Buscar

Controladores PID: Proporcional, Integral e Derivativo

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 1 
 
 
Aula 6 – Controladores do tipo Proporcional, Integral e Diferencial 
Introdução 
Estrutura do Controlador PID 
Efeito da Ação Proporcional 
Efeito da Ação Integral 
Efeito da Ação Derivativa 
Problemas 
Bibliografia 
 
 
Introdução 
 
 Controladores do tipo Proporcional, Integral e Derivativo, comumente denominados de PID, são 
controladores largamente utilizados no cenário industrial. Segundo Aströn [1], entre 90 e 95% dos 
problemas de controle são solucionados empregando tais controladores, podendo considerá-los como “o 
pão e a manteiga” da engenharia de controle. Tal utilização deve-se ao fato deste controlador ser facilmente 
implementável, de baixo custo e versátil com capacidade de alterar os comportamentos transitório e de 
regime permanente dos processos sob controle. Atualmente, a maioria dos processos automatizados que 
utilizam Controladores Lógicos Programáveis – CLP’s, possuem em suas malhas de controle algoritmos 
PID, cabendo aos engenheiros e técnicos resposáveis pelo processo a tarefa de sintonia dos parâmetros dos 
controladores. De acordo com [1], a principal razão para a baixa performance de processos automatizados 
está relacionada a problemas em válvulas, sensores e a sintonia incorreta dos controladores PID 
empregados junto aos processos. Nesta aula será apresentada a estrutura básica de um controlador do tipo 
PID, discutindo-se o efeito que cada uma das ações Proporcional, Integral e Derivativa causa sobre a 
variável do processo a ser controlada. 
 
Estrutura do Controlador PID 
 
 De forma a apresentar a estrutura de um controlador PID, considera-se inicialmente o sistema de 
controle em malha-fechada apresentado na Figura 6.1. 
 
 
 
 
 
 
 
 
Fig. 6.1: Diagrama de blocos de um sistema de controle em malha-fechada. 
 Em linhas gerais a tarefa do controlador apresentado na Figura 6.1 é a de com base no sinal de 
diferença existente entre o sinal de referência r(t) e o sinal de saída y(t), gerar em sua saída um sinal de 
controle u(t) que seja capaz de corrigir e se possível anular tal diferença. No caso específico do controlador 
PID, a lei de controle descrita pelo bloco do controlador é composta de três termos, i.e, 
)t(u)t(u)t(u)t(u dip ++= (6.1) 
r(t) e(t) 
 + 
 
 _ 
Controlador Processo 
u(t) y(t) 
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 2 
 
Cada um dos termos do lado direito da equação (6.1) são individualmente associados a cada um dos tipos 
de ações do controlador. Em nível de blocos, o controlador PID apresentado na Figura 6.1, pode ser 
representado conforme a Figura 6.2. Nesta representação observa-se que o sinal de erro e(t) é utilizado 
como entrada em três blocos distintos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.2: Diagrama de blocos de um controlador do tipo PID. 
O bloco superior, constituído de uma constante K, é o responsável pela ação proporcional do controlador. O 
sinal de saída deste bloco é dado pela seguinte equação: 
)t(Ke)t(u p = (6.2) 
De forma análoga, pode-se escrever os sinais de saída relativos aos blocos integral e derivativo, 
apresentados nas equações (6.3) e (6.4), i.e. 
∫= dt)t(eK)t(u ii (6.3) 
dt
)t(deK)t(u dd = (6.4) 
O efeito de cada uma destas ações e suas implicações no comportamento dinâmico de um sistema de 
controle serão apresentados na seqüência. 
 
Efeito da Ação Proporcional 
 
 O efeito das ações proporcional, integral e diferencial será analisado considerando-se com 
exemplo um sistema de controle de velocidade apresentado na Figura 6.3. 
 
 
 
 
 
 
 
 
 
Fig. 6.3: Exemplo de um sistema de controle de velocidade com controle proporcional. 
 Consideremos, por simplicidade, que a análise do efeito da variação do ganho proporcional será 
realizada admitindo um sinal de referência r(t) do tipo degrau. Pode-se observar pelas Figuras 6.4 e 6.5, que 
K
 
∫ dt(.)K i 
dt
(.)dK d 
e(t) u(t) 
Controlador PID 
up(t) 
 + 
ui(t) + 
 
 + 
ud(t) 
Amplificador 
de Potência 
r(t) e(t) 
 + 
 
 _ 
Kp 
 
u(t) y(t) 
100s
100
+
 
36s
1
+
 
Motor e 
Carga 
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 3 
 
o aumento do ganho proporcional tem impacto direto na rapidez da curva de resposta do sistema, na 
máxima sobrepassagem do sinal de saída e no valor do erro de regime permanente. 
A rapidez da curva de resposta do sistema e a máxima sobrepassagem devem-se ao fato de que o 
incremento do ganho proporcional ocasiona um incremento na freqüência ω0dB tendo por conseqüência um 
aumento na largura de banda do sistema de controle em malha-fechada. Uma vez que a curva de fase do 
sistema permanecerá inalterada independentemente do valor associado ao ganho Kp, a margem de fase 
deste sistema irá diminuir implicando aumento na máxima sobrepassagem. 
 
