Buscar

TCC Sistema Circulatório

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 176 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 176 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 176 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

SISTEMA CARDIOVASCULAR
A função básica do sistema cardiovascular é a de levar material nutritivo e oxigênio às células. O sistema circulatório é um sistema fechado, sem comunicação com o exterior, constituído por tubos, que são chamados vasos, e por uma bomba percussora que tem como função impulsionar um líquido circulante de cor vermelha por toda a rede vascular.
O sistema cardiovascular consiste no Sangue, no Coração e nos Vasos Sanguíneos. Para que o sangue possa atingir as células corporais e trocar materiais com elas, ele deve ser, constantemente, propelido ao longo dos vasos sanguíneos. O coração é a bomba que promove a circulação de sangue por cerca de 100 mil quilômetros de vasos sanguíneos.
Circulação Pulmonar e Sistêmica:
Circulação Pulmonar – leva sangue do ventrículo direito do coração para os pulmões e de volta ao átrio esquerdo do coração. Ela transporta o sangue pobre em oxigênio para os pulmões, onde ele libera o dióxido de carbono (CO2) e recebe oxigênio (O2). O sangue oxigenado, então, retorna ao lado esquerdo do coração para ser bombeado para circulação sistêmica.
Circulação Sistêmica – é a maior circulação; ela fornece o suprimento sanguíneo para todo o organismo. A circulação sistêmica carrega oxigênio e outros nutrientes vitais para as células, e capta dióxido de carbono e outros resíduos das células.
CORAÇÃO
Apesar de toda a sua potência, o coração, em forma de cone, é relativamente pequeno, aproximadamente do tamanho do punho fechado, cerca de 12 cm de comprimento, 9 cm de largura em sua parte mais ampla e 6 cm de espessura. Sua massa é, em média, de 250 g, nas mulheres adultas, e 300 g, nos homens adultos.
O coração fica apoiado sobre o diafragma, perto da linha média da cavidade torácica, no mediastino, a massa de tecido que se estende do esterno à coluna vertebral; e entre os revestimentos (pleuras) dos pulmões. Cerca de 2/3 de massa cardíaca ficam a esquerda da linha média do corpo. A posição do coração, no mediastino, é mais facilmente apreciada pelo exame de suas extremidades, superfícies e limites. A extremidade pontuda do coração é o ápice, dirigida para frente, para baixo e para a esquerda. A porção mais larga do coração, oposta ao ápice, é a base, dirigida para trás, para cima e para a direita.
Limites do Coração: A superfície anterior fica logo abaixo do esterno e das costelas. A superfície inferior é a parte do coração que, em sua maior parte repousa sobre o diafragma, correspondendo a região entre o ápice e aborda direita. A borda direita está voltada para o pulmão direito e se estende da superfície inferior à base; a borda esquerda, também chamada borda pulmonar, fica voltada para o pulmão esquerdo, estendendo-se da base ao ápice. Como limite superior encontra-se os grandes vasos do coração e posteriormente a traqueia, o esôfago e a artéria aorta descendente. 
LIMITES DO CORAÇÃO
 
Camadas da Parede Cardíaca:
Pericárdio: a membrana que reveste e protege o coração. Ele restringe o coração à sua posição no mediastino, embora permita suficiente liberdade de movimentação para contrações vigorosas e rápidas. O pericárdio consiste em duas partes principais: pericárdio fibroso e pericárdio seroso.
 
O pericárdio fibroso superficial é um tecido conjuntivo irregular, denso, resistente e inelástico. Assemelha-se a um saco, que repousa sobre o diafragma e se prende a ele.
O pericárdio seroso, mais profundo, é uma membrana mais fina e mais delicada que forma uma dupla camada, circundando o coração. A camada parietal, mais externa, do pericárdio seroso está fundida ao pericárdio fibroso. A camada visceral, mais interna, do pericárdio seroso, também chamada epicárdio, adere fortemente à superfície do coração.
Epicárdio: a camada externa do coração é uma delgada lâmina de tecido seroso. O epicárdio é contínuo, a partir da base do coração, com o revestimento interno do pericárdio, denominado camada visceral do pericárdio seroso.
Miocárdio: é a camada média e a mais espessa do coração. É composto de músculo estriado cardíaco. É esse tipo de músculo que permite que o coração se contraia e, portanto, impulsione sangue, ou o force para o interior dos vasos sanguíneos.
Endocárdio: é a camada mais interna do coração. É uma fina camada de tecido composto por epitélio pavimentoso simples sobre uma camada de tecido conjuntivo. A superfície lisa e brilhante permite que o sangue corra facilmente sobre ela. O endocárdio também reveste as valvas e é contínuo com o revestimento dos vasos sanguíneos que entram e saem do coração.
CONFIGURAÇÃO EXTERNA
O coração apresenta três faces e quatro margens:
Faces
Face Anterior (Esternocostal) – Formada principalmente pelo ventrículo direito.
Face Diafragmática (Inferior) – Formada principalmente pelo ventrículo esquerdo e parcialmente pelo ventrículo direito; ela está relacionada principalmente com o tendão central do diafragma.
Face Pulmonar (Esquerda) – Formada principalmente pelo ventrículo esquerdo; ela ocupa a impressão cárdica do pulmão esquerdo.
Margem
Margem Direita – Formada pelo átrio direito e estendendo-se entre as veias cavas superior e inferior.
Margem Inferior – Formada principalmente pelo ventrículo direito e, ligeiramente, pelo ventrículo esquerdo.
Margem Esquerda – Formada principalmente pelo ventrículo esquerdo e, ligeiramente, pela aurícula esquerda.
Margem Superior – Formada pelos átrios e pelas aurículas direita e esquerda em uma vista anterior; a parte ascendente da aorta e o tronco pulmonar emergem da margem superior, e a veia cava superior entra no seu lado direito. Posterior à aorta e ao tronco pulmonar e anterior à veia cava superior, a margem superior forma o limite inferior do seio transverso do pericárdio.
 Externamente os óstios atrioventriculares correspondem ao sulco coronário, que é ocupado por artérias e veias coronárias, este sulco circunda o coração e é interrompido anteriormente pelas artérias aorta e pelo tronco pulmonar.
O septo interventricular na face anterior corresponde ao sulco interventricular anterior e na face diafragmática ao sulco interventricular posterior.
O sulco interventricular termina inferiormente a alguns centímetros dá à direita do ápice do coração, em correspondência a incisura do ápice do coração.
O sulco interventricular anterior é ocupado pelos vasos interventriculares anteriores.
Este sulco é ocupado pelos vasos interventriculares posteriores.
O sulco interventricular posterior parte do sulco coronário e desce em direção à incisura do ápice do coração.
 
CONFIGURAÇÃO INTERNA:
O coração possui quatro câmaras: dois átrios e dois ventrículos. Os Átrios (as câmaras superiores) recebem sangue; os Ventrículos (câmaras inferiores) bombeiam o sangue para fora do coração
Na face anterior de cada átrio existe uma estrutura enrugada, em forma de saco, chamada aurícula (semelhante a orelha do cão).
O átrio direito é separado do esquerdo por uma fina divisória chamada septo interatrial; o ventrículo direito é separado do esquerdo pelo septo interventricular.
 
 
ÁTRIO DIREITO
O átrio direito forma a borda direita do coração e recebe sangue rico em dióxido de carbono (venoso) de três veias: veia cava superior, veia cava inferior e seio coronário.
A veia cava superior, recolhe sangue da cabeça e parte superior do corpo, já a inferior recebe sangue das partes mais inferiores do corpo (abdômen e membros inferiores) e o seio coronário recebe o sangue que nutriu o miocárdio e leva o sangue ao átrio direito.
Enquanto a parede posterior do átrio direito é lisa, a parede anterior é rugosa, devido a presença de cristas musculares, chamados músculos pectinados.
O sangue passa do átrio direito para ventrículo direito através de uma válvula chamada tricúspide (formada por três folhetos – válvulas ou cúspides).
Na parede medial do átrio direito, que é constituída pelo septo interatrial, encontramos uma depressão que é a fossa oval.
Anteriormente, o átrio direitoapresenta uma expansão piramidal denominada aurícula direita, que serve para amortecer o impulso do sangue ao penetrar no átrio.
Os orifícios onde as veias cavas desembocam têm os nomes de óstios das veias cavas.
O orifício de desembocadura do seio coronário é chamado de óstio do seio coronário e encontramos também uma lâmina que impede que o sangue retorne do átrio para o seio coronário que é denominada de válvula do seio coronário.
ÁTRIO ESQUERDO
O átrio esquerdo é uma cavidade de parede fina, com paredes posteriores e anteriores lisas, que recebe o sangue já oxigenado; por meio de quatro veias pulmonares. O sangue passa do átrio esquerdo para o ventrículo esquerdo, através da Valva Bicúspide (mitral), que tem apenas duas cúspides.
O átrio esquerdo também apresenta uma expansão piramidal chamada aurícula esquerda.
VENTRÍCULO DIREITO
O ventrículo direito forma a maior parte da superfície anterior do coração. O seu interior apresenta uma série de feixes elevados de fibras musculares cardíacas chamadas trabéculas carnosas.
No óstio atrioventricular direito existe um aparelho denominado Valva Tricúspide que serve para impedir que o sangue retorne do ventrículo para o átrio direito. Essa valva é constituída por três lâminas membranáceas, esbranquiçadas e irregularmente triangulares, de base implantada nas bordas do óstio e o ápice dirigido para baixo e preso ás paredes do ventrículo por intermédio de filamentos.
Cada lâmina é denominada cúspide. Temos uma cúspide anterior, outra posterior e outra septal.
O ápice das cúspides é preso por filamentos denominados Cordas Tendíneas, as quais se inserem em pequenas colunas cárneas chamadas de Músculos Papilares.
A valva do tronco pulmonar também é constituída por pequenas lâminas, porém estas estão dispostas em concha, denominadas válvulas semilunares (anterior, esquerda e direita).
No centro da borda livre de cada uma das válvulas encontramos pequenos nódulos denominados nódulos das válvulas semilunares (pulmonares).
 
