Buscar

Apostila Botanica No Inverno 2012

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 183 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 183 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 183 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE BIOCIÊNCIAS
 
Organizadores
Adne Abbud Righi
Aline Tiemi Matsumura
Aline Siqueira Nunes
Beatriz Nogueira Torrano da Silva
Carlos Eduardo Amancio
Cintia Iha
Emmanuelle da Silva Costa
Janaína Morimoto Meyer
José Hernandes Lopes Filho
Kleber Alves Gomes
Leonardo Hamachi
Professor Responsável
Cláudia Maria Furlan
Autores
Adne Abbud Righi
Alejandra Matiz Lopez
Alice Nagai
Aline Tiemi Matsumura
Aline Siqueira Nunes
Andrés Ochoa C. Edgar
Augusto César de Barros Tomba
Beatriz Nogueira Torrano da Silva
Bruna Silvestroni Pimentel
Carmen Eusebia Palacios Jara
Carlos Eduardo Amancio
Carolina Angélica Araujo de Azevedo
Carolina Krebs Kleingesinds
Carolina Lopes Bastos
Cintia Iha
Emmanuelle da Silva Costa
Fabio Nauer da Silva
Fernanda Mendes de Rezende
Giuliano Maselli Locosselli
Guilherme Marcello Queiroga Cruz
Janaína Morimoto Meyer
Janaína Pires Santos
Jenifer de Carvalho Lopes
José Hernandes Lopes Filho
Jonas Weissmann Gaiarsa
Juliana Hanna Leite El Ottra
Keyla Rodrigues
Kleber Alves Gomes
Leonardo Hamachi
Lucas Macedo Felix
Luiza Teixeira-Costa
Mariane Souza Baena
Mariana Crotti Franco
Natália Ravanelli
Paula Natália Pereira
Paulo Tamaso Mioto
Paulo Marcelo Rayner Oliveira
Rafael Cruz
Sarah Aparecida Soares
Vitor Barão
São Paulo
2012
 
Botânica no Inverno 2012 / Org. de Adne Abbud Righi...[et al.]. – São 
Paulo : Instituto de Biociências da Universidade de São Paulo, 2012.
183 p. : il.
 
 
ISBN 978-85-85658-29-8
 
 
1. Botânica. 2. Extensão. 3. Pós-Graduação. I. Righi, Adne Abbud.
II. Título.
Índice
Índice...............................................................................................................................i
Apresentação.................................................................................................................iii
1
 Estrutura e Desenvolvimento.............................................................................................1
Estrutura e desenvolvimento da raiz..............................................................................3
O Caule: um enfoque na atividade cambial.................................................................11
Folha: desenvolvimento, estrutura e função................................................................23
Estruturas reprodutivas em angiospermas..................................................................43
Fitormônios no desenvolvimento vegetal.....................................................................55
Metabolismo Secundário..............................................................................................57
2
Diversidade e Evolução....................................................................................................65
Interações Planta-Ambiente.........................................................................................67
Interação Planta-Planta................................................................................................77
Plantas Parasitas..........................................................................................................83
A origem do cloroplasto e a evolução dos eucariontes fotossintetizantes..................89
Biodiversidade e Ecologia de Macroalgas Marinhas Brasileiras.................................97
Estratégias de defesa antioxidantes em macroalgas................................................105
O trabalho na taxonomia vegetal e seus principais métodos.....................................111
3
Recursos.........................................................................................................................117
Estrutura genômica, sequenciamento e elementos de transposição........................119
Biomassa como Fonte de Energia: Biocombustíveis.................................................127
Bioinformática.............................................................................................................133
Organismos Geneticamente Modificados no contexto da Botânica..........................139
Organismos geneticamente codificados e a cultura de tecidos.................................147
Biologia Sintética........................................................................................................155
Plantas e Sociedade...................................................................................................159
Ficocolóides: Polissacarídeos das algas marinhas...................................................169
i
BOTÂNICA NO INVERNO 2012
ii
BOTÂNICA NO INVERNO 2012
Apresentação
O Departamento de Botânica do Instituto de Biociências da Universidade de São 
Paulo (IB-USP) é cenário de constante aprendizado, troca de conhecimentos, fluxo intenso 
de alunos de graduação e pós-graduação e muitas, muitas histórias!!! Desde professores 
eternizados em nomes de plantas aos recém-contratados (que já começam a deixar seus 
vestígios pelos andares), todos, em uníssono aos alunos de pós-graduação, buscam contribuir 
para o desenvolvimento cada vez maior da nossa segunda casa! E por que não tornar nossa 
casa mais acolhedora nos gélidos dias de inverno da capital paulista? E por que não alunos 
de pós-graduação tornarem-se “professores” e “orientadores” por 15 dias apresentando as 
diversas linhas de pesquisas desenvolvidas ao longo de tantos anos? Assim começou um 
curso de extensão universitária do departamento: ‘Botânica no Inverno’.
Na primeira edição do curso a iniciativa dos alunos de pós-graduação logo teve apoio 
unânime dos docentes do departamento de Botânica, bem como do então diretor do IB-USP, 
Prof. Dr. Wellington Braz Carvalho Delitti. O empenho de todos (professores e alunos) 
durante a primeira edição foi tamanha que culminou em enorme sucesso! Neste ano de 2012 
contamos com apoio de toda equipe do IB, o atual diretor Prof. Dr. Carlos E. F. da Rocha, o 
coordenador da pós-graduação Prof. Dr. Renato de Mello-Silva, a chefe do departamento 
Profa. Dra. Marie-Anne Van Sluys, bem como dos demais docentes, funcionários e discentes. 
O resultado deste entrosamento de sucesso extrapolou as vagas oferecidas. Contamos com 
449 inscritos de quase todo território nacional!!! E também alcançamos outros países da 
América Latina!!
Além de promover o contato dos alunos de graduação e recém-graduados com 
laboratórios e linhas de pesquisa do Departamento de Botânica IB- USP, o curso busca 
revisar, com os alunos de graduação e recém-graduados, conceitos fundamentais de 
Anatomia Vegetal, Sistemática e Taxonomia, Fisiologia Vegetal, Ficologia, Biologia 
Molecular, Biologia Celular e Fitoquímica, e ressaltar as intercomunicações de cada sub-
área! E, finalmente, o “Botânica no Inverno” é uma tentativa de auxiliar futuros acadêmicos 
e interessados na área a elaborar perguntas científicas relevantes nos diversos campos da 
Botânica, tendo em mente sua aplicação em pesquisa científica de base ou aplicada.
Desejamos a todos um excelente aproveitamento do curso e seus desdobramentos!!!
Comissão Organizadora do II Botânica no Inverno
iii
BOTÂNICA NO INVERNO 2012
 Estrutura e Desenvolvimento 
1
 Estrutura e
 Desenvolvimento
1
BOTÂNICA NO INVERNO 2012
Estrutura e desenvolvimento da raiz 
Estrutura e desenvolvimento da raiz
Aline Tiemi Matsumura
Paulo Marcelo Rayner Oliveira
Na condição de organismos sésseis, os vegetais apresentam limitações nos 
mecanismos de fuga, na capacidade de luta, na aquisição de recursos hídricos e nutrientes, 
além de outras condições adversas impostas pelo ambiente circundante. Dentre estas 
condições destacam-se os fatores nutricional e hídrico. Em geral as plantas retiram grande 
parte dos nutrientes do solo, assim comoa água.
Em grande parte das plantas, a principal região responsável pela absorção de água e 
nutrientes é o sistema radicular. Ele também é responsável pelo armazenamento e condução 
destes, além de ter como função a fixação da planta em seu substrato. Entretanto, cabe 
ressaltar que, dependendo da espécie, bem como seu habitat, a raiz pode perder parte de suas 
funções ou adquirir novas. Podemos citar como exemplo as plantas epífitas (como diversos 
membros da família Bromelliaceae), as quais possuem um sistema radicular rudimentar que 
confere apenas sustentação, sendo assim toda parte de absorção de água e nutrientes 
realizada por outros órgãos como folhas e caule. Em alguns casos extremos como no caso de 
algumas orchidaceaes, a parte aérea da planta é reduzida a tal ponto que as raízes são as 
responsáveis pela fotossíntese.
O crescimento e desenvolvimento do sistema radicular pode sofrer influência de 
vários estímulos ambientais tais como a gravidade, luz, umidade, nutrientes, temperatura e 
resistência física do solo. Dessa forma, a planta deve apresentar características que lhe 
permitam adaptar-se às condições ambientais impostas, garantindo o máximo de vantagem 
para seu crescimento e desenvolvimento. Desde o estudo pioneiro de Darwin (1880), estudos 
fisiológicos e anatômicos acerca do comportamento da raiz modulados por estímulos físicos 
vêm sendo realizados. 
É fato que nas plantas praticamente todos os eventos relacionados ao crescimento e 
desenvolvimento são regulados por pequenas moléculas orgânicas coletivamente 
denominadas fitormônios, sendo os principais as auxinas, citocininas, giberelinas, ácido 
abscísico e o etileno. Ao contrario dos animais, não existem nas plantas órgãos 
especializados para a biossíntese hormonal, embora possam existir diferenças na capacidade 
biossintética de cada órgão. Os efeitos dessas moléculas podem ser altamente complexos, 
pois uma única célula pode responder a vários hormônios simultaneamente e um único 
hormônio pode atuar em vários tipos de tecido. 
Desenvolvimento do sistema radicular
A raiz é um órgão que tem sua formação ainda no estágio embrionário da planta. Esta 
raiz embrionária é chamada de radícula, que surge através da diferenciação celular que 
origina o eixo hipocótilo/radícula. Após a germinação e a emergência da radícula, tem início 
o desenvolvimento e o crescimento do órgão.
