Buscar

Processos de eletrização

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE DA AMAZÔNIA
Andressa Alcântara da Costa Castro
Gabriela Mieko Shimon
Igor de Almeida Rêgo
Paulo César Fratin Júnior
FÍSICA EXPERIMENTAL 3
Belém-Pa
2013
PROCESSOS DE ELETRIZAÇÃO
Todos os corpos ou matérias são constituídos por átomos, e estes são formados por partículas menores denominadas elétrons, prótons e nêutrons. 
Prótons e elétrons possuem carga elétrica de mesma intensidade (valor), mas de sinais contrários, em que o próton é a carga positiva e o elétron, a carga negativa. 
No átomo em seu estado natural não existe uma predominância de carga elétrica, por que o número de prótons é igual ao número de elétrons, o que o torna neutro. No entanto, quando ele perde ou ganha elétrons dizemos que está eletrizado. 
Corpo eletrizado positivamente 
Quando um corpo possui uma maior quantidade de cargas positivas, dizemos que perdeu elétrons, e por isso está eletrizado positivamente. 
Obs.: Um corpo nunca ganha prótons, porque está localizado na parte central do núcleo do átomo. 
Corpo eletrizado negativamente 
É quando um corpo possui mais cargas negativas que positivas, ou seja, quando ganha elétrons. 
Atração dos corpos
Quando partículas estão eletrizadas com cargas de sinais contrários, se atraem. 
Atração
Repulsão dos corpos 
Quando partículas estão eletrizadas com cargas de sinais iguais, se repelem.
Repulsão
ELETRIZAÇÃO POR ATRITO
Quando atritamos dois corpos feitos de materiais diferentes, um deles transfere elétrons para o outro de modo que o corpo que perdeu elétrons fica eletrizado positivamente enquanto o corpo que ganhou elétrons fica eletrizado negativamente.
Experimentalmente obtém-se uma série, denominada série tribo-elétrica que nos informa qual corpo fica positivo e qual fica negativo. A seguir apresentamos alguns elementos da série:
… vidro, mica, lã, pele de gato, seda, algodão, ebonite, cobre…
quando atritamos dois materiais diferentes, aquele que aparece em primeiro lugar na série fica positivo  e o outro fica negativo.
Assim, por exemplo, consideremos um bastão de vidro atritado em um pedaço de lã (Figura 6). O vidro aparece antes da lã na série. Portanto o vidro fica positivo e a lã negativa, isto é, durante o atrito, o vidro transfere elétrons para a lã.
Porém, se atritarmos a lã com um bastão de ebonite, como a lã aparece na série antes que a ebonite, a lã ficará positiva e a ebonite ficará negativa (Figura 7).
ELETRIZAÇÃO POR CONTATO
Consideremos um condutor A, eletrizado negativamente e um condutor B, inicialmente neutro (Figura 8). Se colocarmos os condutores em contato (Figura 9), uma parte dos elétrons em excesso do corpo A irão para o corpo B, de modo que os dois corpos ficam eletrizados com carga de mesmo sinal. (Figura 10)
Suponhamos agora um condutor C carregado positivamente e um condutor D inicialmente neutro (Figura 11). O fato de o corpo A estar carregado positivamente significa que perdeu elétrons, isto é, está com excesso de prótons. Ao colocarmos em contato os corpos C e D, haverá passagem de elétrons do corpo D para o corpo C (Figura 12), de modo que no final, os dois corpos estarão carregados positivamente (Figura 13). Para facilitar a linguagem é comum dizer-se que houve passagem de cargas positivas de C para D mas o que realmente ocorre é a passagem de elétrons de D para C.
De modo geral, após o contato, a tendência é que em módulo, a carga do condutor maior seja maior do que a carga do condutor menor. Quando o contato é feito com a Terra, como ela é muito maior que os condutores com que usualmente trabalhamos, a carga elétrica do condutor, após o contato, é praticamente nula (Figura 14 e Figura 15).
Se os dois condutores tiverem a mesma forma e o mesmo tamanho, após o contato terão cargas iguais.