VENTRÍCULO ESQUERDO
O ventrículo esquerdo forma o ápice do coração. No óstio atrioventricular esquerdo, encontramos a valva atrioventricular esquerda, constituída apenas por duas laminas denominadas cúspides (anterior e posterior). Essas valvas são denominadas bicúspides. Como o ventrículo direito, também tem trabéculas carnosas e cordas tendíneas, que fixam as cúspides da valva bicúspide aos músculos papilares.
O sangue passa do átrio esquerdo para o ventrículo esquerdo através do óstio atrioventricular esquerdo onde localiza-se a Valva Bicúspide (mitral). Do ventrículo esquerdo o sangue sai para a maior artéria do corpo, a aorta ascendente, passando pela Valva Aórtica – constituída por três válvulas semilunares: direita, esquerda e posterior. Daí, parte do sangue flui para as artérias coronárias, que se ramificam a partir da aorta ascendente, levando sangue para a parede cardíaca; o restante do sangue passa para o arco da aorta e para a aorta descendente (aorta torácica e aorta abdominal). Ramos do arco da aorta e da aorta descendente levam sangue para todo o corpo.
O ventrículo esquerdo recebe sangue oxigenado do átrio esquerdo. A principal função do ventrículo esquerdo é bombear sangue para a circulação sistêmica (corpo). A parede ventricular esquerda é mais espessa que a do ventrículo direito. Essa diferença se deve à maior força necessária para bombear sangue para a circulação sistêmica.
GRANDES VASOS CARDÍACOS
Ciclo Cardíaco
Um ciclo cardíaco único inclui todos os eventos associados a um batimento cardíaco. No ciclo cardíaco normalmente os dois átrios se contraem, enquanto os dois ventrículos relaxam e vice-versa. O termo sístole designa a fase de contração; a fase de relaxamento é designada como diástole.
Quando o coração bate, os átrios contraem-se primeiramente (sístole atrial), forçando o sangue para os ventrículos. Uma vez preenchidos, os dois ventrículos contraem-se (sístole ventricular) e forçam o sangue para fora do coração.
Valvas na Diástole Ventricular	 Dinamismo das Valvas	 Valvas na Sístole Ventricular
Para que o coração seja eficiente na sua ação de bombeamento, é necessário mais que a contração rítmica de suas fibras musculares. A direção do fluxo sanguíneo deve ser orientada e controlada, o que é obtido por quatro valvas já citadas anteriormente: duas localizadas entre o átrio e o ventrículo – atrioventriculares (valva tricúspide e bicúspide); e duas localizadas entre os ventrículos e as grandes artérias que transportam sangue para fora do coração – semilunares (valva pulmonar e aórtica).Complemento: As valvas e válvulas são para impedir este comportamento anormal do sangue, para impedir que ocorra o refluxo elas fecham após a passagem do sangue.
Sístole é a contração do músculo cardíaco, temos a sístole atrial que impulsiona sangue para os ventrículos. Assim as valvas atrioventriculares estão abertas à passagem de sangue e a pulmonar e a aórtica estão fechadas. Na sístole ventricular as valvas atrioventriculares estão fechadas e as semilunares abertas a passagem de sangue.
SÍSTOLE VENTRICULAR – AÇÃO DAS VALVAS ÁTRIO-VENTRÍCULARES
 
 DIÁSTOLE VENTRICULAR – AÇÃO DAS VALVAS ÁTRIO-VENTRICULARES
Em conclusão disso podemos dizer que o ciclo cardíaco compreende:
1- Sístole atrial
2- Sístole ventricular
3- Diástole ventricular
Vascularização:
A irrigação do coração é assegurada pelas artérias coronárias e pelo seio coronário.
As artérias coronárias são duas, uma direita e outra esquerda. Elas têm este nome porque ambas percorrem o sulco coronário e são as duas originadas da artéria aortas.
A artéria, logo depois da sua origem, dirige-se para o sulco coronário percorrendo-o da direita para a esquerda, até ir se anastomosar com o ramo circunflexo, que é o ramo terminal da artéria coronária esquerda que faz continuação desta circundado o sulco coronário.
A Artéria Coronária Direita: dá origem a duas artérias que vão irrigar a margem direita e a parte posterior do coração, são ela artéria marginal direita e artéria interventricular posterior.
A Artéria Coronária Esquerda, de início, passa por um ramo por trás do tronco pulmonar para atingir o sulco coronário, evidenciando-se nas proximidades do ápice da aurícula esquerda.
Logo em seguida, emite um ramo interventricular anterior e um ramo circunflexo que dá origem a artéria marginal esquerda.
Na face diafragmática as duas artérias se anastomosam formando um ramo circunflexo.
O sangue venoso é coletado por diversas veias que desembocam na veia magna do coração, que inicia ao nível do ápice do coração, sobe o sulco interventricular anterior e segue o sulco coronário da esquerda para a direita passando pela face diafragmática, para ir desembocar no átrio direito.
A porção terminal deste vaso, representada por seus últimos 3 cm forma uma dilatação que recebe o nome de seio coronário.
O seio coronário recebe ainda a veia média do coração, que percorre de baixo para cima o sulco interventricular posterior e a veia pequena do coração que margeia a borda direita do coração.Há ainda veias mínimas, muito pequenas, as quais desembocam diretamente nas cavidades cardíacas.
Inervação:
A inervação do músculo cardíaco é de duas formas: extrínseca que provém de nervos situados fora do coração e outra intrínseca que constitui um sistema só encontrado no coração e que se localiza no seu interior.
A inervação extrínseca deriva do sistema nervoso autônomo, isto é, simpático e parassimpático.
Do simpático, o coração recebe os nervos cardíacos simpáticos, sendo três cervicais e quatro ou cinco torácicos.
As fibras parassimpáticas que vão ter ao coração seguem pelo nervo vago (X par craniano), do qual derivam nervos cardíacos parassimpáticos, sendo dois cervicais e um torácico.
Fisiologicamente o simpático acelera e o parassimpático retarda os batimentos cardíacos.
A inervação intrínseca ou sistema de condução do coração é a razão dos batimentos contínuos do coração. É uma atividade elétrica, intrínsecae rítmica, que se origina em uma rede de fibras musculares cardíacas especializadas, chamadas células auto-rítmicas (marca passo cardíaco), por serem auto-excitáveis.
A excitação cardíaca começa no nodo sino-atrial (SA), situado na parede atrial direita, inferior a abertura da veia cava superior. Propagando-se ao longo das fibras musculares atriais, o potencial de ação atinge o nodo atrioventricular (AV), situado no septo interatrial, anterior a abertura do seio coronário. Do nodo AV, o potencial de ação chega ao feixe atrioventricular (feixe de His), que é a única conexão elétrica entre os átrios e os ventrículos. Após ser conduzido ao longo do feixe AV, o potencial de ação entra nos ramos direito e esquerdo, que cruzam o septo interventricular, em direção ao ápice cardíaco. Finalmente, as miofibras condutoras (fibras de Purkinge), conduzem rapidamente o potencial de ação, primeiro para o ápice do ventrículo e após para o restante do miocárdio ventricular.
SISTEMA ELÉTRICO DO CORAÇÃO
Diástole é o relaxamento do músculo cardíaco, é quando os ventrículos se enchem de sangue, neste momento as valvas atrioventriculares estão abertas e as semilunares estão fechadas.
Valvas e Válvulas cardíacas
As válvulas cardíacas são estruturas que formam as valvas cardíacas, compostas basicamente de tecido conjuntivo, localizadas na saída de cada uma das câmaras cardíacas, que auxiliam no fluxo unidirecional do sangue. Atualmente, são chamadas de valvas cada um dos aparelhos valvulares do coração. Cada valva é formada duas ou três válvulas (formações membranosas - cúspides). 
Estão localizadas, mais especificamente, entre os átrios e ventrículos, bem como nas saídas da artéria aorta e artéria pulmonar. Quando o sangue passa pelas válvulas, há o fechamento das mesmas, impedindo o refluxo sanguíneo para a câmara cardíaca anterior, sendo que essa abertura e fechamento são regulados pelas pressões presentes no interior da câmara cardíaca.
Existem quatro valvas cardíacas:
Mitral ou bicúspide: apresenta dois folhetos e lembra uma mitra (um tipo de chapéu usado pelo bispo da Igreja Católica). Esta valva possibilita a fluxo sanguíneo entre átrio e ventrículo esquerdos.
Tricúspide: apresenta três folhetos e possibilita o fluxo sanguíneo entre átrio e ventrículo direitos.
Aórtica: está localizada na saída do ventrículo esquerdo para a aorta, possibilitando o fluxo sanguíneo entre a luz dessas duas estruturas.
Pulmonar: localizada na saída do ventrículo direito para a artéria pulmonar, possibilitando o fluxo sanguíneo entre a luz dessas duas estruturas.
O músculo que sustentam as válvulas cardíacas é chamado de papilar, enquanto que as estruturas fibrosas que ligam o folheto valvular ao músculo recebem o nome de cordoalha tendínea (impedem a inversão da válvula).
Durante o relaxamento do coração, conhecido como diástole, há a abertura das câmaras cardíacas, havendo a entrada de sangue primeiro nos átrios e, por conseguinte, nos ventrículos, sem que o sangue reflua. Já na sístole, processo inverso (contração do coração), o sangue é bombeado dos ventrículos para as artérias, havendo então a abertura das valvas aórtica e pulmonar (também conhecidas como semilunares), não ocorrendo refluxo sanguíneo em direção aos átrios, pois, durante este processo, as valvas bicúspide e tricúspide se fecham.
As válvulas cardíacas podem ser acometidas por diferentes patologias, que promovem a sua degeneração ou um funcionamento inadequado das mesmas.
SISTEMA ARTERIAL
Conjunto de vasos que saem do coração e se ramificam sucessivamente distribuindo-se para todo o organismo. Do coração saem o tronco pulmonar (relaciona-se com a pequena circulação, ou seja leva sangue venoso para os pulmões através de sua ramificação, duas artérias pulmonares uma direita e outra esquerda) e a artéria aorta (carrega sangue arterial para todo o organismo através de suas ramificações).
Algumas artérias importantes do corpo humano:
1 – Sistema do Tronco Pulmonar: o tronco pulmonar sai do coração pelo ventrículo direito e se bifurca em duas artérias pulmonares, uma direita e outra esquerda. Cada uma delas se ramifica a partir do hilo pulmonar em artérias segmentares pulmonares.
Ao entrar nos pulmões, esses ramos se dividem e subdividem até formarem capilares, em torno alvéolos nos pulmões. O gás carbônico passa do sangue para o ar e é exalado. O oxigênio passa do ar, no interior dos pulmões, para o sangue. Esse mecanismo é denominado HEMATOSE.
2 – Sistema da Artéria Aorta (sangue oxigenado): É a maior artéria do corpo, com diâmetro de 2 a 3 cm. Suas quatro divisões principais são a aorta ascendente, o arco da aorta, a aorta torácica e aorta abdominal. A aorta é o principal tronco das artérias sistêmicas. A parte da aorta que emerge do ventrículo esquerdo, posterior ao tronco pulmonar, é a aorta ascendente.
O começo da aorta contém as válvulas semilunares aórticas.
A artéria aorta se ramifica na porção ascendente em duas artérias coronárias, uma direita e outra esquerda que vão irrigar o coração.
A Artéria Coronária Esquerda passa entre a aurícula esquerda e o tronco pulmonar. Divide-se em dois ramos: ramo interventricular anterior (ramo descendente anterior esquerdo) e um ramo circunflexo. A ramo interventricular anterior passa ao longo do sulco interventricular em direção ao ápice do coração e supre ambos os ventrículos. O ramo circunflexo segue o sulco coronário em torno da margem esquerda até a face posterior do coração, originando assim a artéria marginal esquerda que supre o ventrículo esquerdo.
A Artéria Coronária Direita corre no sulco coronário ou atrioventricular e dá origem ao ramo marginal direito que supre a margem direita do coração à medida que corre para o ápice do coração. Após originar esses ramos, curva-se para esquerda e contínuo o sulco coronário até a face posterior do coração, então emite a grande artéria interventricular posterior que desce no sulco interventricular posterior em direção ao ápice do coração, suprindo ambos os ventrículos.
ARTÉRIAS CORONÁRIAS
 