A raiz pode ser dividida em três partes: a zona meristemática, zona de alongamento e 
zona de maturação. A origem destes tecidos está em um grupo de células localizados no 
meristema apical da raiz, denominado centro quiescente – região com células de baixa taxa 
mitótica – que é circundado por uma camada de células que apresentam altas taxas de 
3
BOTÂNICA NO INVERNO 2012
 1. Estrutura e Desenvolvimento
divisões mitóticas. Acima deste grupo de células inicia-se a diferenciação nos diferentes 
tecidos da raiz de acordo com sua posição. Abaixo do centro quiescente forma-se a coifa, um 
tecido de consistência mucilaginosa com função de proteção do meristema apical radicular.
A zona meristemática é a região responsável pelo crescimento do órgão. É constituída 
pela protoderme, meristema fundamental e procâmbio, que dão origem, respectivamente, à 
epiderme, córtex e ao cilindro vascular. 
A epiderme é o tecido de revestimento da raiz. Acima da zona de divisão celular 
(quando o xilema se encontra parcialmente maduro) ocorre a expansão das células 
epidérmicas em pelos radiculares, que aumentam a superfície de contato otimizando a 
absorção. 
O córtex origina a exoderme (abaixo da epiderme) e a endoderme (camada mais 
interna), esta última apresentando uma faixa de suberina denominada estria de Caspary, 
responsável por impedir a passagem de água e solutos entre as células. Tanto a epiderme 
quanto o córtex são perdidos em plantas que apresentam crescimento secundário.
No cilindro vascular o tecido mais externo é o periciclo, de onde se originam as 
raízes laterais. A maturação tanto do xilema quanto do floema é centrípeta. O xilema forma 
projeções em direção ao periciclo (protoxilema) e diferencia-se em metaxilema no centro. Os 
polos de protoxilema se revezam na extremidade com o protofloema. Em alguns casos, 
quando o xilema não se diferencia no centro este é ocupado pela medula (tecido 
meristemático).
Figura 1 - Esquema geral dos tecidos da raiz primária. Ao lado direito esquema simplificado de um corte 
transversal na zona meristemática (abaixo) e após a maturação dos tecidos vasculares (acima).
Sabe-se que o crescimento radicular deriva-se de dois eventos primários básicos: de 
um lado as divisões das celulares meristemáticas apicais, e de outro pelo processo de 
4
BOTÂNICA NO INVERNO 2012
Estrutura e desenvolvimento da raiz 
alongamento das células filhas. No nível físico das células o alongamento celular é 
direcionado pela interação entre a turgescência e a expansão da parede celular, evento este 
mediado pelo hormônio auxina.
A auxina é tida como hormônio do crescimento, por ser uma das suas principais 
funções. Na raiz, sua atuação pode variar de acordo com o local em questão. Na região 
apical, a auxina atua no controle do processo de divisão das células que circundam o centro 
quiescente e na diferenciação celular. No entanto na zona de alongamento, como o próprio 
nome sugere, a auxina desempenha o seu papel principal que é promover o alongamento das 
células.
Além disso, a auxina participa na organogênese. No sistema radicular este hormônio 
promove a iniciação das raízes laterais. Este processo ocorre a partir do transporte polar de 
forma basípeta deste hormônio, ou seja, da parte aérea para a parte radicular. Este transporte 
é feito através de transportadores que promovem dois eventos, o influxo e o efluxo. O 
influxo de auxina é mediado por proteínas denominadas AUX/LAX, enquanto que o efluxo é 
mediado por proteínas denominadas PIN. Sabe-se que a auxina induz a síntese de um outro 
hormônio chamado etileno, que se apresenta na forma de gás. Em virtude do transporte polar 
da auxina, ocorre um aumento no gradiente de deste hormônio, induzindo por sua vez a 
síntese de etileno. Isto gera um acúmulo de etileno na região próxima ao meristema. Por 
consequência, tem-se uma redução na capacidade de difusão da auxina ocasionando também 
um acúmulo deste hormônio na região. Em resposta a este acúmulo de auxina algumas 
células do periciclo, responsivas a este hormônio, entram em processo de divisão e 
diferenciação, dando origem ao primórdio radicular.
Entretanto, não somente a auxina e o etileno participam deste processo, sendo outro 
hormônio participante a citocinina. Na raiz este hormônio atua de forma antagônica à auxina. 
Isso impede que uma quantidade de auxina além do necessário chegue ao ápice 
meristemático e provoque fortes alterações na região. 
Todavia vale lembrar que o antagonismo ou a sinergia entre a auxina e a citocinina é 
dependente do balanço endógeno destes dois hormônios. 
Sabe-se que o principal centro produtor de citocinina na planta são as raízes, da 
mesma forma que acontece com o ácido abscísico (ABA). O ABA é uma molécula produzida 
principalmente quando a planta se encontra em uma situação que possa comprometer o seu 
crescimento e/ou desenvolvimento como, por exemplo, submetida ao déficit hídrico, altas 
concentrações de sal, baixas temperaturas, entre outros. Uma das mais clássicas atuações do 
ácido abscísico é a sinalização para o fechamento estomático.
 Coordenação no crescimento do sistema radicular
Ao fazer uma analise comparativa entre a parte aérea e a parte radicular, é notável a 
existência de eventos bastantesimilares como, por exemplo, os tropismos. Dentre todos 
serão destacados o gravitropismo (crescimento em resposta à gravidade), o tigmotropismo 
(crescimento em resposta ao toque, ou seja, resposta às barreiras mecânicas) e o 
hidrotropismo (crescimento em resposta aos níveis de água disponíveis). 
Em uma primeira análise temos o hidrotropismo, que é o crescimento direcionado a 
regiões com maior conteúdo disponível de água. Nesta mesma vertente, temos o 
tigmotropismo, que é o direcionamento do crescimento em sentido contrário a barreiras 
5
BOTÂNICA NO INVERNO 2012
 1. Estrutura e Desenvolvimento
mecânicas como solos compactados, rochas ou até mesmo raízes de outras plantas. 
De um modo mais detalhado temos o gravitropismo. A percepção do estímulo 
gravitrópico é medida pelos estatólitos, amiloplastos especializados na percepção do 
estímulo gravitacional. Da mesma forma, existem células especializadas na percepção da 
gravidade, as quais alocam os estatólitos, denominadas estatócitos. Basicamente, a percepção 
do estímulo à resposta gravitrópica é gerenciada pela sedimentação dos estatólitos na 
superfície inferior dos estatócitos. Estas estruturas estão presentes principalmente na coifa. 
O principal hormônio que atua na resposta gravitrópica é a auxina. Até onde se sabe, 
o transporte lateral da auxina gera uma taxa de alongamento celular diferenciada. Em 
síntese, o lado onde há uma menor concentração de auxina cresce mais do que o lado de 
maior concentração. Isso ocorre devido ao fato de que a concentração hormonal que induz o 
alongamento celular estaria supra-ótimo, acarretando uma inibição do alongamento celular e, 
consequentemente, moldando a raiz e gerando uma curvatura que vai direcionar o 
crescimento do órgão.
Outro elemento que também parece ser um fator bastante importante é o nível de 
cálcio. Acredita se que o cálcio possa provocar um rearranjo dos transportadores de auxina, 
direcionando o fluxo deste hormônio para a parte inferior da raiz, resultando na resposta 
gravitrópica. 
Com tudo isso, é notável a complexidade do processo de crescimento e 
desenvolvimento do sistema radicular. Ainda há muito a se fazer para que novos avanços 
sejam feitos e uma gama de dúvidas sejam solucionadas no que se refere aos processos 
fisiológicos envolvidos na morfologia e anatomia das raízes, assim como as interações 
ambientais que medeiam tais processos. 
Absorção de água e manutenção do potencial hídrico em raízes
Diversos eventos da planta dependem da absorção e transporte de água. A água 
possui propriedade polar que a torna um excelente solvente. Além disso, ela permite a 
estabilidade da temperatura da planta, já que a água exige uma alta energia para sua 
temperatura ser alterada. A transpiração (evaporação das moléculas da superfície que 
acumulam energia do sol) também é um importante componente para a termorregulação das 
plantas, necessária também para absorção de CO2 e transporte de nutrientes.
A água se direciona no solo e na planta guiada pelo potencial hídrico. O potencial 
hídrico é a energia potencial da água em relação a um estado padrão. A água migra de uma 
região de maior potencial para uma menor. O potencial hídrico é a soma do potencial de 
massa ou pressão hidrostática (depende do volume de água em um mesmo espaço; é positiva 
quando a células está túrgida, por exemplo) e o potencial de soluto ou pressão osmótica 
(quanto maior a concentração de soluto menor o valor, pois ele reduz a energia da água).
Como citado anteriormente, as raízes possuem pelos que aumentam a superfície de 
absorção. Em geral, a absorção é maior nos tecidos próximos aos ápices (tecido mais jovem), 
permitindo que novas raízes sejam capazes de buscar e absorver água. Uma vez dentro da 
raiz a água pode entrar pela raiz de 3 formas (ver figura 2):
• Apoplástica: neste caso, a água não atravessa membranas, passando pelas paredes 
celulares ou qualquer espaço extracelular.
• Simplástica: a água passa via plasmodesmas (extensões da membrana que conectam os 
6
BOTÂNICA NO INVERNO 2012
Estrutura e desenvolvimento da raiz 
citoplasmas da célula).
• Transmembrânica: a água atravessa a membrana semipermeável, sem o auxílio de 
plasmodesmas.
Ao chegar na endoderme, a água deve passar obrigatoriamente pela estria de 
Caspary, já mencionada, que impede o transporte via apoplasto, forçando a passagem 
pela membrana plasmática. Uma vez no xilema, ela é encaminhada para as folhas, por 
onde é perdida na forma de vapor pelo estômato. Os espaços intercelulares na mesofilo 
(ver capítulo de Folha) facilitam o direcionamento da água contra a gravidade, pois 
geram uma diferença de potencial hídrico.
