Buscar

Chronic Adaptations to Eccentric Training - A Systematic Review

Prévia do material em texto

SYSTEMATIC REVIEW
Chronic Adaptations to Eccentric Training: A Systematic Review
Jamie Douglas1,2 • Simon Pearson1,3 • Angus Ross2 • Mike McGuigan1,4
� Springer International Publishing Switzerland 2016
Abstract
Background Resistance training is an integral component
of physical preparation for athletes. A growing body of
evidence indicates that eccentric strength training methods
induce novel stimuli for neuromuscular adaptations.
Objective The purpose of this systematic review was to
determine the effects of eccentric training in comparison to
concentric-only or traditional (i.e. constrained by concen-
tric strength) resistance training.
Methods Searches were performed using the electronic
databases MEDLINE via EBSCO, PubMed and
SPORTDiscus via EBSCO. Full journal articles investigat-
ing the long-term (C4 weeks) effects of eccentric training in
healthy (absence of injury or illness during the 4 weeks
preceding the training intervention), adult (17–35 years),
human participants were selected for the systematic review.
A total of 40 studies conformed to these criteria.
Results Eccentric training elicits greater improvements in
muscle strength, although in a largely mode-specific
manner. Superior enhancements in power and stretch-
shortening cycle (SSC) function have also been reported.
Eccentric training is at least as effective as other modalities
in increasing muscle cross-sectional area (CSA), while the
pattern of hypertrophy appears nuanced and increased CSA
may occur longitudinally within muscle (i.e. the addition of
sarcomeres in series). There appears to be a preferential
increase in the size of type II muscle fibres and the
potential to exert a unique effect upon fibre type transi-
tions. Qualitative and quantitative changes in tendon tissue
that may be related to the magnitude of strain imposed
have also been reported with eccentric training.
Conclusions Eccentric training is a potent stimulus for
enhancements in muscle mechanical function, and muscle-
tendon unit (MTU) morphological and architectural adap-
tations. The inclusion of eccentric loads not constrained by
concentric strength appears to be superior to traditional
resistance training in improving variables associated with
strength, power and speed performance.
Key Points
Eccentric training can improve muscle mechanical
function to a greater extent than other modalities.
Novel muscle-tendon unit adaptations associated
with a faster (i.e. explosive) phenotype have been
reported.
Eccentric training may be especially beneficial in
enhancing strength, power and speed performance.
1 Background
Resistance training has become a ubiquitous component of
physical preparation programmes for athletic populations
[1]. It has been well established that resistance training can
& Jamie Douglas
jamie.douglas@hpsnz.org.nz
1 Sports Performance Research Institute New Zealand
(SPRINZ), Auckland University of Technology, Auckland,
New Zealand
2 High Performance Sport New Zealand (HPSNZ), AUT
Millennium, 17 Antares Place, Mairangi Bay, Auckland
0632, New Zealand
3 Queensland Academy of Sport, Nathan, QLD, Australia
4 School of Medical and Health Sciences, Edith Cowan
University, Perth, WA, Australia
123
Sports Med
DOI 10.1007/s40279-016-0628-4
improve a host of neuromuscular variables relevant to
athletic performance across a continuum of strength,
power, and endurance events [1–3]. Traditional resistance
training typically includes both eccentric and concentric
phases of movement across a set of repetitions. Eccentric
muscle actions occur when the load applied to the muscle
exceeds the force produced by the muscle itself, resulting
in a lengthening action [4]. Therefore, muscle forces tend
to be highest during lengthening actions [5]. The pre-
scription of load is dictated by concentric strength and thus
tends to insufficiently load the eccentric phase of move-
ment. A growing body of evidence indicates that resistance
training programmes that sufficiently load the eccentric
phase of movement can elicit superior neuromuscular
adaptations compared with concentric-only or traditional
resistance training constrained by concentric strength
[6–8]. The training stress and physiological strain imposed
by eccentric training induces an adaptive response con-
ducive to enhancements in muscle mechanical function,
and alterations in muscle-tendon unit (MTU) morphology
and architecture. Metrics of strength, power and stretch-
shortening cycle (SSC) function appear to be particularly
responsive to eccentric stimuli. The purpose of this review
was to systematically retrieve and collate studies that
directly compared eccentric training with concentric or
traditional resistance training.
2 Methods
The review was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Anal-
yses (PRISMA) guidelines for systematic reviews [9]. One
reviewer performed initial database searches for articles
investigating the chronic (i.e. C4 weeks) adaptations to
eccentric training interventions on in vivo muscle-tendon
properties and performance in human subjects (last search
April 2016). Searches were performed using the electronic
databases MEDLINE via EBSCO (1950–present), PubMed
