Prévia do material em texto
Exercício 10 01. Uma fábrica de automóveis anuncia que seus carros consomem, em média, 11 litros por 100 Km, com desvio-padrão de 0,8 litro. Uma revista decide testar essa afirmação e analisa 16 carros dessa marca, obtendo 11,5 litros por 100 Km, como consumo médio. Admitindo-se que o consumo tenha distribuição normal, ao nível de significância de 5%, utilize o TESTE DE HIPÓTESES, para o cálculo do Valor da Estatística de Teste (t) e o que a revista concluirá sobre o anúncio da fábrica? Dados: Obs1: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra). Obs2: Adote um nível de significância de 5%. O valor crítico para 5% é 1,96 desvios (Z tabelado) R: O Valor da Estatística de Teste (t) é 2,5 e, como 2,5 é maior que 1,96, Ho é rejeitada e a revista pode concluir que o anúncio não é verdadeiro. 02. Uma fábrica de motocicletas anuncia que seus carros consomem, em média, 10 litros por 400 Km, com desvio-padrão de 0,8 litro. Uma revista decide testar essa afirmação e analisa 25 motocicletas dessa marca, obtendo 10,5 litros por 400 Km, como consumo médio. Admitindo-se que o consumo tenha distribuição normal, ao nível de significância de 5%, utilize o TESTE DE HIPÓTESES, para o cálculo do Valor da Estatística de Teste (t) e o que a revista concluirá sobre o anúncio da fábrica? Dados: Obs1: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra). Obs2: Adote um nível de significância de 5%. O valor crítico para 5% é 1,96 desvios (Z tabelado) R: O Valor da Estatística de Teste (t) é 3,1 e, como 3,1 é maior que 1,96, Ho é rejeitada e a revista pode concluir que o anúncio não é verdadeiro. 03. Uma fábrica de automóveis anuncia que seus carros consomem, em média, 11 litros por 100 Km, com desvio-padrão de 1 litro. Uma revista decide testar essa afirmação e analisa 25 carros dessa marca, obtendo 11,5 litros por 100 Km, como consumo médio. Admitindo-se que o consumo tenha distribuição normal, ao nível de significância de 5%, utilize o TESTE DE HIPÓTESES, para o cálculo do Valor da Estatística de Teste (t) e o que a revista concluirá sobre o anúncio da fábrica? Dados: Obs1: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) Obs2: Adote um nível de significância de 5%. O valor crítico para 5% é 1,96 desvios (Z tabelado) R: O Valor da Estatística de Teste (t) é 2,5 e, como 2,5 é maior que 1,96, Ho é rejeitada e a revista pode concluir que o anúncio não é verdadeiro. 04. Mega Pascal (MPa) é a medida de resistência utilizada para a cerâmica. Numa indústria cerâmica, sabe-se que certo tipo de massa cerâmica tem resistência mecânica aproximadamente normal, com média 54 MPa e desvio padrão 4 MPa. Após a troca de alguns fornecedores de matérias- primas, deseja-se verificar se houve alteração na qualidade. Uma amostra de 9 corpos de prova de massa cerâmica acusou média igual a 50 MPa. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) R: Como Z = - 3 , a hipótese nula será rejeitada. 05. O uso tanto dos testes paramétricos como dos não paramétricos está condicionado à dimensão da amostra e à respectiva distribuição da variável em estudo. Testes paramétricos são baseados nos seguintes parâmetros da amostra: R: Média e desvio padrão. 06. Uma fábrica de motocicletas anuncia que seus carros consomem, em média, 10 litros por 400 Km, com desvio-padrão de 0,9 litro. Uma revista decide testar essa afirmação e analisa 36 motocicletas dessa marca, obtendo 10,5 litros por 400 Km, como consumo médio. Admitindo-se que o consumo tenha distribuição normal, ao nível de significância de 5%, utilize o TESTE DE HIPÓTESES, para o cálculo do Valor da Estatística de Teste (t) e o que a revista concluirá sobre o anúncio da fábrica? Dados: Obs1: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra). Obs2: Adote um nível de significância de 5%. O valor crítico para 5% é 1,96 desvios (Z tabelado) R: O Valor da Estatística de Teste (t) é 3,3 e, como 3,3 é maior que 1,96, Ho é rejeitada e a revista pode concluir que o anúncio não é verdadeiro. 07. Mega Pascal (MPa) é a medida de resistência utilizada para a cerâmica. Numa indústria cerâmica, sabe-se que certo tipo de massa cerâmica tem resistência mecânica aproximadamente normal, com média 60 MPa e desvio padrão 5 MPa. Após a troca de alguns fornecedores de matérias- primas, deseja-se verificar se houve alteração na qualidade. Uma amostra de 16 corpos de prova de massa cerâmica acusou média igual a 54 MPa. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) R: Como Z = - 4,8 , a hipótese nula será rejeitada. 08. O tempo médio, por operário, para executar uma tarefa, tem sido 95 minutos, segundo a distribuição normal. Introduziu-se uma modificação para diminuir este tempo, e, após certo período, sorteou-se uma amostra de 25 operários, medindo-se o tempo de execução gasto por cada um. O tempo médio da amostra foi 90 minutos com desvio padrão de 10 minutos. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) R: Como Z = - 2,5 , a hipótese nula será rejeitada.