O xilema facilita o transporte porque suas células sofrem morte programada e 
espessamento da parede, permitindo que a planta suporte altas pressões. As células 
são conectadas via pontoações (falta de parede secundária que permite a conexão 
entre células via plasmodesmas), facilitando a passagem de água. Quando o ar 
consegue passar pela endoderme pode ocorrer interrupção do fluxo de água 
(cavitação), neste caso ela passa por outra conexão da célula adjacente. 
Um fenômeno comum durante a noite é a pressão positiva da raiz. Neste caso, 
as raízes acumulam solutos no xilema, forçando a água a migrar para dentro pelo 
potencial de soluto. Essa pressão gerada pode desobstruir as células que sofreram 
cavitação. Esse fenômeno pode ser observado nas folhas no início do dia, quando a 
seiva do xilema é exsudada pelos poros nas folhas. 
Absorção e transporte de nutrientes
Além de transportar água, as raízes também transportam outros nutrientes 
juntos. Podemos separá-los em orgânicos (mais utilizado na agricultura) e inorgânicos. 
Os nutrientes inorgânicos são mais comuns no solo, pois em geral a presença de 
diversos microorganismos que competem pelos nutrientes orgânicos os tornam menos 
disponíveis.
Os principais nutrientes para as plantas, considerados essenciais por 
participarem do metabolismo ou estrutura da planta, podem ser classificados em 
macronutrientes, presentes em grandes concentrações no tecido vegetal (N, K, Ca, Mg, 
P, S e Si) e micronutrientes, necessários em menores concentrações (Cl, Fe, B, Mn, Na, 
7
BOTÂNICA NO INVERNO 2012
Figura 2: Possíveis rotas de absorção de água.
 1. Estrutura e Desenvolvimento
Zn, Cu, Ni, Mo). Os obtidos pelo gás carbônico ou água geralmente não entram nesta 
classificação (C, O, N). A falta ou excesso destes nutrientes costumam acarretar 
sintomas na planta. Reconhecer qual mineral está provocando o distúrbio na planta é 
essencial para a agricultura, entretanto, não é algo tão simples, na medida em que a 
falta de um componente pode induzir deficiência ou acúmulo de outro no organismo. No 
caso da deficiência, uma pista importante é a mobilidade dos nutrientes na planta, pois 
os imóveis geram deficiência local enquanto os móveis são visíveis em tecidos mais 
velhos, já que eles remobilizam os nutrientes escassos para os tecidos jovens. 
Dependendo da espécie e do nutriente, podem existir diferenças de qual região cada 
um deles é absorvido pela raiz. 
A morfologia da raiz também depende da disponibilidade destes nutrientes. 
Sabe-se que o nitrogênio e o fósforo são os principais macronutrientes limitantes ao 
crescimento. A disponibilidade de nitrogênio e fósforo podem alterar a arquitetura da 
raiz inibindo ou promovendo o crescimento da raiz principal e o crescimento e formação 
de raízes laterais. Em Arabidopsis thaliana, altas concentrações globais de nitrogênio 
inibem o crescimento tanto da raiz primária comolaterais, enquanto sua falta promove o 
alongamento de raízes laterais. Entretanto, altas concentrações locais são capazes de 
promoverem o crescimento da raiz lateral. Cabe ressaltar que o efeito da falta ou 
excesso de nitrogênio depende da sua fonte (nitrato, amônio, compostos orgânicos etc), 
do ambiente e da espécie de planta a ser estudada. O principal hormônio envolvido 
neste processo é a citocinina, que sinaliza o estado nutricional da planta para a parte 
aérea, desta forma modulando seu crescimento em função da disponibilidade de 
nitrogênio.
O excesso de fósforo promove o desenvolvimento da raiz primária, enquanto sua 
falta promove o desenvolvimento de raízes laterais. Como o fósforo é um nutriente de 
baixa mobilidade, sua disponibilidade no solo é reduzida, justificando as mudanças que 
sua falta causa na arquitetura da raiz. Entretanto, pouco se sabe ainda sobre os 
mecanismos de regulação envolvidos neste processo.
Dependendo do ambiente, as plantas possuem algumas adaptações para 
captação de nutrientes. Um exemplo são plantas carnívoras, que obtém os nutrientes 
escassos no solo através de armadilhas que capturam pequenos animais. Outro são 
plantas que se associam com fungos ou bactérias. Em troca de carboidratos, as plantas 
recebem nutrientes ou água, caracterizando uma relação simbiótica. A associação com 
fungos é denominada micorriza, ocorre em condições naturais e é distribuída em quase 
todos os grupos. Já na associação com bactérias o caso mais comum são o das plantas 
leguminosas, que formam nódulos nas raízes da planta hospedeira e fornecem 
compostos nitrogenados fixados do ar atmosférico.
A nível celular, os nutrientes entram nas células vegetais através de proteínas 
transportadoras. Apenas a água e muito raramente íons são capazes de atravessar as 
camadas de fosfolipideos, o restante sendo transportado por proteínas inseridas nestas 
camadas. O transporte pode ocorrer por 3 formas:
• Dependente de energia (ATP), sendo chamadas de ATPases ou bombas de ATP.
• Canais, ou proteínas transmembranas nas quais moléculas e íons podem se 
difundir. 
• Cotransportadores, proteínas que não atravessam completamente a membrana e 
são mais seletivos.
O transporte por canais é sempre passivo, ou seja, sem gasto de energia. A 
única forma de regulação é a abertura e o fechamento, que dependem de sinais como 
luz ou hormônios. Um canal muito estudado são as aquaporinas, que permitem a 
passagem de água para dentro das células de forma acelerada. Sabe-se atualmente 
que elas não são específicas para moléculas de água, podendo transportar desde 
8
BOTÂNICA NO INVERNO 2012
Estrutura e desenvolvimento da raiz 
gases a pequenas moléculas de outras substâncias, como a uréia.
O transporte por cotransportadores dependem da sua ligação com o substrato. 
Em geral, a taxa de transporte neste caso é muito mais lenta que seu transporte pelo 
canal. A ligação do soluto gera uma mudança na conformação na membrana, 
permitindo sua entrada na célula. O transporte pode ser passivo ou ativo. No transporte 
ativo a molécula entra na célula contra o seu gradiente de concentração. A energia vem 
de uma diferença de potencial elétrico ou químico, provindo de um segundo soluto. 
Em geral, o nitrato, o cloro, o fosfato e o sulfato entram na célula por transporte 
ativo, enquanto o sódio, magnésio e cálcio entram de forma passiva. 
Bibliografia
Chrispeels, M.J.; Crawford, N.M. & Schroeder, J.I. 1999. Proteins for Transport of Water and 
Mineral Nutrients across the Membranes of Plant Cells. The Plant Cell. v. 11. p. 661-675.
Fan, L. et al. 2006. Progressive Inhibition by Water Deficit of Cell Wall Extensibility and Growth 
along the Elongation Zone of Maize Roots Is Related to Increased Lignin Metabolism and 
Progressive Stelar Accumulation of Wall Phenolics. Plant. Physiol. v. 140. p. 603-612.
Mochizuki, S. et al. 2005. The Arabidopsis WAVY GROWTH 2 Protein Modulates Root Bending 
in Response to Environmental Stimuli. Plant Cell. v. 17. p. 537-547.
Osmont, K.S.; Sibout, R. & Hardtke, C.S. 2007. Hidden Branches: Developments in Root System 
Architecture. Annu. Rev. Plant Biol. v. 58. p. 93–113.
Spartz, A. K.; Gray, W. M. 2008. Plant hormone receptors: new perspective. Genes Dev. v. 
22(16). p. 2139-2148.
Stepanova, A. N. et al. 2007. Multilevel Interactions between Ethylene and Auxin in Arabidopsis 
Roots. The Plant Cell. v. 19. p. 2169-2185.
Vanneste, S.; Friml, J. 2009. Auxin: A trigger for change in plant development. Cell. v. 136. p. 
1005-1016.
Verslues, P. E. et al. 2006. Methods and concepts in quantifying resistance to drought, salt and 
freezing, abiótic stresses that affect plant water status. The Plant Journal. v. 45. p. 523-539.
Walter, A.; Schurr, U. 2005. Dynamics of Leaf and Root Growth: Endogenous Control versus 
Environmental Impact. Annals of Botany. v. 95. p. 891-900.
Livros didáticos
Esau, K. 1898. Anatomia das plantas com sementes; tradução: Berta Lange de Morretes. São 
Paulo, Edgard Blücher, 1974, 1976 reimpressão. 
Kerbauy, G.B. 2008. Fisiologia Vegetal. 2 ed. Guanabara Koogan.
Taiz, L.; Zeiger, E. 2009. Fisiologia Vegetal. 4 ed. Artmed.
9
BOTÂNICA NO INVERNO 2012
O Caule: um enfoque na atividade cambial 
O Caule: um enfoque na atividade cambial
Carolina Lopes Bastos
Giuliano Locosselli 
Seja ele uma estrutura de morfologia complexa, com diferentes padrões anatômicos e 
múltiplas funções, ou apenas um órgão de sustentação para as porções fotossintetizantes e 
reprodutivas das plantas, o caule é uma estrutura de grande importância no contexto da 
biologia vegetal. São diversos os estudos da anatomia, fisiologia, e morfologia externa deste 
órgão, que pode estar altamente modificado em sua estrutura, assumir função 
fotossintetizante, crescer em espessura e formar madeira, ou continuar herbáceo durante todo 
o desenvolvimento da planta. Neste capítulo, algumas características caulinares serão 
abordadas, com um enfoque na atividade do câmbio vascular, seja ela padrão ou variante, e 
nos hormônios responsáveis por essa atividade, bem como no registro dendrocronológico da 
atividade deste tecido tão importante.
