Buscar

PESQUISA OPERACIONAL TESTE DE CONHECIMENTO AULA 2

Prévia do material em texto

Resolvendo graficamente o Problema de Programação Linear (PPL) abaixo, obtemos como solução ótima:
 
minimizar        -4x1 + x2
sujeito a:         -x1 + 2x2  6                          
                        x1 + x2  8
                        x1, x2  0
	
	
	
	
	x1=8, x2=0 e Z*=32
	
	 
	x1=8, x2=0 e Z*=-32
	
	
	x1=0, x2=8 e Z*=32
	
	 
	x1=8, x2=8 e Z*=-32
	
	
	x1=6, x2=0 e Z*=32
	
	Analise as alternativas abaixo:
I- A região viável de um PPL é um conjunto convexo.
II- A variável controlada ou de decisão é a quantidade a ser produzida num período , o que compete ao administrador controlar,enquanto as variáveis não controladas são aquelas cujos valores são arbitrados por sistemas fora do controle do administrador.
III- As variáveis definidas com valores diferentes de zero na resolução de uma PPL chamam-se variáveis não básicas.
A partir daí, assinale a opção correta:
	
	
	
	 
	I e II são verdadeiras
	
	
	Somente a I é verdadeira.
	
	
	I e III são verdadeiras
	
	
	I , II e III são verdadeiras
	
	 
	Somente a III é verdadeira.
		Analisando o modelo de programação linear de uma empresa abaixo:
Maximizar L = 1000x1 +1800x2
Sujeito a  20x1 + 30x2 ≤1200
                    x1 ≤ 40
                    x2 ≤ 30
                    x1, x2 ≥0
Verificou-se a formação de um pentágono ABCDE, onde A(0,0), B(40,0) e E(0,30), desta forma encontre as coordenadas dos vértices C e D e a solução ótima do modelo:
	
	
	
	
	C(40,3/40), D(30,15) e L = 60000
	
	 
	C(40,40), D(30,15) e L = 72000
	
	
	C(40,40/3), D(15,30) e L = 64000
	
	 
	C(40,40/3), D(15,30) e L = 69000
	
	
	C(40/3,40), D(15,30) e L = 69000
	
	
	Um gerente de um SPA chamado Só é Magro Quem Quer contrata você para ajudá-lo com o problema da dieta para os hóspedes. (Observe que ele paga bem: 40% do que você precisa!) Mais especificamente, ele precisa de você para decidir como preparar o lanche das 17:00h. Existem dois alimentos que podem ser fornecidos: cheeseburguers e pizza. São unidades especiais de cheeseburguers e pizza, grandes, com muito molho e queijo, e custam, cada, R$10,00 e R$16,00, respectivamente. Entretanto, o lanche tem que suprir requisitos mínimos de carboidratos e lipídios: 40 u.n. e 50 u.n., respectivamente (u.n. significa unidade nutricional). Sabe-se, ainda, que cada cheeseburguers fornece 1 u.n. de carboidrato e 2 u.n. de lipídios, e cada pizza fornece 2 u.n. de carboidratos e 5 u.n. de lipídios. O gerente pede inicialmente que você construa o modelo.
	
	
	
	
	Min Z=10x1+16x2
Sujeito a:
x1+x2≥40
2x1+5x2≥50
x1≥0
x2≥0
	
	
	Min Z=10x1+16x2
Sujeito a:
x1+2x2≥40
2x1+x2≥50
x1≥0
x2≥0
	
	 
	Min Z=10x1+16x2
Sujeito a:
x1+2x2≥40
2x1+5x2≥50
x1≥0
x2≥0
	
	
	Min Z=16x1+10x2
Sujeito a:
x1+2x2≥40
2x1+5x2≥50
x1≥0
x2≥0
	
	 
	Min Z=16x1+10x2
Sujeito a:
x1+2x2≥40
2x1+x2≥50
x1≥0
x2≥0
	
	Para o Modelo apresentado abaixo, assinale a alternativa que indica o valor correto de Z:
Função Objetivo: Max Z = 40x1 + 20x2     
x1 + x2 ≤ 5
10x1 + 20x2 ≤ 80
X1 ≤ 4
x1 ; x2 ≥ 0
	