Fig. 6.4: Respostas ao degrau e seus respectivos sinais de controle para quatro valores 
distintos de ganhos proporcional: caso 1: K=100, caso 2: K=50, caso 3: K=20 e caso 4: K=10. 
 
Fig. 6.5: Respostas em freqüência do sistema de controle da Figura 6.3 para quatro valores 
distintos de ganhos proporcional: caso 1: K=100, caso 2: K=50, caso 3: K=20 e caso 4: K=10. 
 
O erro em regime permanente deste sistema pode ser analisado com base na sua função de 
transferência de malha-aberta, ou seja 
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 4 
 
)36s)(100s(
100K)s(G
++
= (6.5) 
Admitindo-se como referência um sinal do tipo degrau de amplitude unitária tem-se que o erro de regime 
permanente é dado por 
p
ss K1
1
e
+
= (6.6) 
sendo 
3600
K100)s(GlimK
0s
p ==
→
 (6.7) 
concluindo-se por (6.7) que o aumento do ganho do controlador proporcional diminuirá o erro de regime 
permanente apresentado na equação (6.6). 
 
Efeito da Ação Integral 
 
 O efeito da ação integral será analisado com base em um controlador do tipo Proporcional Integral 
- PI. Neste caso será considerado constante o ganho proporcional – K, variando-se apenas a constante de 
tempo de integral – Ti1. A lei de controle associada a este tipo de controlador é apresentada na equação 
(6.8). 






+= ∫ dt)t(eT
1)t(eK)t(u
i
 (6.8) 
 De forma similar a realizada no caso do controle puramente Proporcional, o efeito da variação da 
ação integral será observado nas curvas de resposta temporal da variável de saída do processo, Figura 6.6, e 
nas curvas de resposta em freqüência do sistema apresentadas nas Figuras 6.7. 
 
Fig. 6.6: Respostas ao degrau e seus respectivossinais de controle para quatro valores 
distintos para a constante de tempo integral: caso 1: Ti=0.05, caso 2: Ti=0.02, caso 3: Ti=0.01 
e caso 4: Ti=0.008, sendo em todos os casos admitido ganho proporcional K=100. 
 Observa-se que aumentando a ponderação da ação integral, o sistema fica mais oscilatório 
apresentando um sobre-sinal mais elevado. Tal conclusão pode ser obtida diretamente da função de 
 
1
 Em muitas referências é citado o ganho integral como Ki = K/Ti. 
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 5 
 
transferência do controlador PI, extraída da equação em (6.8), e das curvas de resposta em freqüência deste 
controlador para cada um dos casos estabelecidos na Figura 6.6, apresentados na Figura 6.8. 
s
T
1s
K)s(G iPI
+
= (6.9) 
 
Fig. 6.7: Resposta em freqüência do sistema de controle da Figura 6.3, com controlador PI, 
admitindo quatro valores distintos para a constante de tempo integral: caso 1: Ti=0.05, 
 caso 2: Ti=0.02, caso 3: Ti=0.01 e caso 4: Ti=0.008, com ganho proporcional K=100. 
 
Fig. 6.8: Resposta em freqüência do controlador PI descrito em (6.9), para cada um dos casos considerados 
na Figura 6.7. 
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 6 
 
 
 
1. Com base nas Figuras 6.7 e 6.8, explicar porque o sistema com controle Proporcional Integral 
torna-se mais oscilatório com o aumento do ganho integral – Ki. 
2. Concluir, da mesma forma que foi realizado no caso do controle puramente proporcional, qual 
o influência no erro de regime permanente causada pelo controlador PI. 
 As curvas de resposta em freqüência dos controladores proporcional, primeiro caso, e proporcional 
integral, segundo caso, diferem claramente em fase uma vez que a inclusão do pólo na origem ocasionada 
pela inserção do modo integral vem acompanhada de uma contribuição de fase de –90o, impactando 
diretamente na margem de fase do sistema como um todo, controlador e processo. Observa-se também, nas 
curvas de resposta temporal apresentadas na Figura 6.6, que o aumento da ação integral fez com que o 
comportamento transitório do sistema em malha-fechada se torna-se predominante oscilatório. 
 
Efeito da Ação Derivativa 
 
 Da mesma forma que no caso anterior, o efeito da ação derivativa será analisado com base em um 
controlador do tipo Proporcional Derivativo - PD. Neste caso será considerado constante o ganho 
proporcional – K, variando-se apenas a constante de tempo derivativa – Td. A lei de controle associada a 
este tipo de controlador é apresentada na equação (6.8), i.e. 