Crescimento primário
O caule em crescimento primário é formado por três sistemas de tecidos: dérmico, 
constituído pela epiderme; fundamental, que no caule corresponde ao córtex, composto por 
parênquima, colênquima e/ou esclerênquima, e à medula, formada principalmente por 
parênquima medular; e o vascular, composto por xilema e floema primários (Esau, 1974).
No caule, a epiderme permanence como tecido de revestimento até que seja 
substituída pela periderme em plantas com crescimento em espessura (crescimento 
secundário) ou se mantém dessa forma durante todo o desenvolvimento do vegetal, em 
plantas herbáceas. 
O córtex caulinar começa logo abaixo da epiderme e tem no periciclo (a camada mais 
externa do cilindro vascular) o seu limite; pode ser composto por células parênquimáticas, 
geralmente com cloroplastos; um colênquima também pode estar presente, em geral externo 
ao parênquima, com espessamentos na parede primária de diversos tipos em suas células; e 
em alguns grupos, pode haver esclerênquima no córtex, ou mesmo esclereídes de diversos 
tipos dispersos por esta região do caule. A endoderme também está presente no caule, com 
ou sem estria de Caspary, como a camada mais interna do córtex. Já a medula é formada por 
células parenquimáticas em maioria, com espaços intercelulares amplos em geral, e pode 
conter também estruturas secretoras, como também pode ocorrer no córtex (Esau, 1974). 
O cilindro vascular caulinar é composto por xilema e floema primários, bem como 
periciclo, neste estágio do desenvolvimentodo vegetal. A forma como estes tecidos estão 
organizados no cilindro vascular, desde o periciclo até a medula, quando presente, é 
conhecida por estelo, e permite-nos esquematizar a estrutura do caule e da raiz em 
crescimento primário, além de estudar comparativamente a diversidade desta estruturação.
11
BOTÂNICA NO INVERNO 2012
 1. Estrutura e Desenvolvimento
Figura 1 - Esquema exemplificando dois dos tipos de estelos mais comuns em Dicotiledôneas e 
Monocotiledôneas. Note que existem mais tipos de estelos para ambos os grupos, como 
protostelos, do tipo haplostelo, actinostelo e plectostelo, sifonostelos ectoflóicos e anfiflóicos, 
dictiostelos, atactostelos, etc., que não foram mostrados no esquema com fins de simplificação 
(Esquema: Bastos, CL).
Atividade cambial
Com a colonização do ambiente terrestre pelas plantas, uma série de mudanças 
estruturais e funcionais ocorreu nos vegetais. Devido à imobilidade e às novas demandas 
ambientais, sistemas de proteção contra a dessecação, de absorção de água e nutrientes do 
solo, de transporte eficiente de assimilados e suporte mecânico se desenvolveram. O sistema 
vascular foi uma das principais inovações para o sucesso do estabelecimento e expansão das 
plantas superiores. Nas dicotiledôneas lenhosas e coníferas, o xilema e floema secundários 
são produzidos pela atividade do meristema lateral denominado câmbio.
O câmbio é formado por uma camada de células denominadas iniciais cambiais, que 
são divididas em duas categorias, as iniciais fusiformes e as radiais. As iniciais fusiformes 
são células alongadas no eixo axial, que se dividem e formam as células do sistema axial 
pertencentes ao floema e ao xilema. No floema, as células derivadas das iniciais fusiformes 
formarão os elementos de tubo crivado, células companheiras e células parenquimáticas em 
dicotiledôneas lenhosas, e células crivadas, células de Strasburger e células parenquimáticas 
em coníferas. Já no xilema, as iniciais fusiformes formarão elementos de vaso, fibras e 
células do parênquima axial nas dicotiledôneas lenhosas e traqueídes e células do 
parênquima axial nas coníferas. Por outro lado, as iniciais radiais formarão as células que 
compõem o raio parenquimático, tanto nas dicotiledôneas lenhosas quanto nas coníferas.
Estas células especializadas que se originaram a partir das iniciais cambiais possuem 
12
BOTÂNICA NO INVERNO 2012
O Caule: um enfoque na atividade cambial 
um importante papel na manutenção das espécies no ambiente terrestre. Elas garantem a 
condução contínua de água desde o solo até as folhas, permitem que os foto-assimilados 
possam ser transportados a diferentes partes do vegetal e ainda garantem o suporte mecânico 
de toda a porção aérea das plantas.
Variações cambiais
Tipos de variações
Além de sua atividade padrão no caule, de produção de células do xilema secundário 
para o interior do órgão e células do floema secundário para o exterior, o câmbio vascular 
pode desempenhar sua função de outras formas, ou mesmo estar ativo em vários locais ao 
mesmo tempo. As variações cambiais podem ser de vários tipos, e podem ocorrer em 
árvores, como Avicennia (Acanthaceae), arbustos (algumas espécies de Bignonicaeae, 
Menispermaceae, etc), herbáceas (a raiz da beterraba, Beta vulgaris (Amaranthaceae), por 
exemplo), mas principalmente em lianas (a ordem Fabales, Sapindaceae, Bignoniaceae, 
Malphighiaceae, Menispermaceae, Apocinaceae, Rubiaceae, Icacinaceae, Acanthaceae, entre 
outras famílias) (Esau, (1974), Angyalossy et al. (2012)).
As variações cambiais estão presentes ao longo da filogenia das plantas vasculares, 
segundo Angyalossy e colaboradores (2012), sendo encontradas desde Gnetales até 
Magnoliídeas e Eudicotiledôneas, mas de formas diferentes em cada grupo. As variações 
cambiais são divididas em dois grupos principais: variações originadas de um único câmbio, 
ou aquelas advindas de múltiplos câmbios (Angyalossy et al., 2012). 
No primeiro tipo, em que apenas um câmbio é responsável pela variação encontrada, 
temos ainda subtipos (Angyalossy et al., 2012): 
a) Câmbio regular, com atividade normal, mas com conformação irregular ou desigual, 
gerando um caule de formato irregular.
Famílias em que ocorre: Apocynaceae, Leguminosae and Rubiaceae.
Figura 2. Aspidosperma sp. (Apocynaceae) e outra liana ilustram a variação cambial produzida por um único câmbio 
de produção padrão mas forma irregular (Fotos: Bastos, CL, material gentilmente cedido por Angyalossy, V)
b) Xilema interrompido por arcos ou cunhas de floema.
Famílias em que ocorre: Bignoniaceae, Celastraceae, Malpighiaceae e Icacinaceae.
13
BOTÂNICA NO INVERNO 2012
 1. Estrutura e Desenvolvimento
Figura 3. Lianas de Bignoniaceae ilustrando a variação cambial do tipo cunhas de floema (Fotos: Bastos, CL, material 
gentilmente cedido por Angyalossy, V).
c) Segmentos compostos por elementos axiais do xilema e do floema separados por largas 
porções de raios floemáticos e xilemáticos.
Famílias em que ocorre: Aristolochiaceae e Menispermaceae.
Figura 4. Exemplo de lianas com variação cambial em que o xilema e o floema ficam segmentados, por conta dos largos raios. À 
esquerda, Aristolochiaceae, e à direita, outra liana com a mesma estruturação (Fotos: Bastos, CL, material gentilmente cedido por 
Angyalossy, V).
d) Floema incluso no xilema, derivado de um único câmbio.
Família em que ocorre: Acanthaceae.
14
BOTÂNICA NO INVERNO 2012
O Caule: um enfoque na atividade cambial 
Figura 5 - Esquema ilustrando um caule com floema incluso (Esquema: Bastos, CL)
No segundo tipo, em que múltiplos câmbios são responsáveis pela formação da 
variação encontrada, existem dois sub-tipos, segundo Angyalossy et al. (2012):
a) Câmbios sucessivos.
Famílias em que ocorre: lianas de Menispermaceae e algumas Fabales.
Figura 6. Exemplos de câmbios sucessivos em uma Leguminosa (esquerda) e outra liana em que este tipo também 
ocorre (Fotos: Bastos, CL, material gentilmente cedido por Angyalossy, V).
b) Cilindros vasculares compostos.
Família em que ocorre: exclusivo de Sapindaceae.
Figura 7. Caules compostos em Sapindaceae (Fotos: Bastos, CL, material gentilmente cedido por Angyalossy, V).
15
BOTÂNICA NO INVERNO 2012
 1. Estrutura e Desenvolvimento
Podem acontecer também combinações de mais de um tipo de variação cambial. 
Alguns exemplos citados por Angyalossy et al. (2012) são: Bignoniaceae e Malpighiaceae 
com cunhas de floema e partes do xilema dispersas por proliferação de parênquima; em 
Piperaceae, elementos vasculares axiais em segmentos combinados a cilindros secundários 
externos, entre outros exemplos.
Figura 8 - Exemplo de combinação de variações cambiais em Leguminosae. 
Caule de formato irregular (achatado) e com câmbios sucessivos (Fotos: 
Bastos, CL, material gentilmente cedido por Angyalossy, V)
Cabe ressaltar que, para algumas famílias, algumas variações cambiais podem ser 
utilizadas para fins taxonômicos, como acontece em Sapindaceae, Menispermaceae, e lianas 
de Bignoniaceae (Angyalossy et al., 2012).
A fisiologia da variação cambial: injúrias e flexibilidade
Como já mencionado acima, as variações cambiais são mais comuns em lianas que 
em espécies de qualquer outro hábito. Enquanto a maioria das árvores exibe um modelo 
padrão de crescimento secundário, com um único câmbio produzindo floema para o exterior 
e xilema para o interior, as lianas apresentam várias configurações vasculares alternativas 
(Schenck, 1893; Pfeiffer, 1926; Obaton, 1960). 
