Resistência ao Cisalhamento quando compactado e saturado
	Compressibilidade quando compactado e saturado
	Trabalhabilidade como material de construção
	Qualidade como
fundação
	GW
	Permeável
	Excelente
	Quase nenhuma
	Excelente
	Excelente
	GP
	Muito permeável
	Bom
	Quase nenhuma
	Bom
	Excelente
	GM
	Semipermeável a permeável
	Bom
	Quase nenhuma
	Bom
	Excelente
	GC
	Impermeável
	Bom a regular
	Muito baixa
	Bom
	Excelente
	SW
	Permeável
	Excelente
	Quase nenhuma
	Excelente
	Excelente
	SP
	Permeável
	Bom
	Muito baixa
	Bom
	Boa
	SM
	Semipermeável a impermeável
	Bom
	Baixa
	Bom
	Boa
	SC
	Impermeável
	Bom a regular
	Baixa
	Bom
	Excelente
	ML
	Semipermeável a impermeável
	Bom a regular
	Média
	Regular
	Regular a má
	CL
	Impermeável
	Regular
	Media
	Regular
	Regular a má
	OL
	Semipermeável a impermeável
	Regular
	Média
	Regular
	Má a muito má
	MH
	Semipermeável a impermeável
	Pobre
	Alta
	Pobre
	Má a muito má
	CH
	Impermeável
	Pobre
	Alta
	Pobre
	Má a muito má
	OH
	Impermeável
	Pobre
	Alta
	Pobre
	Muito má
	PT
	Impermeável
	--------
	--------
	--------
	Extremamente má
X – CLASSIFICAÇÃO HRB ( HIHGWAY RESEARCH BOARD)
X-1 – INTRODUÇÃO:
Esta classificação, leva em contaa granulometria, o limite de liquidez e o índice de plasticidade do solo. É uma classificação utilizada especificamente na engenharia rodoviária.
Tem como novidade em relação à classificação unificada, o índice de grupo “IG’, que é um número inteiro variando de zero a 20, que melhora sensivelmente a ordenação dos solos, dentro de um mesmo grupo, na ordem inversa da sua qualidade como material”.
São classificados em “7” grupos, de acordo com a granulometria e o intervalo de variação dos limites de consistência e do índice de grupo.
X-2 –SOLOS GRANULARES:
	Tomando-se como parâmetro básico que se considera como tais quando menos de 35% do material em peso possuem diâmetro inferior a 0,074 mm “P-200”, pode-se classificar em três grupos “A-1, A-2, A-3”.
X-2 – GRUPO A – 1: São compostos de misturas bem granuladas de fragmentos de rochas, de pedregulhos e de areias, com ou sem material aglutinante (ligante), pouco plástico.
	Quando utilizado como material de revestimento (capa ou cobertura) de solos siltosos e argilosos, comporta-se muito bem.
	O grupo A-1 se subdivide em dois subgrupos isto é:
SUBGRUPO A-1 a: Solos formados por fragmentos de rocha (pedra) ou pedregulho, com ou sem material aglutinante.
SUBGRUPO A-1 b: Solos formados por areia grossa com ou sem material aglutinante.
RESUMO: Grupo a-1 	- subgrupo A-1 a (pedra)
				- subgrupo A-1 b (areia grossa)
X-2-2 – GRUPO A-2: Compreendem de uma grande variedade de material granular, com graduação regular e pouco material aglutinante. São solos com características satisfatórias para construção de aterros ou para serem utilizados como revestimento de solos plásticos ou siltosos. Quando bem compactados são muito estáveis.
X-2-3 –GRUPO A-3: Compreendem às areias finas sem material siltoso ou argiloso e ás areias finas com pouco silte plástico, e também as areias provenientes dos rios, porém com pouca quantidade de pedregulho e areia grossa. São solos que permitem boa drenagem e quando confinados, constituem subbases de qualquer tipo de pavimento.
IX-3- SOLOS FINOS (SILTE ARGILOSO)
	Tomando-se como parâmetro básico que se considera como solos finos quando mais de 35% do material em peso possuem diâmetro inferior a 0,074 mm P-200, pode-se classificar em grupos A-4, A-5, A-6 e A-7.