Logo em seguida a artéria aorta se encurva formando um arco para a esquerda dando origem a três artérias (artérias da curva da aorta) sendo elas:
1 – Tronco Braquiocefálico Arterial
2 – Artéria carótida Comum Esquerda
3 – Artéria Subclávia Esquerda
O tronco braquiocefálico arterial origina duas artérias:
4 – Artéria Carótida Comum Direita
5 – Artéria Subclávia Direita
ARTÉRIAS DO PESCOÇO E CABEÇA
As artérias vertebrais direita e esquerda e as artérias carótida comum direita e esquerda são responsáveis pela vascularização arterial do pescoço e da cabeça.
Antes de entrar na axila, a artéria subclávia dá um ramo para o encéfalo, chamada artéria vertebral, que passa nos forames transversos da C6 à C1 e entra no crânio através do forame magno. As artérias vertebrais unem-se para formar a artéria basilar (supre o cerebelo, ponte e ouvido interno), que dará origem as artérias cerebrais posteriores, que irrigam a face inferior e posterior do cérebro.
Na borda superior da laringe, as artérias carótidas comuns se dividem em artéria carótida externa e artéria carótida interna.
A artéria carótida externa irriga as estruturas externas do crânio. A artéria carótida interna penetra no crânio através do canal carotídeo e supre as estruturas internas do mesmo. Os ramos terminais da artéria carótida interna são a artéria cerebral anterior (supre a maior parte da face medial do cérebro) e artéria cerebral média (supre a maior parte da face lateral do cérebro).
Artéria carótida externa: irriga pescoço e face. Seus ramos colaterais são: artéria tireoide superior, artéria lingual, artéria facial, artéria occipital, artéria auricular posterior e artéria faríngea ascendente. Seus ramos terminais são: artéria temporal e artéria maxilar.
 Polígono de Willis
A vascularização cerebral é formada pelas artérias vertebrais direita e esquerda e pelas artérias carótidas internas direita e esquerda.
As vertebrais se anastomosam originadoa artéria basilar, alojada na goteira basilar, ela se divide em duas artérias cerebrais posteriores que irrigam a parte posterior da face inferior de cada um dos hemisférios cerebrais.
As artérias carótidas internas em cada lado originam uma artéria cerebral média e uma artéria cerebral anterior.
As artérias cerebrais anteriores se comunicam através de um ramo entre elas que é a artéria comunicante anterior.
As artérias cerebrais posteriores se comunicam com as arteriais carótidas internas através das artérias comunicantes posteriores.
Para saber mais sobre o Polígono de Willis, veja Sistema Nervoso (Vascularização do Encéfalo).
 POLÍGONO DE WILLIS – ESQUEMA
ARTÉRIAS DOS MEMBROS SUPERIORES
Explicação da tabela acima: a artéria subclávia (direita ou esquerda), logo após o seu início, origina a artéria vertebral que vai auxiliar na vascularização cerebral, descendo em direção a axila recebe o nome de artéria axilar, e quando, finalmente atinge o braço, seu nome muda para artéria braquial (umeral). Na região do cotovelo ela emite dois ramos terminais que são as artérias radial e ulnar que vão percorrer o antebraço. Na mão essas duas artérias se anastomosam formando um arco palmar profundo que origina as artérias digitais palmares comuns e as artérias metacarpianas palmares que vão se anastomosar.
 
ARTÉRIAS DO MEMBRO SUPERIOR
Artéria Aorta – Porção Torácica:
Após a curva ou arco aótico, a artéria começa a descer do lado esquerdo da coluna vertebral dado origem aos ramos:
Viscerais (nutrem os órgãos):
1- Pericárdicos
2- Bronquiais
3- Esofágicos
4- Mediastinais
Parietais (irrigam a parede dos órgãos):
5- Intercostais posteriores
6- Subcostais
7- Frênicas superiores
Artéria Aorta – Porção Abdominal:
Ao atravessar o hiato aórtico do diafragma até a altura da quarta vértebra lombar, onde termina, a aorta é representada pela porção abdominal.
Nesta porção a aorta fornece vários ramos colaterais e dois terminais.
Os ramos terminas da artéria aorta são artéria ilíaca comum direita e artéria ilíaca comum esquerda.
ARTÉRIAS DA PORÇÃO ABDOMINAL DA AORTA
TRONCO CELÍACO
 