Em estudos realizados por Putz & Holbrook (1991), comparando-se lianas e plântulas 
de espécies arbóreas, as lianas mostraram-se três vezes mais flexíveis em experimentos de 
torção que as arbóreas.A capacidade das lianas de manter o xilema funcional após uma 
deformação (sua resistência), também foi muito maior nas lianas que em espécies arbóreas 
(Putz & Holbrook, 1991). A compartimentalização dos caules das lianas, onde tecidos 
lignificados, relativamente inflexíveis, estão associados a tecidos não lignificados (macios), 
pode permitir às lianas funcionar mais como cabos do que como cilindros sólidos (Obaton, 
1960; Putz & Holbrook, 1991), garantindo flexibilidade e maior resistência à dobras e 
contorções que ocorrem durante seu crescimento em direção ao dossel (Ewers & Fisher, 
1991) 
Em uma revisão de trabalhos acerca de injúrias naturais ou induzidas 
experimentalmente em caules de lianas, Fisher & Ewers (1991) atestaram que esta anatomia 
caulinar “anômala” de algumas famílias permite a divisão ordenada do caule e a rápida 
reparação de interrupções vasculares causadas por injúrias, além do aumento da flexibilidade 
já comentada. Ou seja, a presença de variações cambiais pode ser associada a diversas 
funções nos vegetais; além das já citadas, podemos adicionar a melhor condução de 
fotossintatos (Pace et al., 2011) e o desenvolvimento xilemático (Lima et al., 2010).
16
BOTÂNICA NO INVERNO 2012
O Caule: um enfoque na atividade cambial 
Controle hormonal da atividade cambial
Como em todo processo de desenvolvimento, a atividade cambial é finamente 
regulada pelos sinais hormonais. A atividade cambial é sinalizada pela presença integrada de, 
principalmente, auxina (AIA) giberelinas (GA) e citocininas. Cada um destes hormônios é 
produzido em uma parte da planta e é transportado até a região cambial, onde modulará a 
atividade deste meristema secundário.
A auxina é produzida especialmente pelas folhas jovens. Este hormônio move-se de 
forma polarizada nos tecidos vasculares, em especial, através do câmbio e elementos 
vasculares em diferenciação. O movimento basípeto da auxina cria um gradiente de 
concentração ao longo do câmbio, sendo as regiões mais próximas a fonte, as com a maior 
concentração, e as mais distantes, com a menor contração de auxina. 
A auxina é um dos principais hormônios responsáveis pela atividade cambial. A 
presença deste hormônio induz o início das divisões celulares das iniciais cambiais. O 
desenvolvimento das células derivadas, provenientes da divisão das iniciais cambiais, e as 
características das células maduras depende pode depender da ação de outros hormônios, que 
somente agem na presença da auxina.
Os produtos da atividade cambial, floema e xilema secundários, dependem da 
concentração da auxina na zona cambial. Altas concentrações de auxina determinam a 
produção de floema preferencialmente. Por outro lado, concentrações menores de auxina 
resultam numa produção maior de xilema. Diferenças nas concentrações de auxina, além de 
determinar o produto da atividade cambial, também influenciam as características das células 
produzidas. Uma concentração relativamente maior de auxina estimula o rápido 
amadurecimento das células produzidas pelo cambio, o que significa uma deposição 
acelerada da parede secundária e lignina. Com a deposição da lignina, a expansão celular 
fica mais restrita já que diminui a plasticidade das células derivadas. Como um resultado do 
estimulo do amadurecimento das células, o gradiente de concetração de auxina, desde a fonte 
até os drenos, resulta num gradiente de variação dos tamanhos das células produzidas pelo 
câmbio, em especial as células condutoras do xilema.
17
BOTÂNICA NO INVERNO 2012
 1. Estrutura e Desenvolvimento
Figura 9 - Esquematização do gradiente de concentração de auxina dentro de uma árvore, desde a fonte 
aos drenos. A) Representação de uma árvore, contendo a copa, o tronco principal e as raízes. B) 
Representação da do gradiente de concentração de auxina. C) Representação da variação das 
dimensões dos elementos de vaso em diferentes porções do xilema, conforme o gradiente de 
concentração de auxina.
Já as giberelinas são produzidas pelas folhas maduras, e são transportadas através do 
floema para outros órgãos das plantas. As giberelinas possuem um importante papel no 
estimula da atividade cambial, sendo relacionada à formação e ao desenvolvimento de fibras 
no xilema. Uma maior concentração de giberelinas estimula a formação de uma maior 
quantidade de fibras a partir das iniciais cambiais. Porém, a giberelina somente age na 
presença de uma concentração mínima de auxina.
Por fim, as citoquininas possuem um papel sobre a atividade cambial considerado 
incerto até o momento. A citoquinina é produzida nos ápices radiculares é transporta pelo 
fluxo de água no xilema resultante da transpiração foliar.
Registro do produto da atividade cambial e dendrocronologia
A interação entre as ações de cada hormônio produzido em diferentes partes das 
plantas modula os produtos da atividade cambial, ficando assim, a fisiologia da planta 
registrada especialmente no lenho. A anatomia pode ser considerada como uma evidência, e 
um registro, da fisiologia da planta num determinado momento de sua vida. Esta relação 
temporal do registro fica mais evidente quando são analisadas sob a perspectiva dos anéis de 
crescimento presentes no xilema.
A dendrocronologia tem como objetivo primordial estudar a sequência de anéis de 
crescimento em plantas lenhosas para determinar o ano calendário de formação de cada um 
deles (Stokes & Smiley 1996). Por mais trivial que seja este objetivo, a datação dos anéis de 
crescimento abre um leque de possibilidades, já que as plantas podem manter, no lenho, um 
registro biológico de grande parte dos eventos que influenciaram o seu crescimento ao longo 
da vida.
Como registro natural, os anéis de crescimento são considerados um dos mais 
18
BOTÂNICA NO INVERNO 2012
O Caule: um enfoque na atividade cambial 
precisos. Esta confiança na datação provém da elaboração das cronologias de 
crescimento baseadas na replicação populacional e em métodos estatísticos robustos.
A dendrocronologia é uma ciência recente, em amplo desenvolvimento. Seus 
primeiros laboratórios foram estabelecidos na América do Norte e na Europa por volta da 
década de 1920, os quais tinham como principal objetivo datar artefatos históricos e 
arqueológicos com base nas sequências de anéis de crescimento. A partir da década de 1970, 
a dendrocronologia passou a ser utilizada para responder uma variada gama de questões 
científicas, desde compreensão da ecologia de algumas espécies, até a reconstrução climática 
do último milênio, sob o olhar das mudanças climáticas (Scweingtruber 1996).
Pressupostos da dendrocronologia
Anéis de crescimento visíveis
Qualquer estudo de dendrocronologia inicia-se com a identificação dos anéis de 
crescimento. Esses são camadas sucessivas, concêntricas, presentes na madeira, demarcada 
por variações na anatomia do lenho. Basicamente, são demarcados por traqueídes achatadas 
e de parede mais espessa nas coníferas, e por uma disposição variada de estruturas 
anatômicas nas angiospermas (Figura 10).
Estas disposições podem ser caracterizadas por uma redução gradual, ou abrupta, dos 
diâmetros dos vasos, ou pela presença de uma faixa de parênquima marginal, ou uma 
camada fibrosa, entre outras. Os anéis podem ser delimitados pela presença de uma ou mais 
destas características. 
19
BOTÂNICA NO INVERNO 2012
Figura 10- Exemplos de anéis de crescimento em uma espécie de conífera: Podocarpus 
lambertii Klotzsh ex Endl. (A preparação histológica e B preparação macroscópica) e numa 
espécie de angiosperma: Hymenaeacourbaril L. (C preparação histológica e D preparação 
macroscópica).
 1. Estrutura e Desenvolvimento
Anéis de crescimento anuais
Para que uma espécie possa ser utilizada num estudo de dendrocronologia, ela precisa 
possuir anéis de crescimento que são formados a cada ano. Somente assim, a atribuição de 
um ano calendário ao anel de crescimento poderá ser realizada.
Anéis de crescimento sensitivos
Os anéis de crescimento podem ser classificados quanto à sensitividade: em 
complacentes e sensitivos. Os anéis considerados complacentes possuem pouca variação no 
tamanho ao longo de uma série de crescimento, enquanto que os anéis sensitivos possuem 
uma grande variação na dimensão ao longo do lenho. 
Ambientes com condições de crescimento próximas do ótimo induzem um 
crescimento anual praticamente constante, o que resulta em anéis complacentes. Já 
ambientes com uma condição mais estressante de crescimento tendem a produzir anéis mais 
sensitivos. Como exemplos de ambientes que produzem anéis sensitivos (ideais para coleta 
de amostras), podem ser listados: locais com grande drenagem (encostas de morro, solos 
com altas concentrações de silte e areia, solos rasos), ambientes com grande demanda 
evaporativa (cerrado e caatinga), solos pobres em nutrientes, locais com propensão ao 
congelamento, entre outros.
Este parâmetro pode ser medido e indexado com o cálculo da sensitividade média, a 
qual é uma medida da variância do tamanho dos anéis de crescimento. A sensitividade média 
varia numa escala de 0 a 1, na qual os valores entre 0 e 0.19 são considerados baixos, e 
portanto os anéis tendem a ser complacentes. Valores entre 0.20 e 0.29 são considerados 
intermediários, e acima de 0.30, são sensitivos e ideais para uma análise dendrocronológica.
Figura 11 - Comparação entre anéis de crescimento considerados 
sensitivos e os complacentes (modificado, Stokes & Smiley 1996).
Sinal comum
Os anéis de crescimento sensitivos precisam possuir um padrão de crescimento 
(também definido como sinal) comum numa população. Este padrão de crescimento é o 
20
BOTÂNICA NO INVERNO 2012
O Caule: um enfoque na atividade cambial 
utilizado na datação cruzada, para a atribuição de um ano calendário a cada anel de 
crescimento.