X-3-1 – GRUPO A-4: São aqueles formados de solos principalmente siltosos, pouco ou nada plásticos e de misturas de areia e silte, sempre quando o percentual de material granular “não ultrapasse” de “64%”.
	São pouco estáveis e impróprias ao uso como subleito de pavimentos rígidos.
 
X-3-2 – GRUPO A-5: São semelhantes às do grupo A-4, porém contendo materiais micáceos e diatomáceos, que possuem elevado limite de liquidez e elásticos.
X-3-3 – GRUPO A-6:O solos típico deste grupo, é a argila, incluindo –se também as misturas silto arenosas, que deixam menos de 64% na peneira P-200. Os Solos deste grupo, de modo geral apresentam variações sensíveis de volume entre estados seco e úmido.
X-3-4 – GRUPO A-7: São semelhantes às do grupo “A-G”, porém mais elásticos e elevados limites de liquidez.
Obs: No índice de grupo “IG”, variando de 0 a 20, define-se como solos ótimos em termos de aplicabilidade em estradas, quando (“IG = 0) e péssimos quando (“ IG = 20).
A determinação do “IG”, baseia-se nos limites de Atterberg do Solo, e no percentual do material fino com diâmetro inferior a 0,074 mm ( P-200).
X-4-DETERMINAÇÃO E DEFINIÇÃO DO “IG”:
Obtêm-se os valores do “IG”, aplicando –se a fórmula:
 onde:
“a” = Percentual do material solo com diâmetro inferior a 0,074 mm ( P-200), subtraindo de 35% Se o resultado desta subtração for superior ou maior que 75%, adota-se P = 75%. Se o resultado desta subtração for menor que 35%, adota-se 35.
Se:
a = P-35 então quando
P> 75%		P = 75
P< 35% 		P = 35
Supondo 60% passando na P200
a = P- 35 
a = 60% - 35% 	a =25
Supondo 80% passando na P200
a = P- 35 
a = 80% - 35% 	a =35 ( errado)
como P = 80% e P > 75%, devemos adotar para P = 75%, portanto 
a = 75 – 35 
a = 40
Supondo 20% passando na P200
a = 20 –35 a = -15% (errado)
como P = 20% e < 35%, devemos adotar para P = 35%, portanto,
a = 35 – 35 
a = 0
Portanto, o intervalo de variação é de 0 a 40%.
 
“b” = Percentual do material solo com diâmetro inferior a 0,074 mm (P200), subtraindo de 15. Se o resultado desta subtração for superior ou maior que 55%, adota-se P = 55%. Se o resultado desta subtração for menor que 15%, adota-se 35.
Se:
b = P-15 então quando
P> 55%		P = 55
P< 15% 		P = 15
Supondo 60% passando na P200
b = P- 15 
b = 60% - 15% 	b =45(errado)
como P > 55% 
b = 55 – 15 
b = 40
Supondo 20% passando na P200
b = 20 –15 a = 5% 
Supondo 12% passando na P200
b = 12 –15 a = -3% (errado)
	
como 12% < 15% adotamos 15
então: b = 15 – 15 
b = 0
Portanto, o intervalo de variação é de 0 a 40%
“c”: Valor de limite de liquidez subtraído 40, quando LL >60, adotamos 60,
quando LL< 40, adotamos 40 
c = LL – 40
intervalo de variação 0 a 20%
“d”: valor de índice de plasticidade subtraído de 10, quando IP> 30, adotamos 30, quando IP < 10, adotamos 10.
d = IP – 10
Intervalo de variação 0 a 20 %
Ex: Um solo apresentou:
Grupo a-6 
P200 = 44% retido
LL = 37%
LP = 16%
IG = a-6 (IG:?)
REFERÊNCIAS BIBLIOGRÁFICAS :
I - CAPUTO,Homero Pinto – MECÂNICA DOS SOLOS E SUAS APLICAÇÕES V1-V2-V3
Livros Técnicos e Científicos Editora Ltda. 6ª Edição.
II- VARGAS, Milton – INTRODUÇÃO À MECÂNICA DOS SOLOS
Editora McGraw – Hill do Brasil, Ltda. 
III-DA CRUZ, Paulo Teixeira e SAES, José Luiz - MECÂNICA DOS SOLOS 
Editora Grêmio Politécnico.