RAMOS DA ARTÉRIA MESENTÉRICA SUPERIOR
 
RAMOS DA ARTÉRIA MESENTÉRICA INFERIOR
 
PRINCIPAIS RAMOS DAS ARTÉRIAS MESENTÉRICAS
ARTÉRIAS DOS MEMBROS INFERIORES
ARTÉRIAS DO MEMBRO INFERIOR
SISTEMA VENOSO
É constituído por tubos chamados de veias que tem como função conduzir o sangue dos capilares para o coração. As veias, também como as artérias, pertencem a grande e a pequena circulação.
O circuito que termina no átrio esquerdo através das quatro veias pulmonares trazendo sangue arterial dos pulmões chama-se de pequena circulação ou circulação pulmonar. E o circuito que termina no átrio direito através das veias cavas e do seio coronário retornando com sangue venoso chama-se de grande circulação ou circulação sistêmica.
Algumas veias importantes do corpo humano:
Veias da circulação pulmonar (ou pequena circulação): As veias que conduzem o sangue que retorna dos pulmões para o coração após sofrer a hematose (oxigenação), recebem o nome de veias pulmonares.
São quatro veias pulmonares, duas para cada pulmão, uma direita superior e uma direita inferior, uma esquerda superior e uma esquerda inferior.
As quatro veias pulmonares vão desembocar no átrio esquerdo. Estas veias são formadas pelas veias segmentares que recolhem sangue arterial dos segmentos pulmonares.
Veias da circulação sistêmica (ou da grande circulação): duas grandes veias desembocam no átrio direito trazendo sangue venoso para o coração. São elas: veia cava superior e veia cava inferior. Temos também o seio coronário que é um amplo conduto venoso formado pelas veias que estão trazendo sangue venoso que circulou no próprio coração.
VEIAS PULMONARES, CAVAS SUPERIOR E INFERIOR E SEIO CORONÁRIO
Veia Cava Superior: a veia cava superior tem o comprimento de cerca de 7,5 cm e diâmetro de 2 cm e origina-se dos dois troncos braquiocefálicos (ou veia braquiocefálica direita e esquerda).
Cada veia braquiocefálica é constituída pela junção da veia subclávia (que recebe sangue do membro superior) com a veia jugular interna (que recebe sangue da cabeça e pescoço).
Veia Cava Inferior: a veia cava inferior é a maior veia do corpo, com diâmetro de cerca de 3,5 cm e é formada pelas duas veias ilíacas comuns que recolhem sangue da região pélvica e dos membros inferiores.
Seio Coronário e Veias Cardíacas:
O seio coronário é a principal veia do coração. Ele recebe quase todo o sangue venoso do miocárdio. Fica situado no sulco coronário abrindo-se no átrio direito. É um amplo canal venoso para onde drenam as veias. Recebe a veia cardíaca magma (sulco interventricular anterior) em sua extremidade esquerda, veia cardíaca média (sulco interventricular posterior) e a veia cardíaca parva em sua extremidade direita. Diversas veias cardíacas anteriores drenam diretamente para o átrio direito.
VEIAS DA CABEÇA E PESCOÇO
Crânio: a rede venosa do interior do crânio é representada por um sistema de canais intercomunicantes denominados seios da dura-máter.
Seios da dura-máter:
São verdadeiros túneis escavados na membrana dura-máter. Esta, é a membrana mais externa das meninges.
Estes canais são forrados por endotélio.
Os seios da dura-máter podem ser divididos em seis ímpares e sete pares.
SEIOS DA DURA-MÁTER
SEIOS DA DURA-MÁTER
SEIOS ÍMPARES (6): são três relacionados com a calvaria craniana e três com a base do crânio.
Seios da Calvaria Craniana:
1 – Seio Sagital Superior: situa-se na borda superior e acompanha a foice do cérebro em toda sua extensão.
2 – Seio Sagital Inferior: ocupa dois terços posteriores da borda inferior da parte livre da foice do cérebro.
3 – Seio Reto: situado na junção da foice do cérebro com a tenda do cerebelo.
Anteriormente recebe o seio sagital inferior e a veia magna do cérebro (que é formada pelas veias internas do cérebro) e posteriormente desemboca na confluência dos seios.
Seios da Base do Crânio:
1 – Seio Intercavenoso Anterior: liga transversalmente os dois seios cavernosos. Situado na parte superior da sela túrcica, passando diante e por cima da hipófise.
2 – Seio Intercavernoso Posterior: paralelo ao anterior, este liga os dois seios cavernosos, passando por trás e acima da hipófise.
3 – Plexo Basilar: é um plexo de canais venosos que se situa no clivo do occipital.
Este plexo desemboca nos seios intercavernoso posterior e petrosos inferiores (direito e esquerdo).
SEIOS PARES: são situados na base do crânio.
1 – Seio Esfenoparietal: ocupa a borda posterior da asa menor do osso esfenoide.
2 – Seio Cavernoso: disposto no sentido ântero-posterior, ocupa cada lado da sela túrcica.
Recebe anteriormente a veia oftálmica, a veia média profunda do cérebro e o seio esfenoparietal e, posteriormente, se continua com os seios petrosos superior e inferior.
3 – Seio Petroso Superior: estende-se do seio cavernoso até o seio transverso, situa-se na borda superior da parte petrosa do temporal.
4 – Seio Petroso Inferior: origina-se na extremidade posterior do seio cavernoso, recebe parte do plexo basilar, indo terminar no bulbo superior da veia jugular interna.
5 – Seio Transverso: origina-se na confluência dos seios e percorre o sulco transverso do osso occipital, até a base petrosa do temporal, onde recebe o seio petroso superior e se continua com o seio sigmoide.
6 – Seio Sigmoide: ocupa o sulco de mesmo nome, o qual faz um verdadeiro “S” na borda posterior da parte petrosa do temporal, indo terminar no bulbo superior da veia jugular interna, após atravessar o forame jugular.
A veia jugular interna faz continuação ao seio sigmoide, sendo que o seio petroso inferior atravessa o forame jugular para ir desembocar naquela veia.
7 – Seio Occipital: origina-se perto do forame magno e localiza-se de cada lado da borda posterior da foice do cerebelo.
Posteriormente terminana confluência dos seios ao nível da protuberância occipital interna.
Face: Normalmente as veias tireóidea superior, lingual, facial e faríngica se anastomosam formando um tronco comum que vai desembocar na veia jugular interna.
O plexo pterigoideo recolhe o sangue do território vascularizado pela artéria maxilar, inclusive de todos os dentes, mantendo anastomose com a veia facial e com o seio cavernoso.
Os diversos ramos do plexo pterigoideo se anastomosam com a veia temporal superficial, para constituir a veia retromandibular.
Essa veia retromandibular que vai se unir com a veia auricular posterior para dar origem à veia jugular externa.
A cavidade orbital é drenada pelas veias oftálmicas superior e inferior que vão desembocar no seio cavernoso.
A veia oftálmica superior mantém anastomose com o início da veia facial.
Pescoço: descendo pelo pescoço, encontramos quatro pares de veias jugulares. Essas veias jugulares têm o nome de interna, externa, anterior e posterior.
Veia Jugular Interna: vai se anastomosar com a veia subclávia para formar o tronco braquiocefálico venoso.
Veia Jugular Externa: desemboca na veia subclávia.
Veia Jugular Anterior: origina-se superficialmente ao nível da região supra-hioidea e desemboca na terminação da veia jugular externa.
Veia Jugular Posterior: origina-se nas proximidades do occipital e desce posteriormente ao pescoço para ir desembocar no tronco braquiocefálico venoso. Está situada profundamente.
VEIAS DO TÓRAX E ABDOME
Tórax: encontramos duas exceções principais:
– A primeira se refere ao seio coronário que se abre diretamente no átrio direito.
– A segunda disposição venosa diferente é o sistema de ázigos.
As veias do sistema de ázigo recolhem a maior parte do sangue venoso das paredes do tórax e abdome. Do abdome o sangue venoso sobe pelas veias lombares ascendentes; do tórax é recolhido principalmente por todas as veias intercostais posteriores.
O sistema de ázigo forma um verdadeiro “H” por diante dos corpos vertebrais da porção torácica da coluna vertebral.
O ramo vertical direito do “H” é chamado veia ázigos.
O ramo vertical esquerdo é subdividido pelo ramo horizontal em dois segmentos, um superior e outro inferior.
O segmento inferior do ramo vertical esquerdo é constituído pela veia hemiázigos, enquanto o segmento superior desse ramo recebe o nome de hemiázigo acessória.
O ramo horizontal é anastomótico, ligando os dois segmentos do ramo esquerdo com o ramo vertical direito.
Finalmente a veia ázigo vai desembocar na veia cava superior.
Abdome: no abdome, há um sistema venoso muito importante que recolhe sangue das vísceras abdominais para transportá-lo ao fígado. É o sistema da veia porta.
A veia porta é formada pela anastomose da veia esplênica (recolhe sangue do baço) com a veia mesentérica superior.
A veia esplênica, antes de se anastomosar com a veia mesentérica superior, recebe a veia mesentérica inferior.
Depois de constituída, a veia porta recebe ainda as veias gástrica esquerda e prepilórica.
Ao chegar nas proximidades do hilo hepático, a veia porta se bifurca em dois ramos (direito e esquerdo), penetrando assim no fígado.
No interior do fígado, os ramos da veia porta realizam uma verdadeira rede.
Vão se ramificar em vênulas de calibre cada vez menor até a capilarização.
Em seguida os capilares vão constituindo novamente vênulas que se reúnem sucessivamente para formar as veias hepáticas as quais vão desembocar na veia cava inferior.
A veia gonodal do lado direito vai desembocar em um ângulo agudo na veia cava inferior, enquanto a do lado esquerdo desemboca perpendicularmente na veia renal.
RESUMINDO O SISTEMA PORTA-HEPÁTICO: A circulação porta hepática desvia o sangue venoso dos órgãos gastrointestinais e do baço para o fígado antes de retornar ao coração. A veia porta hepática é formada pela união das veias mesentérica superior e esplênica. A veia mesentérica superior drena sangue do intestino delgado e partes do intestino grosso, estômago e pâncreas. A veia esplênica drena sangue do estômago, pâncreas e partes do intestino grosso. A veia mesentérica inferior, que deságua na veia esplênica, drena partes do intestino grosso. O fígado recebe sangue arterial (artéria hepática própria) e venoso (veia porta hepática) ao mesmo tempo. Por fim, todo o sangue sai do fígado pelas veias hepáticas que deságuam na veia cava inferior.
VEIAS QUE FORMAM A VEIA PORTA – SISTEMA PORTA-HEPÁTICO
VEIAS QUE FORMAM A VEIA CAVA SUPERIOR E O SISTEMA PORTA-HEPÁTICO
VEIAS DOS MEMBROS SUPERIORES
As veias profundas dos membros superiores seguem o mesmo trajeto das artérias dos membros superiores.
As veias superficiais dos membros superiores:
A veia cefálica tem origem na rede de vênulas existente na metade lateral da região da mão. Em seu percurso ascendente ela passa para a face anterior do antebraço, a qual percorre do lado radial, sobe pelo braço onde ocupa o sulco bicipital lateral e depois o sulco deltopeitoral e em seguida se aprofunda, perfurando a fáscia, para desembocar na veia axilar.
A veia basílica origina-se da rede de vênulas existente na metade medial da região dorsal da mão. Ao atingir o antebraço passa para a face anterior, a qual sobe do lado ulnar. No braço percorre o sulco bicipital medial até o meio do segmento superior, quando se aprofunda e perfura a fáscia, para desembocar na veia braquial medial.
A veia mediana do antebraço inicia-se com as vênulas da região palmar e sobe pela face anterior do antebraço, paralelamente e entre as veias cefálica e basílica.
Nas proximidades da área flexora do antebraço, a veia mediana do antebraço se bifurca, dando a veia mediana cefálica que se dirige obliquamente para cima e lateralmente para se anastomosar com a veia cefálica, e a veia mediana basílica que dirige obliquamente para cima e medialmente para se anastomosar com a veia basílica.
VEIAS DOS MEMBROS INFERIORES
As veias profundas dos membros inferiores seguem o mesmo trajeto das artérias dos membros inferiores.
As Veias Superficiais dos Membros Inferiores:
Veia Safena Magna: origina-se na rede de vênulas da região dorsal do pé, margeando a borda medial desta região, passa entre o maléolo medial e o tendão do músculo tibial anterior e sobe pela face medial da perna e da coxa.
Nas proximidades da raiz da coxa ela executa uma curva para se aprofundar e atravessa um orifício da fáscia lata chamado de hiato safeno.
A Veia Safena Parva: origina-se na região de vênulas na margem lateral da região dorsal do pé, passa por trás do maléolo lateral e sobe pela linha mediana da face posterior da perna até as proximidades da prega de flexão do joelho, onde se aprofunda para ir desembocar em uma das veias poplíteas.
A veia safena parva comunica-se com a veia safena magna por intermédio de vários ramos anastomóticos.
A Atividade Elétrica do Coração
A contração das células musculares cardíacas é acionada por um potencial de ação elétrico. 
Conforme o músculo cardíaco relaxa, os ventrículos enchem-se de sangue. A contração cardíaca tem lugar em dois estágios. Primeiro, os átrios direito e esquerdo começam a se contrair quase que simultaneamente. Depois de um intervalo de 50 – 150 ms, os ventrículos direito e esquerdo começam a se contrair quase que simultaneamente. A contração atrial ajuda a completar o enchimento dos ventrículos com sangue, a contração ventricular ejeta sangue para fora do coração, o sangue é ejetado do ventrículo direito para a artéria pulmonar e do ventrículo esquerdo para a aorta. Depois desta contração ventricular, o coração relaxa e os ventrículos começam a se encher novamente. A sequência de contractilidade é iniciada e organizada por um sinal elétrico, um potencial de ação propagado de célula a célula muscular, através do coração.
2. O mecanismo de contração do músculo cardíaco é bastante similar ao do músculo esquelético
Embora a base molecular da contração seja a mesma em músculoscardíacos e esqueléticos, os dois tipos musculares diferem em relação à ligação elétrica entre células vizinhas, e essa diferença tem consequências importantes. As células musculares esqueléticas individuais estão eletricamente isoladas umas das outras. Os potenciais de ação não podem pular de uma célula muscular para outra. Um potencial de ação é iniciado em uma célula muscular esquelética sob a ação da acetilcolina, que é liberada como neurotransmissor do neurônio somático motor. A acetilcolina promove a abertura dos canais de Na que despolarizam a célula muscular até o limiar para a formação de um potencial de ação.
3. As contrações cardíacas são iniciadas por potenciais de ação que surgem espontaneamente em células marcapasso especializadas
Qualquer célula cardíaca pode desencadear o batimento do coração. Se uma única célula cardíaca se despolarizar durante o limiar, forma um potencial de ação e este potencial irá espalhar de célula a célula através do coração para proporcionar a contração cardíaca como um todo. Entretanto, poucas células especializadas cardíacas tem a propriedade de despolarizar espontaneamente em direção ao limiar para a formação de potenciais de ação. Quando uma célula dessas atinge seu potencial de ação o resultado é o batimento do coração. Estas células são conhecidas como células marcapasso, porque iniciam o batimento cardíaco e determinam a frequência, ou o passo do coração. No coração normal, as células marcapasso que se despolarizam mais rapidamente estão localizadas no nodo sinoatrial (SA) este nodo está na parede atrial direita. Em virtude da presença de células marcapasso que se despolarizam espontaneamente, o coração inicia seus próprios potenciais de ação musculares e as contrações. Os neurônios motores não são necessários para iniciar a contração cardíaca como são necessários para o músculo esquelético. Os neurônios motores influenciam apenas a frequência cardíaca alterando a velocidade de despolarização das células marcapasso até o limiar, mas o coração continua a bater até mesmo sem nenhuma influência nervosa.