+=
dt
)t(deT)t(eK)t(u d (6.8) 
 A interpretação da ação derivativa pode ser realizada, admitindo-se a expansão em série de Taylor 
do sinal de erro predito Td segundos a frente do instante de tempo presente “t”, truncada no termo de 
primeiro ordem, dada por 
( )
dt
)t(deT)t(eTte dd +≈+ (6.9) 
 
Fig. 6.9: Interpretação física da ação preditiva inserida pelo modo derivativo. 
 Comparando as equações (6.8) e (6.9), observa-se que o sinal de controle resultante do controlador 
Proporcional Derivativo é proporcional ao valor do sinal de erro estimado Td segundos a frente, através de 
uma extrapolação linear ilustrada na Figura 6.9. Conforme observado em Aströn [1], em muitas aplicações 
práticas os sinais de referência são constantes por partes, significando que a parcela relativa a variável de 
referência, presente no sinal de erro, somente terá valor para a ação derivativa quando houver variação no 
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 7 
 
sinal de referência. Nestes instantes porém, a derivada tenderia a assumir valores infinitamente grandes, 
casos em que a extrapolação linear não se aplicaria. Da mesma forma, a extrapolação linear não é uma boa 
aproximação para sinais que variam rapidamente quando comparados ao horizonte de predição Td. De 
forma a minimizar tais problemas, o termo derivativo dos controladores Proporcionais Derivativos são 
comumente realizados com base na seguinte função de transferência: 
N
T
s1
sKT)s(G
d
d
d
+
= (6.10) 
Tal realização pode ser mais bem entendida como uma pré-filtragem, através de um filtro passa-baixas, do 
sinal de erro e(t), definido na Figura 6.1 como e(t) = r(t)-y(t). 
De forma similar a realizada no caso do controle puramente proporcional, o efeito da variação do 
ganho derivativo será observado nas curvas de resposta temporal da variável de saída do processo, Figura 
6.10, e nas curvas de resposta em freqüência do sistema apresentadas nas Figuras 6.11, apresentadas na 
seqüência. 
 
 
Fig. 6.10: Respostas no tempo e em freqüência para quatro valores distintos de ganho 
derivativo: caso 1: Td=0.001, caso 2: Td=0.002, caso 3: Td=0.005 e caso 4: Td=0.01, 
 sendo em todos os casos admitido ganho proporcional K=100. 
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 8 
 
 A Figura 6.11 apresentada a seguir, ilustra o comportamento em freqüência de um controlador 
Proporcional Derivativo, descrito pela função de transferência (6.11). 
N
T
s1
sKT
K)s(G
d
d
PD
+
+= (6.11) 
 
Fig. 6.11: Resposta em freqüência do controlador PD, para cada um dos casos considerados na Figura 6.9, 
admitindo N=20. 
 
 
 
1. Conclua sobre o efeito da ação derivativa na resposta da variável de saída de um sistema 
operando em malha-fechada que utiliza um controlador do tipo PD. 
2. Estabeleça as semelhanças existentes entre os controladores PI, PD e os controladores de atraso 
e avanço de fase. Estender a análise para o caso dos controladores PID e os controladores de 
atraso e avanço de fase. 
3. Um dado sistema de controle apresenta as seguintes curvas de resposta em freqüência: 
 
Fig. 6.12: Diagrama de Bode de malha-aberta de um dado processo. 
 
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 9 
 
 
i. Desenhar o diagrama de blocos do sistema operando apenas com o controlador PD 
(Proporcional e Derivativo), ressaltando o controlador e o processo; 
ii. Esquematizar o diagrama de blocos do controlador PD, com os blocos relativos a cada 
uma das ações, Proporcional e Derivativa; 
iii. Esboçar o sinal de saída de cada um destes blocos (bloco proporcional e bloco derivativo), 
admitindo como sinal de referência um degrau de amplitude unitária. 
iv. Com base no diagrama de bode do sistema, porque não é necessário empregar a ação 
integral do controlador PID para que este sistema siga um sinal de referência do tipo 
degrau com erro de regime permanente nulo. 
 