Datação cruzada
O processo de datação cruzada é o cerne de qualquer trabalho de dendrocronologia. 
O objetivo dela é a identificação do padrão comum de crescimento na população, o qual 
resulta na construção de uma cronologia mestre para a datação. Durante este processo, há 
apenas dois problemas que podem ser enfrentados, a presença de anéis de crescimento 
faltantes ou a presença de anéis de crescimento falsos. A identificação e correção destes dois 
problemas são essenciais ao sucesso do processo de datação cruzada.
Figura 12. Tipos de problemas que podem ser identificados em cronologias de anéis de crescimento: anéis faltantes (no caso 
confluentes) e anéis falsos (camadas de crescimento que foram formadas em algum momento durante a estação de crescimento).
Bibliografia Sugerida
Aloni, R. 2010. The induction of vascular tissues by auxin. In:Davis P. Plant Hormones – 
Biosynthesis, Signal Transduction, Action. Springer.
Aloni, R.; Langhans, M.; Aloni, E.; Dreieicher, E. & Ullrich, C.I. 2005. Root-shynthesized 
cytokinin in Arabdopsis is distributed in shoot by transpiration stream. Journal of 
Experimental Botany. v. 56. p. 1535-1544.
Angyalossy, V.; Angeles, G.; Pace, M.R.; Dias-Leme, C.L.; Lima, A.C.; Lohmann, L.G. & 
Madero-Vega, C. 2012. An overview on the anatomy, development, and evolution of the 
vascular system of lianas. Plant Ecology and Diversity. p. 1-16.
Dayan, J.; Voronin, N.; Gong, F.; Sun, T.; Hedden, P.; Fromm, H. & Aloni, R. 2012. Leaf-induced 
Gibberellin Signaling is essential for internode elongation, cambial activity and fiber 
differentiation in Tabacco stems. The Plant Cell. v. 24. p. 66-79.
Elo, A.; Immanen, J.; Nieminen, K.; Helariutta, Y. 2009. Stem cell function during plant vascular 
development. Seminars in Cell & Development Biology. v. 20. p. 1097-1106.
Esau, K. 1974, Anatomia das plantas com sementes, Editora Blucher, São Paulo, 293pg.
Ewers, F.W. & Fisher, J.B. 1991. Why vines have narrow stems: histological trends in Bauhinia 
(Fabaceae). Oecologia v. 88. p. 233-237.
Fisher, J.B. & Ewers, F.W. 1991. Structural responses to stem injury in vines, p. 99–124. In F. E. 
21
BOTÂNICA NO INVERNO 2012
9 anos
8 anos7 anos
6 anos
Anel falsoAnel confluente
 1. Estrutura e Desenvolvimento
Putz and H. A. Mooney (eds.), The Biology of Vines. Cambridge University Press, New 
York, NY.
Grissino-Meyer, H.D. 2001. Evaluating crossdating accuracy: a manual and tutorial for the 
computer program Cofecha. Tree-ring Research. v. 57(2). p. 205-221.
Ko, J.; Han, K.; Park, S. & Yang, J. 2004. Plant body weight-induced secondary growth in 
arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. 
Plant Physiology. v. 135. p. 1069-1083.
Lima, A.; Pace, M. & Angyalossy, V. 2010. Seasonality and growth rings in lianas of 
Bignoniaceae. Trees-Structure and Function. v. 24. p. 1045–1060.
Obaton, M. 1960. Les lianes ligneuses à structure anormale des forêts denses d’Afrique 
Ocidentale. Annales des Sciences Naturelles. v. 12(1). p. 1-220.
Pace, M.R.; Lohmann, L.G. & Angyalossy V. 2011. Evolution of dis- parity between the regular 
and variant phloem in Bignonieae (Bignoniaceae). American Journal of Botany. v. 98. p. 
602–618.
Pfeiffer, H. 1926. Das Abnorme Dickenwachstum – Handbuch der Pflanzenanatomie. Band IX. 
Verlag von Gebrüder Borntraaeger. Berlin.
Putz, F.E. & Holbrook, N.M. 1991. Biomechanical studies of vines, p. 73–97. In F. E. Putz and H. 
A. Mooney (eds.), The Biology of Vines. Cambridge University Press, New York, NY.
Scarpella, E. & Meijer, A.H. 2004. Pattern formation in the vascular system of monocot and dicot 
plant species. New Phytologist. v. 164. p. 209-242.
Schenck, H. 1893. Beiträge zur Biologie und Anatomie der Lianen, im Besonderen der in 
Brasilien einheimischen Arten. II. Theil. Beiträge zur Anatomie der Lianen. Jena.
Schöngart, J.; Junk, W.J.; Piedade, M.T.F.; Ayres, J.M.; Hüttermann, A. & Worbes, M., 2004, 
Teleconnection between tree growth in the Amazonian flood-plains and El Niño-Southern 
Oscillation effect. Global Chnage Biology. v. 10. p. 683-692.
Schweingruber, F.H. 1988. Tree rings. Basics and applications of dendrochronology. Kluwer, 
Academic press, Dordrecht, Boston, London.
Schweingruber, F.H. 1996. Tree rings and environment dendroecology, Birmensdorf, Swiss 
Federal Institute for Forest, Snow and Landscape Research, Berne, Stuttgart, Vienna, 
Haupt, 609 pg.
Stokes, A.M. & Smiley, T.L., 1996, An introduction to tree-ring dating, The University of Arizona 
Press, Tucson.
22
BOTÂNICA NO INVERNO 2012
Folha: desenvolvimento, estrutura e função 
Folha: desenvolvimento, estrutura e função
Aline Siqueira Nunes
Leonardo Hamachi
Mariane Sousa Baena
Paula Natália Pereira
Paulo Tamaso Mioto
Rafael Cruz
A folha é um órgão de grande importância para a planta por ser o principal 
responsável pela realização da fotossíntese. Ao longo do Curso de Inverno, serão abordados 
vários de seus aspectos, em dois módulos subsequentes: na Parte I trataremos da estrutura 
foliar, com considerações sobre a evolução, ontogênese, forma e anatomia desse órgão; na 
Parte II será visto sua função com abordagens sobre o papel da folha no corpo vegetal. A 
aula começará abordando o surgimento das folhas nas primeiras plantas terrestres e, então, 
como asfolhas se desenvolvem a partir do meristema apical caulinar, realizam suas funções 
quando completamente desenvolvidas e, por fim, como se dá o processo de senescência 
foliar. Ao considerarmos a planta como um todo, observamos que há um período inicial no 
qual a folha necessita de um aporte de energia e matéria orgânica para que possa crescer. Aos 
poucos ela passa a ser capaz, através da fotossíntese, de produzir carboidratos que serão 
enviados para o restante da planta. A partir de certo ponto a folha começa a entrar em 
processo de senescência, no qual a maior parte dos seus componentes é exportada para 
tecidos mais jovens. Todos esses processos são finamente regulados nas plantas, o que 
permite que elas mantenham sua homeostase.
Parte I
Origem das plantas terrestres e as primeiras folhas
As primeiras evidências de vegetais terrestres encontradas são esporos, datados de 
460 milhões de anos, cuja morfologia sugere que foram produzidos por plantas parecidas 
com hepáticas. Por volta de 420 milhões de anos atrás, fósseis mostram que as plantas ainda 
apresentavam uma estrutura bastante simples com ramos aéreos já providos de células 
condutoras de água, sendo um fóssil de Cooksonia o primeiro registro de planta vascular 
encontrado. As primeiras plantas terrestres não possuíam folhas, sendo compostas apenas de 
estruturas caulinares e, de acordo com a teoria do teloma de Zimmermann, as folhas teriam 
surgido através de uma redução de um sistema de ramos laterais. Primeiramente, houve uma 
modificação da estrutura dicotômica para a formação de um eixo principal e ramos laterais 
(overtopping). Em seguida, os ramos que se posicionavam formando uma estrutura 
tridimensional ficaram restritos a apenas um plano (planation) e, por fim, tecido 
parenquimático fotossintetizante começa a se formar entre os ramos, ligando-os (webbing), 
Figura 1.
23
BOTÂNICA NO INVERNO 2012
 1. Estrutura e Desenvolvimento
Figura 1-Esquema ilustrando o surgimento das folhas a partir de uma planta 
ancestral que apresentava apenas ramos segundo a teoria do teloma. A. Planta 
formada apenas por ramos, com padrão de ramificação dicotômico. B. Planta 
formada de um eixo principal e ramos laterais. C. Os ramos sofrem uma 
modificação em sua estrutura, estando agora posicionados em apenas um plano. 
D. Concrescimento de tecido parenquimático (em cinza) entre os ramos, 
formando a lâmina foliar.
Plantas com folhas evoluíram há 410 milhões de anos e os microfilos de 
Baragwanathia longifolia foram as primeiras estruturas foliares encontradas no registro 
fóssil. Durante o período Devoniano (~420-350 milhões de anos) ocorreu uma explosão de 
diversidade nas plantas e surgiram características que possibilitaram que plantas terrestres, 
antes ocupando apenas áreas úmidas, pudessem colonizar áreas mais secas. Nesse período, 
folhas de formas mais complexas evoluíram a partir de folhas incipientes e, como conferiam 
uma vantagem adaptativa ao ambiente terrestre, foram mantidas ao longo da evolução. 
Atualmente podemos dividir as folhas em simples ou compostas, sendo que as folhas simples 
possuem lâminas foliares inteiras e as folhas compostas apresentam a lâmina subdividida em 
folíolos. A subdivisão da lâmina foliar em folíolos maximiza a área fotossintética e diminui a 
tensão mecânica potencial que uma superfície única e inteira, como as lâminas simples, 
sofreria. Atualmente, quase todas as plantas vasculares possuem folhas e as espécies afilas 
(sem folhas) evoluíram através de perda secundária a partir de um ancestral que possuía 
folhas. Entretanto, as plantas afilas, em geral, desenvolveram outras estratégias 
fotossintéticas como caules ou raízes fotossintetizantes.