	
	
	
	200
	
	 
	80
	
	 
	180
	
	
	140
	
	
	160
	
	Uma empresa fabrica dois produtos que utilizam os seguintes recursos produtivos: Prensa, Torno e Matéria Prima. Cada unidade de P1 exige 6 horas de Prensa, 4 h de Torno e utiliza 40 unidades de matéria prima. Cada unidade de P2 exige 3 horas de Prensa, 4 h de Torno e 50 unidades de matéria-prima. O lucro unitário obtido com a venda do P1 é 20 u.m. e de P2, 40 u.m. Todos os produtos fabricados tem mercado garantido. As disponibilidades dos recursos estão assim distribuídas: 60 h de Prensa; 80 h de Torno e 400 unidades de matéria prima, por dia. Considerando o modelo para a solução do problema, indique qual destas Restrições estão corretas.
	
	
	
	 
	6x1 + 3x2 ≤ 80
	
	 
	4x1 + 4x2 ≤ 80
	
	
	50x1 + 40x2 ≤ 400
	
	
	6x1 + 4x2 ≤ 60
	
	
	4x1 + 6x2 ≤ 60
	
	Uma empresa apresenta o seguinte modelo de programação linear:
Maximizar Z = 3x1 +2x2
Sujeito a 
2x1 + x2 ≤8
  x1 + 2x2 ≤ 7
- x1 +  x2 ≤2
            x2≤5
    x1, x2 ≥0
Esse modelo representado graficamente forma um pentágono, a partir daí, considerando que o ponto ótimo é sempre um vértice, determine o ponto ótimo que maximiza o modelo:
	
	
	
	
	Ótimo em (4,0) com Z =12
	
	
	Ótimo em (4,3) com Z =18
	
	 
	Ótimo em (3,2) com Z =13
	
	 
	Ótimo em (5,0) com Z =15
	
	
	Ótimo em (2,3) com Z =12
	
	Uma determinada empresa deseja produzir dois produtos, um produto P1 e um produto P2, que dependem de duas matérias primas A e B, que estão disponíveis em quantidades de 8 e 5 toneladas, respectivamente. Na fabricação de uma tonelada do produto P1 são empregadas 1 tonelada da matéria A e 1 tonelada da matéria B, e na fabricação de uma tonelada do produto P2 são empregadas 4 toneladas de A e 1 toneladas de B. Sabendo que cada tonelada do produto P2 é vendido a R$8,00 reais e do produto P1 a R$5,00 reais. O modelo de programação linear abaixo possibilita determinar o lucro máximo da empresa na fabricação desses produtos.
Max Z = 5x1 + 8x2
Sujeito a:
x1 + 4x2 ≤ 8
x1 + x2 ≤ 5
x1, x2  ≥ 0
O valor ótimo da função-objetivo é:
	
	
	
	
	25
	
	 
	28
	
	
	0
	
	
	30
	
	 
	16
	
	Um marceneiro produz armários e camas. As margens de lucro são R$ 320,00 para os armários e R$ 240,00 para os camas. Os armários requerem 5 horas para o corte das madeiras, 7 horas para a montagem e 6 horas para o polimento. As camas requerem 3 horas para o corte das madeiras, 2 horas para a montagem e 3 horas para o polimento. O marceneiro trabalha sozinho e dispõe mensalmente de 40 horas para o corte das madeiras, 70 horas para a montagem e 48 horas para o polimento. De acordo com os dados acima, a restrição técnica para montagem dos produtos é:
	
	
	