4. Um motor de corrente contínua com excitação constante é representado por: 
)t(e
dt
)t(diL)t(Ri)t(v ++= 
As grandezas v(t), i(t), R e L são, respectivamente, a tensão, a corrente, a resistência e a indutância 
dearmadura do motor e e(t) é a tensão induzida na armadura, que é proporcional a velocidade do 
motor. 
No controle i(t), é utilizada uma fonte de tensão CC de saída variável que é modelada com um 
sistema de 1ª ordem dado por: 
1sT
)s(V)s(V
f
r
+
=
 
onde: 
- V(s) e Vr(s) são, respectivamente, as Transformadas de Laplace das tensões de saída da fonte 
de referência; 
- Tf é a constante de tempo da fonte, igual a 0.5ms; 
Calcule os parâmetros Kp e Ki de um controlador PI contínuo para o controle i(t), conforme a 
Figura 6.12 abaixo, de forma a compensar por cancelamento, o pólo dominante do sistema s=-R/L e 
a definir um sistema de malha-fechada com pólos complexos 
f
2,1 T2
j1
s
±−
= 
A tensão e(t) pode ser considerada nula no cálculo do controlador por variar lentamente. Os 
parâmetros do motor são R=0.5Ω e L=1.5 mH. 
 
Fig. 6.12: Diagrama de blocos do sistema de controle proposto. 
 
 
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 10 
 
 
5. Um dado sistema de controle apresenta na Figura 6.17, com a função de transferência do processo G(s) 
dada pela equação 6.15. Determine: 
 
i. Empregar o método de ajuste de controladores– Ziegler-Nichols - para determinação dos ganhos 
dos controladores P, PI e PID; 
ii. Especificar utilizando o método do LGR, a característica (sobre-sinal, erro de regime e tempo de 
estabilização) da resposta temporal do sistema com o controlador proporcional com o ganho 
ajustado no item i. Como é possível melhorar a performance deste sistema de controle? Justifique 
sua resposta. 
iii. Especificar utilizando o método do LGR, a característica (sobre-sinal, erro de regime e tempo de 
estabilização) da resposta temporal do sistema com o controlador proporcional e integral ( PI ) 
com os ganhos ajustados no item i. Como é possível melhorar a performance deste sistema de 
controle? Justifique sua resposta. 
iv. Especificar utilizando o método do LGR, a característica (sobre-sinal, erro de regime e tempo de 
estabilização) da resposta temporal do sistema com o controlador proporcional, integral e 
derivativo ( PID ) com os ganhos ajustados no item i. Como é possível melhorar a performance 
deste sistema de controle? Justifique sua resposta. 
 
+
-
G(s)ControladorR(s) Y(s)E(s) U(s)
 
 
Fig. 6.17: Sistema de controle 
 
)100s)(36s(s
K)s(G
++
= (6.12) 
 
6. Considere o diagrama de blocos apresentado na Figura 6.18, representado um sistema de controle 
operando em malha-fechada. A equação (6.13) apresenta a função de transferência do compensador de 
avanço utilizado neste sistema. Ajuste os parâmetros do controlador PD implementado conforme 
equação (6.14) de tal forma que a função de transferência resultante seja equivalente ao compensador 
de avanço. 
 
 
 
 
 
 
Fig. 6.18: Digrama de blocos do sistema de controle. 
1500
1005.1)(
+
+
=
s
s
sGcontrole (6.13) 
 . 
101
)(
d
d
controle T
s
sKT
KsG
+
+= (6.14) 
C(s) G(s)
R(s) E(s)
+
_
U(s)
K
R(s) E(s)
_
U(s) (1)
(0.11)
s
ss
+
−
C(s) G(s)
R(s) E(s)
_
U(s)
K
R(s) E(s)
_
U(s)
C(s)
R(s) E(s)
+
_
U(s)
Controle
R(s) E(s)
_
U(s) Y(s)
ProcessoC(s) G(s)
R(s) E(s)
+
_
U(s)
K
R(s) E(s)
_
U(s) (1)
(0.11)
s
ss
+
−
(1)
(0.11)
s
ss
+
−
C(s) G(s)
R(s) E(s)
_
U(s)
K
R(s) E(s)
_
U(s)
C(s)
R(s) E(s)
+
_
U(s)
Controle
R(s) E(s)
_
U(s) Y(s)
Processo
PROJETOS DE SISTEMAS DE CONTROLE 
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL 
DEPARTAMENTO DE ENGENHARIA ELÉTRICA 
 
 
Professores: Luís Fernando Alves Pereira & José Felipe Haffner 11 
 
 
Bibliografia 
 
[1] Aströn, K. J., Hägglund, T., “PID Control”, The Control Handbook, IEEE Press, 1996. 
[2] Aströn, K. J., Hägglund. T., “PID Controllers, Theory, Design and Tuning”, 2º Edition, Instrument 
Society of America, 1995. 
[3] Wolovich, W.A., Automatic Control Systems, Saunders College Publishing. 
[4] Nise, N.S., Control System Engineering, Addison-Wesley Publishing Company, Second Edition. 
[5] Franklin, G.F., Powell, J.D. & Naeini, E., Feedback Control of Dynamics Systems, Addison-Wesley 
Publishing Company. 
[6] Dorf, R.C. & Bishop, R.H., Modern Control Systems, Addison-Wesley Publishing Company.

Continue navegando