Fase Gasosa
(Ar)
Fase Líquida
(Água)
Amostra de
Solo
Partícula
(fase sólida)
VG
VAr
VG
VH2O
VG
VH2O
VAr
VG
VV
VT
Gasosa
Sólida
Líquida
Sólida
Gasosa
Líquida
Sólida
PG
PH2O
P
GASOSO
LÍQUIDO
SÓLIDOS
Mar
Rocha Sã
Argila, Silte e Areia fina
Areia fina
Areia média e fina
Pedregulhos e Areia fina
Solo residual (Rochas decompostas)
� EMBED CorelPhotoPaint.Image.10 ���
% que passa
def
10
20
40
30
50
60
70
80
90
100
d10
d60
% que passa
Ø partícula
(mm)
d30
10
20
40
30
50
60
70
80
90
100
d10
d60
Ø partícula
(mm)
ESTADO LÍQUIDO (LAMA)
�
Não se deforma na secagem.
ESTADO SÓLIDO
Possui aparência sólida, mas ao secar, deforma-se.
ESTADO SEMIPLÁSTICO
ESTADO PLÁSTICO (MOLDÁVEL)
�PAGE �
�PAGE �24�
_1113590211.unknown
_1113607240.unknown
_1114342315.unknown
_1114428052.unknown
_1114430648.unknown
_1114513176.unknown
_1114514903.unknown
_1114983536.unknown
_1191133538.unknown
_1191133749.unknown
_1191136908.unknown
_1191140562.unknown
_1191133556.unknown
_1115140244.bin
_1114983611.unknown
_1114983327.unknown
_1114983444.unknown
_1114519481.unknown
_1114981215.bin
_1114982833.unknown
_1114857515.unknown
_1114519250.unknown
_1114513756.unknown
_1114513942.unknown
_1114514888.unknown
_1114513795.unknown
_1114513507.unknown
_1114513712.unknown
_1114513408.unknown
_1114513442.unknown
_1114512721.unknown
_1114512883.unknown
_1114512949.unknown
_1114512965.unknown
_1114512921.unknown
_1114512801.unknown
_1114512813.unknown
_1114512778.unknown
_1114430881.unknown
_1114512587.unknown
_1114512712.unknown
_1114512577.unknown_1114430714.unknown
_1114430863.unknown
_1114430674.unknown
_1114429356.unknown
_1114430143.unknown
_1114430507.unknown
_1114430576.unknown
_1114430619.unknown
_1114430547.unknown
_1114430418.unknown
_1114430468.unknown
_1114430372.unknown
_1114430274.unknown
_1114429688.unknown
_1114429851.unknown
_1114429997.unknown
_1114430124.unknown
_1114429837.unknown
_1114429511.unknown
_1114429620.unknown
_1114429390.unknown
_1114428756.unknown
_1114429126.unknown
_1114429178.unknown
_1114429292.unknown
_1114428837.unknown
_1114429014.unknown
_1114429065.unknown
_1114428808.unknown
_1114428427.unknown
_1114428640.unknown
_1114428699.unknown
_1114428552.unknown
_1114428128.unknown
_1114428336.unknown
_1114428091.unknown
_1114426495.unknown
_1114427264.unknown
_1114427672.unknown
_1114427760.unknown
_1114428003.unknown
_1114427717.unknown
_1114427504.unknown
_1114427564.unknown
_1114427363.unknown
_1114426873.unknown
_1114427082.unknown
_1114427157.unknown
_1114427201.unknown
_1114427230.unknown
_1114427123.unknown
_1114427005.unknown
_1114427035.unknown
_1114426941.unknown
_1114426607.unknown
_1114426842.unknown
_1114426565.unknown
_1114342848.unknown
_1114343292.unknown
_1114426389.unknown
_1114426440.unknown
_1114426291.unknown
_1114343117.unknown
_1114343176.unknown
_1114343271.unknown
_1114342943.unknown
_1114343107.unknown
_1114342610.unknown
_1114342760.unknown
_1114342812.unknown
_1114342657.unknown
_1114342430.unknown
_1114342473.unknown
_1114342403.unknown
_1113923554.unknown
_1114341681.unknown
_1114341921.unknown
_1114342179.unknown
_1114342270.unknown
_1114342114.unknown
_1114341764.unknown
_1114341850.unknown
_1114341752.unknown
_1114341142.unknown
_1114341562.unknown