4. Um sistema de células musculares cardíacas especializadas inicia e organiza cada batimento cardíaco
Uma vez formado, o potencial de ação rapidamente se espalha, de célula para célula, através dos átrios direito e esquerdo, promovendo a contração de ambos os átrios. Depois este mesmo potencial de ação aciona os ventrículos por um sistema especial de células que se localizam entre os átrios e ventrículos. Esta via consiste do nodo atrioventricular (AV) e na porção inicial do feixe de His. Este sistema é o único que permite a condução do potencial dos átrios aos ventrículos. O feixe AV bifurca-se para formar os ramos esquerdo e direito. No ápice ventricular, os ramos direito e esquerdo do feixe se ramificam nas fibras de purkinge, que carreia o potencial de ação pelas paredes internas de ambos os ventrículos. Os nodos SA e AV, o feixe AV e os ramos do feixe de His e as fibras de purkinge são conjuntamente denominados sistema especializado de condução do coração. Esse sistema está composto de células musculares cardíacas especializadas, e não com nervos. Em um batimento normal, ambos os átrios se contraem quase que simultaneamente. A seguir, há curta pausa (para total enchimento do ventrículo com sangue). Consequentemente, os dois ventrículos se contraem, quase que simultaneamente. Por fim, o coração inteiro relaxa-se e enche-se novamente.
5. A longa duração do potencial de ação cardíaco garante um período de relaxamento (e enchimento) entre as batidas
No pico do potencial de ação os canais de Na fecham-se e tornam-se inativos. Este canal não se reabrirá até mesmo se a célula receber outro estímulo para despolarizar-se. Enquanto um canal de Na encontra-se inativo, outro potencial de ação não pode ocorrer. Quando a célula volta ao seu nível de repouso, a inativação do canal de Na termina e este se abre. Assim, a inativação do Na impede que um segundo potencial de ação ocorra até que um potencial de ação tenha terminado. Este período entre um potencial de ação até outro que não poderá ser iniciado chama-se período refratário. Em um músculo esquelético este período dura de 1 a 2 ms, no músculo cardíaco este período dura 100 a 250 ms. A importância deste período refratário é que ele garante um período de relaxamento (e novo enchimento do coração) entre as contrações cardíacas. Por este motivo também as células musculares cardíacas não entram em tetania.
6. Os nervos simpáticos e parassimpáticos atuam nas células marcapasso do coração aumentando ou diminuindo a frequência cardíaca
Os neurotransmissores noradrenalina e acetilcolina afetam as células marcapasso do coração. A acetilcolina retarda a despolarização espontânea das células marcapasso ativando receptores colinérgicos muscarínicos nas membranas celulares. A ativação destes receptores promove uma queda na velocidade do fluxo iônico através dos canais de íons que são responsáveis pela despolarização espontânea das células marcapasso. A acetilcolina faz com que as células marcapasso demorem a atingir o limiar, de modo que há longo intervalo entre as batidas do coração. A noradrenalina tem efeito oposto. A noradrenalina acelera as trocas dos canais iônicos que são responsáveis pela despolarização espontânea de células marcapasso. A noradrenalina exerce feito nos receptores B-adrenérgicos na membrana das células marcapasso. A frequência cardíaca eleva na presença de noradrenalina. Os neurônios parassimpáticos liberam acetilcolina nas células do nodo SA, de modo que a atividade parassimpática diminui a freqüência cardíaca. Os neurônios simpáticos liberam noradrenalina, logo a atividade simpática aumenta a freqüência cardíaca. Em cães de grande porte a freqüência cardíaca é de 140 bpm, entretanto, a freqüência cardíaca é de 60 bpm durante o sono e cerca de 90 bpm em repouso. Exercícios ou excitações emocionais fazem com que a freqüência cardíaca aumente. A atividade simpática é máxima durante uma reação de defesa (resposta ao medo ou luta). Neurônios simpáticos e parassimpáticos do coração são algumas vezes ativados simultaneamente. Quando ambos os sistemas são ativados, a freqüência cardíaca resultante representa o resultado de um tipo de "cabo-de-guerra" entre a ação simpática para aumentar a freqüência e a ação parassimpática para diminuir a freqüência cardíaca. Normalmente, os sistemas simpáticos e parassimpáticos são parcialmente ativados quando a freqüência cardíaca está entre 90 e 175 bpm. Quando as atividades simpática e parassimpática são iguais, seus efeitos se cancelam mutuamente e a freqüência cardíaca fica em seu nível intrínseco ou espontâneo.
7. As células do nodo atrioventricular atuam como marcapassos auxiliares e também protegem o ventrículo de um batimento muito rápido
Assim como as células do nódulo sinoatrial, as células do nódulo atrioventricular normalmente possuem atividade de marcapasso e potenciais de ação lentos mas de certa forma irrelevantes. As células do nódulo atrioventricular despolarizam-se espontaneamente na direção de seu limiar mas muito mais lentamente do que as células do nódulo sinoatrial. As células do nódulo sinoatrial atingem o limiar primeiramente e iniciam o potencial de ação, que então se propaga de célula em célula através do átrio para o nódulo atrioventricular. Em certas condições anormais, a função de marcapasso do nódulo atrioventricular é fundamental à sobrevivência. Por exemplo, se o nódulo sinoatrial estiver lesado e não puder despolarizarse no limiar, as células marcapasso do nódulo AV continuam a se despolarizar espontaneamente no limiar e iniciam um potencial de ação cardíaco. Se não fosse por essa função de marcapasso auxiliar das células do nódulo AV, o coração com nódulo SA lesado não poderia bater. Já que as células marcapasso do nódulo AV despolarizam-se mais lentamente que células normais do nódulo SA, a freqüência cardíaca é caracteristicamente mais lenta quando as células do nódulo AV estiverem controlando os batimentoscardíacos. A freqüência cardíaca resultante do marcapasso do nódulo AV é de aproximadamente 30-40 bpm em um cão em repouso, comparando-se com a freqüência normal de 80-90 bpm quando as células do nódulo SA são o marcapasso. Outra propriedade importante das células do nódulo AV é que elas possuem períodos refratários maiores do que as células atriais normais. O período refratário longo das células do nódulo AV ajuda a proteger os ventrículos de estimulação e contração com freqüências rápidas demais para um bombeamento eficiente. A função protetora do nódulo AV é fundamental para a sobrevivência do animal em casos de flutter atrial ou fibrilação atrial, nas quais os potenciais de ação atriais são extremamente freqüentes.
8. Disfunção no sistema condutor especializado resulta em ritmos cardíacos anormais (Arritmias)
As arritmias cardíacas resultam tanto de problemas com a formação de potencias de ação como de problemas na condução dos potenciais de ação. Um exemplo de problema com a formação do potencial de ação é a parada sinusal – em que o nodo SA falha completamente para formar os potencias de ação. Em um paciente com parada sinusal, a função do marcapasso auxiliar do nodo AV mantém o batimento ventricular, embora em uma frequência bastante baixa. Uma droga que bloqueie os efeitos parassimpáticos restabelece a frequência a 80 bpm. Outro possível tratamento apropriado é aumentar a frequência cardíaca administrando-se uma droga que mimetiza a ação dos nervos simpáticos. Caso um tratamento com drogas de síndrome sinusal seja ineficaz, uma maneira alternativa de aumentar a frequência cardíaca é através do uso de um marcapasso artificial cardíaco. O marcapasso cardíaco é um estimulador elétrico que aplica ao coração choques elétricos que despolarizam o músculo cardíaco até o limiar. Os choques aplicados ao átrio iniciam o potencial de ação atrial. Para tratamento a longo prazo, um estimulador elétrico a bateria pode ser implantado cirurgicamente sob a pele do paciente e ligado a eletrodos que estão inseridos em uma câmara cardíaca e ligados à superfície externa do coração.
9. Bloqueio do nódulo AV é a causa mais comum de Arritmias cardíacas
O bloqueio AV é uma disfunção elétrica comum da condução do potencial de ação. Se a lesão da porção inicial do nódulo AV bloqueia a condução dos potenciais de ação atriais ao ventrículo, os átrios continuam a bater numa frequência determinada pelas células marcapasso do nódulo SA. Os ventrículos também continuam a bater, mas em uma frequência muito mais baixa. Quando o nódulo AV é bloqueado, as contrações ventriculares são iniciadas por células abaixo das células do nódulo AV que agem como marcapassos auxiliares. Caso os potencias de ação sejam conduzidos esporadicamente do átrio para os ventrículos, de modo que o nódulo AV transmita algum potencial de ação atrial mas não todo ele, a condição é conhecida como bloqueio do nódulo AV de segundo grau. Em um paciente com bloqueio de segundo grau, algumas contrações atriais são seguidas de contrações ventriculares e outras não. Atividade parassimpática forte pode criar ou agravar o bloqueio do nódulo AV de segundo grau, porque a atividade parassimpática aumenta o período refratário de células do nodo AV. O bloqueio AV pode ser causado por toxinas, infecções virais ou bacterianas, isquemias, defeitos cardíacos congênitos ou fibrose cardíaca. O bloqueio pode ser tratado se a frequência ventricular for baixa para manter fluxo sanguíneo adequado para o organismo. As drogas que bloqueiam as ações parassimpáticas no coração (antagonistas colinérgicos muscarínicos – atropina) podem reduzir o período refratário suficientemente para superar um estado de bloqueio. O mesmo efeito pode ser atingido pela droga que mimetiza o efeito dos nervos simpáticos. Caso o efeito das drogas falhe em corrigir o bloqueio AV, então um marcapasso artificial é requerido. Neste caso o marcapasso deve ser aplicado aos ventrículos. 
10. As taquiarritmias cardíacas resultam de formação de potencial de ação anormal (marcapasso ectópico) ou de condução de potencial de ação anormal (reentrada)
As taquiarritmias são anormalidades no ritmo cardíaco em que as freqüências atriais ou ventriculares, ou ambas, estão anormalmente altas. Um batimento isolado extra e ocasional atrial ou ventricular é chamado pré-contração ou batimento prematuro. Geralmente esta contração é o resultado da presença na área atrial ou ventricular de um tecido anormal que atua como marcapasso por despolarização espontânea até o limiar antes que o marcapasso normal o faça. Algumas toxinas, desequilíbrios eletrolíticos e isquemias podem promover tal atividade de marcapasso ectópico. Taquicardia refere-se ao batimento mais rápido do coração e são denominadas de acordo com o local do marcapasso de onde elas originaram. Caso as contrações atriais tornem-se muito rápidas, teremos então a fibrilação atrial que caracteriza-se pela passagem contínua e aleatória de potenciais de ação pelo átrio. Neste caso o átrio aparenta ter tremores. Geralmente a fibrilação atrial não causa fibrilação ventricular por causa do longo período refratário protetor das células do nódulo AV. Os ventrículos continuam a bater sincronizadamente com efetivo bombeamento sangüíneo. Essas contrações ventriculares são essenciais para a manutenção da vida, caso a sincronia das contrações ventriculares seja desfeita e o ventrículo começa a fibrilar e o bombeamento ventricular cessa. Na fibrilação ventricular, cada pequena região das paredes ventriculares se contrai e relaxa aleatoriamente em resposta ao potencial de ação que se espalha esporádica e continuamente através dos ventrículos. A condição de fibrilação ventricular é sinônimo de morte cardíaca súbita. Em muitos casos, a fibrilação ventricular pode ser revertida somente por desfibrilação elétrica. Neste processo, uma forte corrente elétrica passa brevemente pelo músculo cardíaco. Essa corrente despolariza todas as células cardíacas simultaneamente e as mantém por um instante no estado despolarizado. Quando a corrente acaba, espera-se que todos os tecidos cardíacos despolarizem para um potencial de repouso da membrana simultaneamente e que o marcapasso normal do coração terá, então, chance de iniciar os batimentos, mais uma vez, de maneira organizada e sincronizada.
Sistema de condução cardíaco
O Sistema de condução elétrica do coração é uma das mais maravilhosas estruturas do corpo humano. Enquanto dormimos, conversamos, caminhamos, corremos ou realizamos qualquer atividade, o nosso coração não pára de funcionar. Este sistema o qual também é conhecido como sistema intrínseco é formado pelo sistema nervoso que é responsável pela condução dos estímulos nervosos, importantes para o funcionamento cardíaco. Este sistema é formado pelo:
• Nódulo Sinoatrial ou Sinusal: o Nódulo sinoatrial fica localizado na região superior do átrio direito, tem a função de marca-passo do coração, isto é, comanda o ritmo e freqüência do coração. Tem autoexitabilidade e autopraticidade, ou seja, tem seu próprio comando.
• Nódulo atrioventricular: o nódulo atrioventricular fica localizado no assoalho do átrio direito e é responsável por fazer a pausa fisiológica que permite que os átrios ejetem sangue para as câmeras ventriculares.
• Feixe de His: o Feixe de His é uma estrutura de bifurcação que leva estímulos específicos para cada ventrículo.
• Fibras de Purkinje: é uma ponta de condução que entra em contato com a célula miocárdica.
Tais estruturas são responsáveis pelo Evento Elétrico Cardíaco, ou seja, o Sistema de condução operante, sendo eles: 
Excitação: estímulo responsável pelo disparo da atividade iônica/elétrica do coração. É ativado pelo marca passo fisiológico (NSA). Aumenta com a permeabilidade da membrana dado por um estímulo que abre os canais de Na+ e fecha os de K+, levando carga positiva para dentro da célula que estava em repouso, e carga negativa para fora da célula.
Despolarização: Responsável pelo início dacontração cardíaca, ou seja, momento em que há alteração dos canais da membrana miocárdica, aumentando a concentração de Na+ dentro da célula e diminuindo faro da célula.
Platô: Período em que há entrada de cálcio nas miofibrilas, prolongando o período sistólico. Caracterizada pela entrada de cálcio na célula. O cálcio ativa as proteínas da musculatura para que se deslizem para fazer o movimento de entorse.
Repolarização: Momento de inversão dos canais iônicos nas miofibrilas, início do retorno ao repouso. Refaz a polarização da célula, diminuindo a soma de cargas positivas dentro da célula com o aumento do K+ e o retorno das funções dos ácidos, deixando o local negativo.
A medida que essa atividade elétrica ocorre, pode-se captá-la por meio de eletrodos (pontos de captação da atividade elétrica aderidos ou posicionados à pele) e após transmitidos a um equipamento que converte essa atividade em um desenho gráfico. Esse desenho gráfico é composto por ondas que traduzem as etapas da atividade elétrica realizada pelas células miocárdicas dos átrios e ventrículos. Surge então o Eletrocardiograma.
Sangue
Você já sabe que o sangue transporta nutrientes, gases respiratórios, hormônios e resíduos do metabolismo. Embora o sangue pareça um líquido vermelho completamente homogêneo, ao microscópio óptico podemos observar que ele é constituído basicamente de: plasma, glóbulos vermelhos, glóbulos brancos e plaquetas.
O plasma é a porção líquida do sangue, contém água (mais de 90%), proteínas e sais minerais diversos, glicose e vitaminas, entre outras substâncias.
 