Diferentemente dos animais, que apresentam crescimento fechado e determinado, os 
vegetais apresentam crescimento aberto e indeterminado. A forma geral que vemos nos 
animais adultos é determinada no início do desenvolvimento e uma vez que os animais se 
tornam adultos (capazes de se reproduzir), sua forma não mudará muito ao longo de sua 
vida. Por outro lado, as plantas continuam a crescer por toda a vida e sua forma geral não é 
definida na fase embrionária. Dessa forma, seu desenvolvimento é dito indeterminado. Além 
disso, seu número de partes não é fixo (é, na maior parte das vezes, impossível predizermos 
quantos galhos ou folhas uma árvore adulta possuirá) sendo assim também denominado 
aberto. Os animais, ao contrário, têm uma forma corporal pré-programada e com número de 
partes definido (por exemplo, seres humanos terão cinco dedos em cada mão), sendo 
considerados, portanto, de crescimento fechado. As plantas têm essa capacidade de crescer 
durante toda a sua vida devido à retenção, na fase adulta, de regiões meristemáticas com 
potencial pra se multiplicar e formar tecidos. Essas zonas meristemáticas, denominadas 
meristema apical caulinar (MAC) e meristema apical radicular são posicionadas cedo no 
desenvolvimento. Um embrião vegetal é muito simples quando comparado ao de um animal, 
24
BOTÂNICA NO INVERNO 2012
Folha: desenvolvimento, estrutura e função 
consistindo basicamente da radícula, hipocótilo, cotilédones, meristema apical caulinar e 
meristema apical radicular. É a partir da atividade desses dois meristemas apicais que todo o 
corpo da planta adulta se forma após a germinação da semente e mutações que suprimem a 
formação de um deles, em geral, são fatais.
Especificamente, a arquitetura primária das partes aéreas da planta é derivada do 
meristema apical caulinar, o qual produz folhas, internós e gemas axilares. Diferenças 
aparentemente simples na iniciação do órgão a partir do MAC podem resultar em 
morfologias dramaticamente divergentes. Dessa maneira, a organização e manutenção do 
meristema continuam a ser uma questão fundamental nos estudos de desenvolvimento das 
plantas.
Ontogênese foliar
O desenvolvimento foliar pode ser dividido em quatro estágios: iniciação, 
diferenciação inicial, desenvolvimento do eixo da folha e, por fim, origem e histogênese da 
lâmina foliar. A iniciação da folha ocorre por meio de divisões que ocorrem em um pequeno 
grupo de células lateralmente situadas em relação ao ápice do caule, o que resulta na 
formação do primórdio foliar. Este primórdio, que consiste em uma protoderme, uma região 
central de tecido fundamental e procâmbio tem a forma de um pequeno cone, com a face 
adaxial achatada. As células apicais do primórdio foliar apresentam diferenciação 
relativamente rápida, sendo grande parte do crescimento no sentido próximo-distal dado por 
crescimento intercalar. O crescimento em comprimento do eixo é acompanhado pelo 
aumento na largura, como resultado de divisões celulares na região adaxial, proporcionando 
um aumento em volume do primórdio foliar. Feixes vasculares acessórios podem se 
desenvolver a partir dessa região. 
O desenvolvimento da lâmina foliar ocorre durante o crescimento em comprimento e 
espessura do primórdio por meio de células das margens que continuam a se dividir, 
formando a blastozona/meristema marginal. O crescimento marginal varia entre as regiões 
do primórdio foliar de modo que, nas folhas pecioladas, tal crescimento é reprimido na base, 
da qual se originará o pecíolo. A partir de divisões de células iniciais marginais, originam-se 
os tecidos da lamina foliar (epiderme, mesofilo e tecidos vasculares).
Trabalhos recentes, com base em anatomia e biologia molecular, têm descrito etapas 
em três fases: iniciação, morfogênese primária e expansão e morfogênese secundária. A 
iniciação foliar a partir dos flancos do meristema apical caulinar é um processoainda não 
completamente entendido, porém sabe-se que mutações que o afetam têm um impacto 
dramático na forma final da folha e que muitos aspectos da morfologia foliar são 
determinados nessa fase inicial de desenvolvimento. As primeiras mudanças detectadas no 
MAC são um pico de auxina e um afrouxamento das microfibrilas de celulose da parede 
celular na região do meristema onde estará posicionado o futuro primórdio. Essa mudança na 
consistência das microfibrilas se deve a expressão aumentada de genes ligados à produção de 
expansina, uma proteína que regula a extensibilidade da parede celular, e é necessária para 
que o primórdio foliar possa emergir do meristema. Outro marcador do local de iniciação são 
os genes KNOX, que se expressam no MAC, porém são reprimidos no local da iniciação do 
primórdio na fase em que nenhuma mudança morfológica é observada ainda no MAC. O 
meristema apical caulinar é uma estrutura radialmente simétrica e a iniciação de órgãos 
laterais, num padrão filotático, implica na quebra dessa simetria, o que segundo as teorias 
mecânicas da filotaxia (mechanical phyllotactic theories) ocorreria devido a uma diferença 
25
BOTÂNICA NO INVERNO 2012
 1. Estrutura e Desenvolvimento
de tensão entre a camada L1 e os tecidos subjacentes. De acordo com essas teorias, as forças 
mecânicas teriam um papel fundamental na definição do local de iniciação do primórdio. 
Porém, para entender as forças de tensão é necessário entender o papel do turgor, as 
propriedades da parede celular, a arquitetura do citoesqueleto e o processo de crescimento de 
uma maneira geral. Entretanto, entender a regulação genética de todos estes processos tem 
se mostrado uma tarefa bastante complicada. Desta forma, não é um consenso entre 
pesquisadores que a contribuição das forças mecânicas na determinação da filotaxia seja 
fundamental. O termo morfogênese primária é usado para descrever os processos que 
estabelecem a forma básica da folha, relacionada à sua simetria e sub-regiões. Na fase de 
expansão e morfogênese secundária ocorre aumento na superfície e no volume final da folha, 
cuja expansão pode ser isométrica ou alométrica, podendo o órgão manter ou alterar a forma 
estabelecida durante a morfogênese primária.
Figura 2-Secção longitudinal do ápice caulinar de Coleus 
sp., mostrando o meristema apical, primórdios foliares e 
gemas axilares.
Genética molecular do desenvolvimento foliar
Recentemente muitos progressos têm sido feitos no entendimento dos mecanismos 
moleculares que regulam o desenvolvimento das folhas. Duas famílias de fatores de 
transcrição são conhecidas por estarem envolvidas no controle do desenvolvimento foliar, os 
genes KNOTTED-like da classe 1 (KNOX1) e os genes LEAFY/FLORICAULA (LFY/FLO).
Os genes KNOX1 são conhecidos por seu papel importante na manutenção da 
indeterminação dos tecidos do MAC (sua expressão mantém os células em estado 
meristemático), porém análises moleculares indicam que os genes KNOX1 também se 
expressam durante o desenvolvimento de folhas compostas. Neste tipo de folha a expressão 
dos genes KNOX1 faz com que os tecidos se mantenham por mais tempo em estado 
meristemático, conferindo às folhas uma capacidade maior de crescimento indeterminado. 
Este tempo mais longo de indeterminação do primórdio é necessário para que as elaborações 
da lâmina, como folíolos e lobos, possam se desenvolver. Os genes KNOX1 estão envolvidos 
no desenvolvimento das folhas compostas de quase todas as linhagens de eudicotiledôneas 
analisadas até o momento e uma exceção importante nessa tendência de expressão do gene 
KNOX1 no primórdio de folhas compostas é observada em Pisum (ervilha), onde este gene 
não se expressa nos primórdios nem em folhas mais velhas. Em Pisum, os tecidos são 
mantidos em estado indiferenciado por mais tempo através da expressão do gene LFY/FLO e 
26
BOTÂNICA NO INVERNO 2012
Folha: desenvolvimento, estrutura e função 
mutações neste gene fazem com que a folha de ervilha se torne simples.
Existem vários genes que são antagonistas ao KNOX1 e LFY/FLO, pois promovem a 
diferenciação dos tecidos onde se expressam. Este é o caso dos genes que controlam o 
estabelecimento da polaridade abaxial-adaxial nas folhas. As folhas possuem tecidos 
bastante diferentes nas faces abaxial e adaxial, que desempenham funções distintas. Na face 
adaxial, comumente, encontra-se uma camada de parênquima paliçádico, que otimiza a 
fotossíntese e uma camada espessa de cutícula sobre a epiderme. Em geral, na face abaxial 
encontra-se o parênquima lacunoso e um maior número de estômatos, que regulam as trocas 
gasosas e a transpiração. Toda essa diversidade de tecidos é gerada a partir da expressão de 
muitos genes, que além de serem antagonistas ao KNOX1 e LFY/FLO também são 
antagonistas entre si. Em geral, genes que se expressam na face adaxial reprimem a 
expressão de genes que se expressam na face abaxial e vice-versa. Mais especificamente a 
polaridade abaxial-adaxial é estabelecida pela repressão mútua entre os genes HD-ZIPIII e o 
gene KANADI. Experimentos mostram que mutantes que não expressam algum dos genes de 
identidade abaxial ou adaxial desenvolvem folhas que não possuem lamina foliar e são 
aciculiformes (que lembram gavinhas ou espinhos). Assim, o estabelecimento correto da 
polaridade abaxial-adaxial é necessário e, pode-se dizer, um pré-requisito para que ocorra a 
expansão da lâmina foliar. A expansão da lâmina foliar e também a diferenciação dos tecidos 
diversos que a compõem foram adaptações que maximizaram a fotossíntese ao mesmo 
tempo em que minimizaram a perda de água para o ambiente, sendo assim importantes 
inovações para a conquista do ambiente terrestre pelas plantas.