_1114341680.unknown
_1114341494.unknown
_1114340960.unknown
_1114340994.unknown
_1114340878.unknown
_1113608032.unknown
_1113608335.unknown
_1113653550.unknown
_1113653917.unknown
_1113653974.unknown
_1113654109.unknown
_1113653873.unknown
_1113653337.unknown
_1113653389.unknown
_1113653319.unknown
_1113608259.unknown
_1113608271.unknown
_1113608298.unknown
_1113608039.unknown
_1113607578.unknown
_1113607778.unknown
_1113607823.unknown
_1113607938.unknown
_1113607632.unknown
_1113607344.unknown
_1113607531.unknown
_1113607295.unknown
_1113594384.unknown
_1113596570.unknown
_1113597010.unknown
_1113606893.unknown
_1113607098.unknown
_1113607148.unknown
_1113606995.unknown
_1113606732.unknown
_1113606789.unknown
_1113597295.unknown
_1113596820.unknown
_1113596903.unknown
_1113596970.unknown
_1113596846.unknown
_1113596687.unknown
_1113596727.unknown
_1113596644.unknown
_1113594889.unknown
_1113595139.unknown
_1113596302.unknown
_1113596462.unknown
_1113596521.unknown
_1113596355.unknown
_1113596258.unknown
_1113595040.unknown
_1113595138.unknown
_1113594939.unknown
_1113594633.unknown
_1113594728.unknown
_1113594851.unknown
_1113594698.unknown
_1113594455.unknown
_1113594618.unknown
_1113594420.unknown
_1113591630.unknown
_1113592289.unknown
_1113592553.unknown
_1113594205.unknown
_1113594360.unknown
_1113592943.unknown
_1113592475.unknown
_1113592535.unknown
_1113592380.unknown
_1113591951.unknown
_1113592216.unknown
_1113592256.unknown
_1113592077.unknown
_1113591804.unknown
_1113591904.unknown
_1113591702.unknown
_1113590776.unknown
_1113591286.unknown
_1113591551.unknown
_1113591591.unknown
_1113591340.unknown
_1113591087.unknown
_1113591149.unknown
_1113590924.unknown
_1113590515.unknown
_1113590671.unknown
_1113590731.unknown
_1113590636.unknown
_1113590348.unknown
_1113590435.unknown
_1113590305.unknown
_1113583284.unknown
_1113584685.unknown
_1113585770.unknown
_1113589944.unknown
_1113590103.unknown
_1113590192.unknown
_1113590021.unknown
_1113589808.unknown
_1113589895.unknown
_1113589754.unknown
_1113585172.unknown
_1113585381.unknown
_1113585439.unknown
_1113585234.unknown
_1113584811.unknown
_1113584931.unknown
_1113585086.unknown
_1113584780.unknown
_1113584131.unknown
_1113584442.unknown
_1113584532.unknown
_1113584626.unknown
_1113584507.unknown
_1113584262.unknown
_1113584333.unknown
_1113584197.unknown
_1113583790.unknown
_1113583879.unknown
_1113583917.unknown
_1113583822.unknown
_1113583618.unknown
_1113583691.unknown
_1113583327.unknown
_1113510776.unknown
_1113582656.unknown
_1113582920.unknown
_1113583005.unknown
_1113583191.unknown
_1113582967.unknown
_1113582801.unknown
_1113582857.unknown
_1113582753.unknown
_1113511099.unknown
_1113582277.unknown
_1113582593.unknown
_1113511116.unknown
_1113510881.unknown
_1113510985.unknown
_1113510850.unknown
_1113508845.unknown
_1113510406.unknown
_1113510436.unknown
_1113510540.unknown
_1113510422.unknown
_1113509136.unknown
_1113510360.unknown
_1113510382.unknown
_1113509674.unknown
_1113510071.unknown
_1113509410.unknown
_1113508960.unknown
_1113507683.unknown
_1113508425.unknown
_1113508754.unknown
_1113508236.unknown
_1113506982.unknown
_1113507119.unknown
_1113506928.unknown
_1113506827.unknown

Outros materiais