Os glóbulos vermelhos
Os glóbulos vermelhos são também denominados eritrócitos ou hemácias. Veja novamente o aspecto dessas células na foto ao lado.
	As hemácias são as mais numerosas células sanguíneas. No ser humano, existem cerca de 5 milhões delas por milímetro cúbito de sangue. Elas são produzidas na medula óssea vermelha dos ossos. Não possuem núcleo e apresentam a forma de disco côncavo em ambos os lados. A forma discóide e a concavidade em ambos os lados garantem uma superfície relativamente grande para a captação e a distribuição de gás oxigênio.
A cor vermelha das hemácias se deve à presença do pigmento hemoglobina. O gás oxigênio se combina com a hemoglobina, formando a oxiemoglobina. Nos tecidos, essa combinação é desfeita e o gás oxigênio passa para o interior das células. Assim, as hemácias promovem o transporte e a distribuição de gás oxigênio para todas as partes do corpo. 
As hemácias duram cerca de 90 a 120 dias. Após esse período elas envelhecem e morrem e na própria medula óssea são repostas.
	 
	
Os glóbulos brancos
Os glóbulos brancos ou leucócitos são as células de defesa do organismo que destroem os agentes estranhos, por exemplo, as bactérias, os vírus e as substâncias tóxicas que atacam o nosso organismo e causam infecções ou outras doenças. Leucócito é uma palavra composta, de origem grega, que significa “célula branca”: leuco significa “branco” e cito, “célula”.
Os leucócitos constituem o principal agente do sistema de defesa do nosso organismo, denominado também de sistema imunológico. No sangue, há de vários tipos, de diferentes formatos, tamanhos e formas de núcleo.  Eles são: neutrófilos, monócitos, basófilos, eusinófilos, linfócitos.
 
 
Os leucócitos são maiores que as hemácias, no entanto a quantidade deles no sangue é bem menor. Quando o organismo é atacado por vírus ou bactérias, o número de leucócitos aumenta significativamente.  Atuam na defesa do organismo de dois modos:
Fagocitose – nesse processo, as células sanguíneas de defesa englobam, digerem e destroem os microrganismos invasores. Fagocitose é uma palavra composta de origem grega, formada por fago, que significa “comer, digerir”, e cito “célula”.
Produção de anticorpos – os anticorpos, proteínas especiais, neutralizam a ação das substâncias tóxicas produzidas pelos seres invasores ou presentes em alimentos e substâncias diversas.
O pus que geralmente se acumula no local de um machucado é formado pelo conjunto de leucócitos, de microrganismos mortos, e também o líquido que sai dos capilares nos pontos infectados, provocando inchaço.
 
Microscopia eletrônica mostrando as hemácias (em vermelho) e um glóbulo branco (em branco).
O tempo de vida dos leucócitos ou glóbulos brancos varia. Em período de intensa atuação em defesa do organismo, duram horas e até dias.
 