	
	5x1 + 3x2 ≤ 40
	
	
	6x1 + 3x2 ≤ 48
	
	 
	7x1 - 2x2 ≤ 10
	
	
	7x1 + 2x2 ≤ 48
	
	 
	7x1 + 2x2 ≤ 70
	
	Resolvendo graficamente o Problema de Programação Linear (PPL) abaixo, obtemos como solução ótima:
 
minimizar        -x1 + 3x2
sujeito a:         x1 + x2 = 4
                                          x2  2
                        x1, x2  0
	
	
	
	
	x1=4, x2=0 e Z*=4
	
	
	x1=0, x2=4 e Z*=-4
	
	
	x1=4, x2=4 e Z*=-4
	
	
	x1=0, x2=4 e Z*=4
	
	 
	x1=4, x2=0 e Z*=-4
	
	Uma pessoa precisa de 10, 12 e 12 unidades dos produto s químico s A, B e C , respectivamente , para o seu jardim. Um produto líquido contém : 5, 2 e 1 unidades d e A, B e C , respectivamente , por vidro . Um produto em pó contém : 1, 2 e 4 unidades d e A, B e C , respectivamente , p o r caixa . Se o produto líquido custa R $ 3,00 p o r vidro e o produto e m p ó custa R $ 2,00 por caixa , quantos vidros e quanta s caixas ele deve comprar para minimizar o custo e satisfazer as necessidades ? Para poder responder a esta pergunta , utilizando-s e o método gráfico , em qual ponto solução s e obterá o custo mínimo ?
	
	
	
	 
	(4; 2)
	
	
	(12; 0)
	
	 
	(1; 5)
	
	
	(0; 10)
	
	
	(12; 10)
		Certa empresa escolheu três produtos P1, P2 e P3 para investir no próximo ano, cujas demandas previstas são: P1 - 500 unidades, P2 - 300 unidades e P3 - 450 unidades Para fabricar uma unidade de P1, P2 e P3 são necessárias, respectivamente, 4, 6 e 2 Horas/Homem. Os 3 produtos passam por uma máquina de pintura cujo processo tem a duração de 8 horas para P1, 6 horas para P2 e 4 horas para P3. A empresa só pode contar com 3.800 Horas/Homem e 5.200 Horas/Máquina para esta família de produtos. Sabendo que o lucro unitário de P1 é R$ 800,00, de P2 R$ 600,00 e de P3 R$ 300,00, estabeleça um programa ótimo de produção para o período. Faça amodelagem desse problema.
	
	
	
	 
	Max Z = 500x1 + 300x2 + 450x3; Sujeito a: 4x1 + 6x2 + 2x3 ≤ 3.800; 8x1 + 6x2 + 4x3 ≤ 5.200; x1 ≤ 800; x2 ≤ 600; x3 ≤ 300; x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
	
	
	Max Z = 500x1 + 300x2 + 450x3; Sujeito a: x1 + x2 + x3 ≤ 3.800; x1 + x2 + x3 ≤ 5.200; x1 ≤ 800; x2 ≤ 600; x3 ≤ 300; x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
	
	
	Max Z = 800x1 + 600x2 + 300x3; Sujeito a: 2x1 + 6x2 + 4x3 ≤ 3.800; 4x1 + 6x2 + 8x3 ≤ 5.200; x1 ≤ 500; x2 ≤ 300; x3 ≤ 450; x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
	
	
	Max Z = 300x1 + 600x2 + 800x3; Sujeito a: 4x1 + 6x2 + 2x3 ≤ 3.800; 8x1 + 6x2 + 4x3 ≤ 5.200; x1 ≤ 500; x2 ≤ 300; x3 ≤ 450; x1 ≥ 0; x2 ≥ 0; x3 ≥ 0
	
	 
	Max Z = 800x1 + 600x2 + 300x3; Sujeito a: 4x1 + 6x2 + 2x3 ≤ 3.800; 8x1 + 6x2 + 4x3 ≤ 5.200; x1 ≤ 500; x2 ≤ 300; x3 ≤ 450; x1 ≥ 0; x2 ≥ 0; x3 ≥ 0

Continue navegando