A forma da folha
Embora alguns padrões do desenvolvimento foliar pareçam ser comuns em plantas 
vasculares, diferenças na ontogênese, em vários aspectos, levam a uma gama de formas 
finais distintas que tornam a folha o órgão vegetativo mais plástico dentre as traqueófitas, 
adquirindo grande importância em estudos taxonômicos, ecofisiológicos e na área de 
genética molecular do desenvolvimento, visto que é um ótimo modelo para investigar a 
regulação gênica fina devido a toda a variação de formas.
Na maioria das plantas vasculares encontramos associada à axila da folha uma gema 
de estrutura semelhante ao ápice caulinar, podendo assumir atividade semelhante a este e dar 
origem a um ramo. Ela pode ser facilmente identificada à vista desarmada ou com o auxílio 
de uma lupa tornando-se a melhor estrutura capaz de individualizar uma folha 
morfologicamente. Esta característica, no entanto, surgiu tardiamente dentro da filogenia das 
traqueófitas e plantas como as licófitas, monilófitas e cicadófitas não apresentam gemas 
axilares. Consequentemente, também não possuem este tipo de ramificação.
Uma vez individualizada, a forma da folha pode ser melhor entendida subdividindo-a 
em uma porção conhecida como lâmina (mais apical e geralmente expandida) e uma porção 
conhecida como base (associada à inserção da folha no caule) morfoanatomicamente 
distintas. A base da folha comumente é cilíndrica em não monocotiledôneas, sendo chamada 
de pecíolo (e, mais especificamente, de estipe nas samambaias). Em monocotiledôneas a 
base costuma ser expandida e envolvente, sendo chamada bainha. Ambas as estruturas 
podem co-ocorrer na base (uma bainha proximal e pecíolo distal) e não são exclusivas destes 
grupos (há monocotiledôneas pecioladas e não monocotiledôneas com bainhas). A base ainda 
pode ser imperceptível morfologicamente e a folha é assim chamada séssil. Projeções 
laterais dabase podem surgir nos primeiros estágios de formação da folha, sendo chamadas 
27
BOTÂNICA NO INVERNO 2012
 1. Estrutura e Desenvolvimento
de estípulas, que podem assumir diversas funções. Geralmente ocorrem aos pares, mas 
possuem morfologia bastante variável. Em gramíneas é comum ainda o surgimento de uma 
projeção adaxial entre a bainha e a lâmina foliar conhecida como lígula, também de 
morfologia variável. Em algumas plantas, principalmente leguminosas e marantáceas, um 
intumescimento do pecíolo conhecido como pulvino ocorre e está relacionado ao movimento 
da lâmina foliar de velocidade variável, desencadeado por higroscopia e/ou potencial 
elétrico, relacionado à proteção da folha ou à melhor captação de luz.
A lâmina foliar pode assumir diversas dimensões, de milímetros a metros. Varia 
muito em sua simetria, podendo ser desde perfeitamente simétrica bilateralmente até 
completamente assimétrica. Algumas folhas são curtas, semelhantes a escamas e 
relacionadas à proteção de gemas: os catafilos. Outras acumulam uma grande quantidade de 
água, sendo suculentas. Algumas são cilíndricas, o que muitas vezes está relacionado a um 
crescimento adaxial muito incipiente durante a ontogênese. Folhas relacionadas a estruturas 
reprodutivas muitas vezes são diferentes das demais e chamadas de brácteas.
Numa lâmina foliar expandida geralmente o tecido vascular é facilmente perceptível, 
traçando vários padrões. Numa primeira classificação, podemos dividi-las em grandes 
grupos: folhas uninérveas (uma única nervura, como geralmente presente nas licófitas), com 
venação dicotômica (comum nas plantas com sementes, exceto em angiospermas), com 
venação reticulada (geralmente com uma nervura central distinta e nervuras laterais que 
partem desta e se conectam, formando uma trama com terminações livres, comuns em 
angiospermas não monocotiledôneas) e com venação paralela (as nervuras correm 
paralelamente da base ao ápice da folha com poucas conexões entre ela e sem terminações 
livres, condição comum em monocotiledôneas).
A folha como um todo ou suas partes (lâmina, folíolo, estípulas) podem sofrer 
modificações muito especializadas a determinadas funções. Estas modificações podem ser as 
gavinhas, geralmente alongadas, cilíndricas e, muitas vezes, com crescimento helicoidal, 
relacionado à escalada em um suporte (plantas trepadeiras). Podem também ser cilíndricas e 
alongadas, mas muito lignificadas e geralmente pontudas, relacionadas à proteção e 
conhecidas como espinhos. Espinhos podem facilmente ser confundidos com acúleos, 
também pontudos, que são apenas projeções da epiderme e tecido subjacentes, mas não 
relacionados à modificação de um órgão como um todo e, portanto, sem topologia tão bem 
definida como os espinhos. Em plantas carnívoras, a lâmina foliar pode ser modificada em 
armadilhas de invertebrados apressórias, adesivas, suctórias ou em forma de jarro e liberam 
enzimas proteolíticas necessárias para a carnivoria.
As estruturas foliares podem ser glabras ou possuírem um grande número de tricomas 
(pilosas), de funções diversas. Seus pigmentos podem estar regularmente presentes em toda a 
lâmina dando-a uma cor geralmente verde, devido à clorofila. No entanto, com a presença de 
outros pigmentos e disposição diferencial destes, de plastídeos e de tricomas, que 
influenciam na reflexão luminosa, a folha pode apresentar cores diferentes na face abaxial e 
adaxial. As diferenças de cores ainda podem formar manchas, listras, pontos ou outras 
formas em uma mesma face e a folha é dita variegada.
Ao longo da evolução, em diversos momentos, a lâmina foliar sofreu divisão, 
individualizando folíolos e dando origem às folhas compostas. Uma folha com dois ou três 
folíolos é dita bi ou trifoliolada, respectivamente. Se a folha tem mais de três folíolos, eles 
podem partir todos de um mesmo ponto e a folha é palmada (em forma de palma) ou 
possuírem um eixo cilíndrico alongado (raque) no qual os folíolos se inserem sendo pinada 
28
BOTÂNICA NO INVERNO 2012
Folha: desenvolvimento, estrutura e função 
(em forma de pena). Se uma folha pinada tem folíolos terminais pares, é paripinada. Se 
possuir um único folíolo terminal, é imparipinada. Há ainda folhas com um único folíolo, 
denominadas unifolioladas, derivadas evolutivamente de uma condição composta, com uma 
articulação na base do folíolo como testemunha desta redução de número de folíolos. 
Filogeneticamente as folhas compostas podem ter origem por lobação gradual da lâmina 
foliar com um aprofundamento tão intenso dos lobos que estes atingiram a nervura principal 
gerando os folíolos (divisão), outra hipótese é que elas tenham surgido por homeose. Diz-se 
que ocorreu homeose quando no local de formação de um determinado órgão, outro órgão ou 
características de outro órgão são expressos. Dessa maneira, as folhas compostas teriam 
surgido através de uma alteração no padrão de desenvolvimento das folhas simples, e várias 
estruturas simples (folíolos) teriam se formado onde uma lâmina foliar única deveria ser 
produzida (multiplicação). Nesse caso, as estruturas simples seriam como folhas simples 
sendo produzidas por uma estrutura caulinar, assim características caulinares estariam sendo 
expressas no desenvolvimento das folhas compostas, que por sua vez teriam uma identidade 
mista, sendo um órgão intermediário entre caule e folha. Assim como a lâmina simples pode 
portar modificações da base, os folíolos podem ter modificações de segunda ordem 
associadas a eles, como peciololos, pulvínulos e estipelas (respectivamente pecíolos, 
pulvinos e estípulas de segunda ordem).
No ápice caulinar, os espaços entre o surgimento de um primórdio e outro 
subsequente podem vir a se alongar, dando origem, na maturação a um internó, que na planta 
adulta pode ser identificado como as regiões caulinares que separam os pontos de inserção 
de folhas: os nós. No entanto, alguns desses espaços podem não vir a se alongar e mais de 
uma folha pode ocupar o mesmo nó. A esta disposição chamamos de filotaxia e pode ser 
alterna (uma folha por nó), oposta (duas folhas por nó, sendo geralmente uma folha 
posicionada a 180° em relação à outra do mesmo nó) ou verticilada (três ou mais folhas por 
nó). Uma folha alterna pode estar disposta em relação à anterior em um mesmo lado do caule 
(monóstica), em dois ou três lados do caule (dística ou trística) ou em tantos lados que 
chegam a formar uma espiral, vista do alto do ramo (espiralada, comumente presente em 
rosetas). Em folhas opostas, comumente os pares de folhas estão posicionados a 90° em 
relação ao anterior, vistas do alto do ramo (opostas cruzadas) ou no mesmo plano (opostas 
dísticas). Uma planta pode apresentar regularmente folhas muito semelhantes ou estas 
podem variar em forma (junto ao nó e internós associados) e neste caso, a planta apresenta 
heterofilia. Se a variação é em relação à idade da planta (por exemplo, indivíduos juvenis 
apresentam uma determinada morfologia e indivíduos adultos, outra) a planta apresenta 
heteroblastia.
Deve-se atentar ao fato de que condições intermediárias não só existem como são 
bastante comuns na natureza e as categorizações humanas não conseguem refletir toda a 
magnitude realística existente. Toda esta diversidade morfológica está relacionada às funções 
fisiológicas da planta, é determinada por processos evolutivos atuantes ao longo de milhões 
de anos e foi gerada por alterações nos padrões de ontogênese das primeiras plantas 
vasculares.
Anatomia foliar
As folhas, de modo geral, compartilham muitas similaridades quanto aos tecidos que 
as formam, de modo

Continue navegando