Anticorpos, vacinas e soros
As vacinas são produtos constituídos por microorganismos mortos ou atenuados (enfraquecidos) ou, ainda, por toxinas produzidas por esses microorganismos inativadas em laboratório.  Assim, as vacinas contêm antígenos incapazes de provocar a doença, mas capazes de induzir o nosso organismo a produzir anticorpos, Dessa forma, se o indivíduo, depois de vacinado, entrar em contato com esses microrganismos, o corpo já terá anticorpos suficientes para sua defesa.
É importante que todas as crianças sejam vacinadas segundo recomendações médicas. Nos postos de saúde são aplicadas vacinas contra muitas doenças, como a tuberculose, o tétano, a difteria, a coqueluche, o sarampo e a paralisia infantil. É necessário que os pais levem seus filhos para tomarem as vacinas na época certa. Quando tomadas adequadamente, as vacinas imunizam a pessoa contra às doenças as quais se destinam.
 
As plaquetas
As plaquetas são fragmentos celulares bem menores que as células sanguíneas, ou seja, menores que as hemácias e os leucócitos. As plaquetas atuam na coagulação do sangue. Quando há um ferimento com rompimento do vaso sanguíneo, ocorre uma série de eventos que impedem a perda de sangue.
A coagulação ou formação de coágulo, que faz parte desse processo, se dá quando filamentos de uma proteína do plasma transformada, formam uma espécie de rede e impedem a passagem do sangue. O coágulo evita hemorragia, isto é, a perda de sangue que pode ocorrer na superfície do corpo – por exemplo, na pele do braço ou da mão – ou nos órgãos internos, como estômago e intestino. À medida que o vaso sanguíneo vai se cicatrizando, o coágulo seca e é reabsorvido pelo organismo.
 
Os grupos sanguíneos
O fornecimento seguro de sangue de um doador para um receptor requer o conhecimento dos grupos sanguíneos. Estudaremos dois sistemas de classificação de grupos sanguíneos na espécie humana: os sistemas ABO e Rh. Nos seres humanos existem os seguintes tipos básicos de sangue em relação aos sistema ABO: grupo A, grupo B, grupo AB e grupo O.
Cada pessoa pertence a um desses grupos sanguíneos.  Nas hemácias humanas podem existir dois tipos de proteínas: o aglutinogênio A e o aglutinogênio B. De acordo com a presença ou não dessas hemácias, o sangue é assim classificado:
Grupo A – possui somente o aglutinogênio A;
Grupo B – possui somente o aglutinogênio B;
Grupo AB – possui somente o aglutinogênio A e B;
Grupo O – não possui aglutinogênios.
No plasma sanguíneo humano podem existir duas proteínas, chamadas aglutininas: aglutinina anti-A e aglutinina anti-B.
 
 
Se uma pessoa possui aglutinogênio A, não pode ter aglutinina anti-A, da mesma maneira, se possui aglutinogênio B, não pode ter aglutinina anti-B. Caso contrário, ocorrem reações que provocam a aglutinação ou o agrupamento de hemácias, o que pode entupir vasos sanguíneos e comprometer a circulação do sangue no organismo. Esse processo pode levar a pessoa à morte.
Na tabela abaixo você pode verificar o tipo de aglutinogênio e o tipo de aglutinina existentes em cada grupo sanguíneo:
 
	Grupo sanguíneo
	Aglutinogênio
	Aglutinina
	A
	A
	anti-B
	B
	B
	anti-A
	AB
	A e B
	Não possui
	O
	Não possui
	anti-A e anti-B
 
A existência de uma substância denominada fator Rh no sangue é outro critério de classificação sanguínea. Diz-se, então, que quem possui essa substância no sangue é Rh positivo; quem não a possui é Rh negativo. O fator Rh tem esse nome por ter sido identificado pela primeira vez no sangue de um macaco Rhesus.
A transfusãode sangue consiste em transferir o sangue de uma pessoa doadora para outra receptora. Geralmente é realizada quando alguém perde muito sangue num acidente, numa cirurgia ou devido a certas doenças.
Nas transfusões de sangue deve-se saber se há ou não compatibilidade entre o sangue do doador e o do receptor. Se não houver essa compatibilidade, ocorre aglutinação das hemácias que começam a se dissolver (hemólise).  Em relação ao sistema ABO, o sangue doado não deve conter aglutinogênios A; se o sangue do receptor apresentar aglutininas anti-B, o sangue doado não pode conter aglutinogênios B.
O sistema MN de grupos sanguíneos
Dois outros antígenos foram encontrados na superfície das hemácias humanas, sendo denominados M e N. Analisando o sangue de diversas pessoas, verificou-se que em algumas existia apenas o antígeno M, em outras somente o N e várias pessoas possuíam os dois antígenos. Foi possível concluir então que existiam três grupos nesse sistema: M, N e MN.
Os genes que condicionam a produção desses antígenos são apenas dois: L M e L N (a letra L é a inicial do descobridor, Landsteiner). Trata-se de uma caso de herança mendeliana simples. O genótipo L ML M, condiciona a produção do antígeno M, e L NL N, a do antígeno N. Entre L M e L N há co-dominância, de modo que pessoas com genótipo L ML N produzem os dois tipos de antígenos.
Transfusões no Sistema MN
A produção de anticorpos anti-M ou anti-N ocorre somente após sensibilização (você verá isso no sistema RH). Assim, não haverá reação de incompatibilidade se uma pessoa que pertence ao grupo M, por exemplo, receber o sangue tipo N, a não ser que ela esteja sensibilizada por transfusões anteriores.
O sistema RH de grupos sanguíneos
Um terceiro sistema de grupos sanguíneos foi descoberto a partir dos experimentos desenvolvidos por Landsteiner e Wiener, em 1940, com sangue de macaco do gênero Rhesus. Esses pesquisadores verificaram que ao se injetar o sangue desse macaco em cobaias, havia produção de anticorpos para combater as hemácias introduzidas.
Ao centrifugar o sangue das cobaias obteve-se o soro que continha anticorpos anti-Rh e que poderia aglutinar as hemácias do macaco Rhesus. As conclusões daí obtidas levariam a descoberta de um antígeno de membrana que foi denominado Rh (Rhesus), que existia nesta espécie e não em outras como as de cobaia e, portanto, estimulavam a produção anticorpos, denominados anti-Rh.
Há neste momento uma inferência evolutiva: se as proteínas que existem nas hemácias de vários animais podem se assemelhar isto pode ser um indício de evolução. Na espécie humana, por exemplo, temos vários tipos de sistemas sanguíneos e que podem ser observados em outras espécies principalmente de macacos superiores.
Analisando o sangue de muitos indivíduos da espécie humana, Landsteiner verificou que, ao misturar gotas de sangue dos indivíduos com o soro contendo anti-Rh, cerca de 85% dos indivíduos apresentavam aglutinação (e pertenciam a raça branca) e 15% não apresentavam. Definiu-se, assim, "o grupo sanguíneo Rh +” ( apresentavam o antígeno Rh), e "o grupo Rh -" (não apresentavam o antígeno Rh).
No plasma não ocorre naturalmente o anticorpo anti-Rh, de modo semelhante ao que acontece no sistema Mn. O anticorpo, no entanto, pode ser formado se uma pessoa do grupo Rh -, recebe sangue de uma pessoa do grupo Rh +. Esse problema nas transfusões de sangue não são tão graves, a não ser que as transfusões ocorram repetidas vezes, como também é o caso do sistema MN.
A Herança do Sistema Rh
Três pares de genes estão envolvidos na herança do fator Rh, tratando-se portanto, de casos de alelos múltiplos.
Para simplificar, no entanto, considera-se o envolvimento de apenas um desses pares na produção do fator Rh, motivo pelo qual passa a ser considerado um caso de herança mendeliana simples. O gene R, dominante, determina a presença do fator Rh, enquanto o gene r, recessivo, condiciona a ausência do referido fator.	 	
Fenótipos
Genótipos
Rh +
RR ou Rr
Rh -
rr
Doença hemolítica do recém-nascido ou eritroblastose fetal
Uma doença provocada pelo fator Rh é a eritroblastose fetal ou doença hemolítica do recém-nascido, caracterizada pela destruição das hemácias do feto ou do recém-nascido. As conseqüências desta doença são graves, podendo levar a criança à morte.
Durante a gestação ocorre passagem, através da placenta, apenas de plasma da mãe para o filho e vice-versa devido à chamada barreira hemato-placentária. Pode ocorrer, entretanto, acidentes vasculares na placenta, o que permite a passagem de hemácias do feto para a circulação materna. Nos casos em que o feto possui sangue fator rh positivo os antígenos existentes em suas hemácias estimularão o sistema imune materno a produzir anticorpos anti-Rh que ficarão no plasma materno e podem, por serem da classe IgG, passar pela BHP provocando lise nas hemácias fetais. A produção de anticorpos obedece a uma cascata de eventos (ver imunidade humoral) e por isto a produção de anticorpos é lenta e a quantidade pequena num primeiro. A partir da segunda gestação, ou após a sensibilização por transfusão sanguínea, se o filho é Rh + novamente, o organismo materno já conterá anticorpos para aquele antígeno e o feto poderá desenvolver a DHPN ou eritroblastose fetal.
O diagnóstico pode ser feito pela tipagem sanguínea da mãe e do pai precocemente e durante a gestação o teste de Coombs que utiliza anti-anticorpo humano pode detectar se esta havendo a produção de anticorpos pela mãe e providências podem ser tomadas. Uma transfusão , recebendo sangue Rh -, pode ser feita até mesmo intra-útero já que Goiânia está se tornando referência em fertilização in vitro. O sangue Rh - não possui hemácias com fator Rh e não podem ser reconhecidas como estranhas e destruídas pelos anticorpos recebidos da mãe. Após cerca de 120 dias, as hemácias serão substituídas por outras produzidas pelo próprio indivíduo. O sangue novamente será do tipo Rh +, mas o feto já não correrá mais perigo.
Após o nascimento da criança toma-se medida profilática injetando, na mãe Rh- , soro contendo anti Rh. A aplicação logo após o parto, destrói as hemácias fetais que possam ter passado pela placenta no nascimento ou antes. Evita-se , assim, a produção de anticorpos “zerando o placar de contagem”. Cada vez que um concepto nascer e for Rh+ deve-se fazer nova aplicação pois novos anticorpos serão formados.
Os sintomas no RN que podem ser observados são anemia (devida à destruição de hemácias pelos anticorpos), icterícia (a destruição de hemácias aumentada levará a produção maior de bilirrubina indireta que não pode ser convertida no fígado), e após sua persistência o aparecimento de uma doença chamada Kernicterus que corresponde ao depósito de bilirrubina nos núcleos da base cerebrais o que gerará retardo no RN.
VASOS SANGUÍNEOS
Formam uma rede de tubos que transportam sangue do coração em direção aos tecidos do corpo e de volta ao coração. Os vasos sanguíneos podem ser divididos em sistema arterial e sistema venoso:
Sistema Arterial:
Constitui um conjunto de vasos que partindo do coração, vão se ramificando, cada ramo em menor calibre, até atingirem os capilares.
Sistema Venoso:
Formam um conjunto de vasos que partindo dos tecidos, vão se formando em ramos de maior calibre até atingirem o coração.
Os vasos sanguíneos que conduzem o sangue para fora do coração são as artérias. Estas se ramificam muito, tornam-se progressivamente menores, e terminam em pequenos vasos determinados arteríolas.A partir destes vasos, o sangue é capaz de realizar suas funções de nutrição e de absorção atravessando uma rede de canais microscópicos, chamados capilares, os quais permitem ao sangue trocar substâncias com os tecidos.
Dos capilares, o sangue é coletado em vênulas; em seguida, através das veias de diâmetro maior, alcança de novo o coração. Esta passagem de sangue através do coração e dos vasos sanguíneos é chamada de CIRCULAÇÃO SANGUÍNEA.
Estrutura dos Vasos:1- Túnica Externa: é composta basicamente por tecido conjuntivo. Nesta túnica encontramos pequenos filetes nervosos e vasculares que são destinados à inervação e a irrigação das artérias. Encontrada nas grandes artérias somente.
2- Túnica Média: é a camada intermediária composta por fibras musculares lisas e pequena quantidade de tecido conjuntivo elástico. Encontrada na maioria das artérias do organismo.
3- Túnica Íntima: forra internamente e sem interrupções as artérias, inclusive capilares. São constituídas por células endoteliais.
 