Nos condutores, a tendência é que as cargas em excesso se espalhem por sua superfície. No entanto, quando um corpo é feito de material isolante, as cargas adquiridas por contato ficam confinadas na região onde se deu o contato.
ELETRIZAÇÃO POR INDUÇÃO
Na Figura 16 representamos um corpo A carregado negativamente e um condutor B, inicialmente neutro e muito distante de A. Aproximemos os corpos mas sem colocá-los em contato (Figura 17). A presença do corpo eletrizado A provocará uma separação de cargas no condutor B (que continua neutro). Essa separação é chamada de indução.
Se ligarmos o condutor B à Terra (Figura 18), as cargas negativas, repelidas pelo corpo A escoam-se para a Terra e o corpo B fica carregado positivamente. Se desfizermos a ligação com a Terra e em seguida  afastarmos novamente os corpos, as cargas positivas de B espalham-se por sua superfície (Figura 19).
Na Figura 20 repetimos a situação da Figura 17, em que o corpo B está neutro mas apresentando uma separação de cargas. As cargas positivas de B são atraídas pelo corpo A (força ) enquanto as cargas negativas de B são repelidas por A (força ). Porém, a distância entre o corpo A e as cargas positivas de B é menor do que a distância entre o corpo A e as cargas negativas de B. Assim, pela Lei de Coulomb,  o que faz com que a força resultante  seja de atração.
De modo geral, durante a indução, sempre haverá atração entre o corpo eletrizado (indutor) e o corpo neutro (induzido). 
GERADOR DE VAN DE GRAAFF 
Um gerador de Van de Graaff é uma máquina eletrostática que foi inventada pelo engenheiro estado-unidense descendente de holandeses, Robert Jemison van de Graaff por volta de 1929. A máquina foi logo empregada em física nuclear para produzir as tensões muito elevadas necessárias em aceleradores de partículas.
Versões pequenas do gerador de van de graff são freqüentemente vistas em demonstrações sobre eletricidade, produzindo o efeito de arrepiar os cabelos de quem tocar na cúpula, isolado da terra, pois o cabelo fica eletrizado com cargas da mesma polaridade, que conseqüentemente se repelem.
O gerador básico com excitação por atrito é composto por uma correia de material isolante, dois roletes, uma cúpula de descarga, um motor, duas escovas ou pentes metálicos e uma coluna de apoio. Os materiais mais usados na correia são oacrílico ou o PVC. Os roletes são de materiais diferentes, ao menos um deles condutores(como Teflon e alumínio), para que se eletrizem de forma diferente devido ao atrito de rolamento com a correia. O motor gira os roletes, que ficam eletrizados e atraem cargas opostas para a superfície externa da correia através das escovas. A correia transporta essas cargas entre a terra e a cúpula. A cúpula faz com que a carga elétrica, que se localiza no exterior dela, não gere campo elétrico sobre o rolete superior; Assim cargas continuam a ser extraidas da correia como se estivessem indo para terra, e tensões muito altas são facilmente alcançadas.
O terminal pode atingir um potencial de vários milhões de Volts, no caso dos grandes geradores utilizados para experiências de física atômica, ou até centenas de milhares de Volts nos pequenos geradores utilizados para demonstrações nos laboratórios de ensino.
Geradores profissionais utilizam sistemas eletrônicos, para depositar carga na correia, eliminando assim as instabilidades de desempenho causadas pela excitação por atrito e permitindo regulação precisa da tensão obtida. A operação dentro de câmaras de alta pressão contendo gases especiais permite maior densidade de carga na correia sem ionização, aumentando a corrente que carrega o terminal.
REFERÊNCIAS BIBLIOGRÁFICAS:
http://www.mundoeducacao.com.br/fisica/processos-eletrizacao.htm
http://www.infoescola.com/fisica/gerador-de-van-de-graaff/

Outros materiais