 
Os vasos sanguíneos são compostos por várias anastomoses, principalmente nos vasos cerebrais.
Anastomose: significa ligação entre artérias, veias e nervos os quais estabelecem uma comunicação entre si. A ligação entre duas artérias ocorre em ramos arteriais, nunca em troncos principais. Às vezes duas artérias de pequeno calibre se anastomosam para formar um vaso mais calibrosos. Freqüentemente a ligação se faz por longo percurso, por vasos finos, assegurando uma circulação colateral.
O Polígono de Willis (melhor estudado em “Vascularização do SNC”) é um exemplo de vasos que se anastomosam, formando um polígono. Esse processo ocorre no cérebro para garantir uma demanda adequada de oxigênio as células nervosas, ou seja, caso ocorra a obstrução de uma artéria cerebral, a região irrigada pelo vaso lesado ainda receberá sangue proveniente de outra artéria do polígono, preservando o tecido nervoso.
 
 
 
 
Ramificações
Ramos colaterais: surgem dos troncos principais em ângulo agudo, em ângulo reto ou em ângulo obtuso.
Ramos terminais: são os que irrigam com certa exclusividade um determinado território. São os ramos mais ditais.
Relação volumétrica: a soma da área dos lumes dos ramos distais é sempre maior que a área do vaso que lhe deu origem.
Anastomose: significa ligação entre artérias, veias e nervos os quais estabelecem uma comunicação entre si. A ligação entre duas artérias ocorre em ramos arteriais, nunca em troncos principais. Às vezes duas artérias de pequeno calibre se anastomosam para formar um vaso mais calibrosos. Freqüentemente a ligação se faz por longo percurso, por vasos finos, assegurando uma circulação colateral.
Relações:
1- Com as veias: a norma geral é que um artéria seja acompanhada por pelo menos uma veia, sendo chamadas veias satélites. Artérias de grosso calibre geralmente são acompanhadas por uma veia e artérias de média e pequeno calibre são seguidas em seu trajeto por duas veias.
2- Com os músculos: certos músculos servem como ponto de reparo às artérias que os acompanham, sendo chamados de músculos satélites, como por exemplo o músculo esternocleidomastóideo que acompanha a artéria carótida comum.
3- Com as articulações: as artérias sempre passam pela superfície flexora da articulação. Fácil de entender, do contrário elas seriam constantemente esticadas, sendo prejudicial e perigoso.
Algumas artérias importantes do corpo humano
O tronco pulmonar sai do coração pelo ventrículo direito e se bifurca em duas artérias pulmonares, uma direita e outra esquerda. Cada uma delas se ramifica a partir do hilo pulmonar em artérias segmentares pulmonares.
Este sistema leva sangue venoso para os pulmões para que ocorra a troca de gás carbônico por oxigênio.
A artéria aorta sai do ventrículo esquerdo e se ramifica na porção ascendente em duas artérias coronárias, uma direita e outra esquerda que vão irrigar o coração. Logo em seguida a artéria aorta se encurva formando um arco para a esquerda dando origem a três artérias:
1- Tronco braquiocefálico arterial
2- Artéria carótida comum esquerda
3- Artéria subclávia esquerda
O tronco braquiocefálico origina duas artérias:
1- Artéria carótida comum direita
2- Artéria subclávia direita
A artéria subclávia (direita ou esquerda), logo após o se início, origina a artéria vertebral que vai auxiliar na vascularização cerebral, descendo em direção a axila ela, a subclávia, recebe o nome de artéria axilar, e quando finalmente atinge o braço seu nome muda de novo mas agora para artéria braquial (umeral). Na região do cotovelo ela emite dois remos terminais que são as artérias radial e ulnar que vão percorrer o antebraço. Na mão essas duas artérias se anastomosam formando um arco palmar profundo que origina as artérias digitais palmares comuns e as artérias metacarpianas palmares que vão se anastomosar.
As artérias digitais palmares originam as artérias digitais palmares próprias para cada dedo.
Artéria carótida comum (esquerda ou direita): esta artéria se ramifica em:
1- Artéria carótida interna (direita ou esquerda)
2- Artéria carótida externa (direita ou esquerda)
Artéria carótida interna: penetra no crânio através do canal carotídeo dando origem a três ramos colaterais: artéria oftálmica, artéria comunicante posterior e artéria coriódea posterior. E mais dois ramos terminais: artéria cerebral anterior e artéria cerebral média.
Polígono de willis:
A vascularização cerebral é formada pelas artéria vertebrais direita e esquerda e pelas artérias carótidas internas direita e esquerda.As vertebrais se anastomosam originado a artéria basilar, alojada na goteira basilar, ela se divide em duas artérias cerebrais posteriores que irrigam a parte posterior da face inferior de cada um dos hemisférios cerebrais.As artérias carótidas internas em cada lado originam uma artéria cerebral média e uma artéria cerebral anterior.
As artérias cerebrais anteriores se comunicam através de um ramo entre elas que é a artéria comunicante anterior.As artérias cerebrais posteriores se comunicam com as arteriais carótidas internas através das artérias comunicantes posteriores.
Artéria carótida externa: irriga pescoço e face. Seus ramos colaterais são: artéria tireoíde superior, a. lingual, a. facial, a. occipital, a. auricular posterior e a. faríngea ascendente. Seu ramos terminais são: artéria temporal e artéria maxilar.
Artéria aorta porção torácica:
Após a curva ou arco aótico, a artéria começa a descer do lado esquerdo da coluna vertebral dado origem aos ramos:
Viscerais
(nutrem os órgãos): 1- Pericárdicos 2- Bronquiais
3- Esofágicos
4- Mediastinais
Parietais (irrigam a parede dos órgãos):
5- Intercostais posteriores
6- Subcostais
7- Frênicas superiores
Artéria aorta parte abdominal:
Ao atravessar o hiato aórtico do diafragma até a altura da quarta vértebra lombar, onde termina, a aorta é representada pela porção abdominal.Nesta porção a aorta fornece vários ramos colaterais e dois terminais.
Ramos colaterais:
Ramos parietais:
1- Artéria frênica inferior
2- Artérias lombares
Ramos viscerais:
1- Tronco celíaco que origina:
Artéria gástrica esquerda
Artéria esplênica que da origem a artéria gastro-epiplóica esquerda. Artéria hepática comum fornece vários ramos colaterais: artéria gástrica direita, artéria gastro duodenal e artéria gastro-epiplóica direita; e apenas um ramo terminal: Artéria hepática própria.
2- Artéria mesentérica superior
3- Artéria mesentérica inferior
4- Artéria supra-renal média (par)
5- Artéria renal (par)
6- Artéria gonadal (par)
7- Artéria sacral mediana
Os ramos terminas da artéria aorta são artéria ilíaca comum direita e artéria ilíaca comum esquerda.
Artéria ilíaca comum (direita e esquerda): dão origem às artérias ilíaca interna e externa direita e esquerda.
Artéria ilíaca interna (direita e esquerda): vascularização dos órgão genitais.
Artéria ilíaca externa (direita e esquerda):
Ramos colaterais:
1- Artéria epigástrica inferior
2- Artéria circunflexa profunda do ílio
Seu ramo terminal é a artéria femoral.
Artéria femoral: desce a coxa e na altura do joelho na parte flexora está artéria recebe o nome de artéria poplítea.
Artéria poplítea: origina a artéria tibial anterior e a artéria tibial posterior que vão irrigar a perna.
Artéria tibial anterior: Na parte flexora do tornozelo ela muda de nome para dorsal do pé.
Artéria dorsal do pé:
Ramos:
1- Artéria társica lateral
2- Artéria társica medial
3- Artéria

Continue navegando