(1950–present) and SPORTDiscus via EBSCO (1985–
present). Key search terms were grouped and searched
within the article title, abstract, and keywords using the
search conjunctions ‘OR’ and ‘AND’. Combinations of the
following terms were used as search terms: ‘eccentric
exercise’, ‘eccentric training’, ‘eccentric contraction’,
‘lengthening contraction’, ‘negative work’ and ‘passive
work’ in conjunction with the terms ‘muscle’, ‘tendon’,
‘strength’, ‘power’, ‘speed’, ‘hypertrophy’, ‘force’, ‘ve-
locity’ and ‘performance’. Key journals identified were
also searched using the keyword ‘eccentric’. Furthermore,
the reference lists of articles retrieved were screened for
additional eligible articles. Full journal articles investigat-
ing the long-term effects of eccentric training (C4 weeks)
in healthy (i.e. the absence of injury or illness during the
4 weeks preceding the training intervention), adult (i.e.
17–35 years), human participants were selected for sys-
tematic review (Fig. 1). Articles were excluded if the
aforementioned criteria were not fulfilled, training was
performed less than twice weekly, eccentric exercise
intensity was not quantified or was below the relative
concentric exercise intensity, or no concentric or traditional
resistance training control group was included.
3 Results and Discussion
3.1 Participant and Intervention Characteristics
Across the 40 studies included for review, 1150 partici-
pants (406 females and 744 males) with a mean age of
23.9 years (range 17.6–35.0) were recruited. The majority
of investigations (32/40; 80 %) recruited untrained partic-
ipants, four (10 %) recruited participants with resistance
training experience (3 months to 1 year), and the remain-
ing four (10 %) recruited participants who were either
moderately trained or participated in elite sport. The
majority of investigations compared eccentric training (i.e.
eccentric contractions at an intensity above the relative
concentric training intensity, performed alone or in con-
junction with concentric contractions) of various volumes
and intensities with traditional resistance training (i.e.
mixed eccentric and concentric contractions limited by
concentric intensity) and/or concentric training (i.e. con-
centric contractions only). A non-training control group
was included in 17 (43 %) studies. Other training variables
compared included the magnitudeof overload (i.e. inten-
sity; heavy vs. light), contraction velocity (i.e. tempo; fast
vs. slow) and the additional effects of whey protein
hydrolysate supplementation. The average intervention
duration was 9.8 weeks (range 5–20), with a training fre-
quency of 2.9 sessions per week (range 2.0–4.2). Single-
joint movements were predominantly investigated (32
studies; 80 %) and isokinetic modalities were used more
(26 studies; 65 %) than isoinertial modalities.
3.2 Muscle Mechanical Function
Eccentric training has been consistently reported to
increase concentric [10–32], isometric [18, 23, 25,
29, 33–37], and eccentric [11, 13–15, 17, 18, 21–
25, 27–29, 31, 37–42] strength when assessed via isoiner-
tial (i.e. repetition maximum [RM] testing) or isokinetic
(i.e. maximal voluntary contraction [MVC] testing)
modalities (Table 1). Concentric training also elicits
increases in concentric [11, 13–18, 21–32, 37–41], iso-
metric [18, 23, 29, 33, 37, 40] and eccentric
J. Douglas et al.
123
[11, 13–15, 17, 18, 21, 23, 25, 27–29, 39, 42] strength,
while increases in concentric [10, 12, 19, 20, 23], isometric
[23, 34] and eccentric strength [23] are similarly observed
following traditional resistance training (Table 1). Strength
increases have been proposed to be largely mode-specific
[8], and while some studies reported that eccentric training
increased eccentric strength to a greater extent compared
with concentric training [13, 21, 22, 25, 27, 31, 38, 39, 41],
and vice versa [11, 38–41], others found no differences
between modalities [10, 12, 14, 15, 19, 20, 23, 24, 28–30,
32–34, 42, 43]. A number of studies investigating eccentric
training included the concentric portion of the movement in
addition to the overloaded eccentric portion [10, 12–14,
19, 20, 23, 24, 32, 34, 42, 43], which may partly explain the
mixed findings compared with previous reviews that
compared eccentric-only with concentric-only modalities
[6, 8]. When using eccentric loads greater than maximal
concentric strength (e.g. 1RM or MVC), eccentric training
generally leads to greater overall strength increases (i.e.
combined concentric, isometric and eccentric strength)
than concentric and traditional training [12, 16, 17,
21–23, 25–27, 30, 31]. Furthermore, studies directly com-
paring heavier with lighter eccentric loads found that
heavier eccentric training induced greater increases in
eccentric strength [16, 26]. Muscle contraction velocity
used within training can also influence strength adapta-
tions, and greater increases in eccentric strength have been
observed with fast versus slow eccentric training [17],
while increases in eccentric strength with eccentric training
become more pronounced when the testing velocity cor-
responds to that used within training [8]. Greater increases
in contralateral eccentric strength (i.e. cross-education)
have been reported with fast (i.e. 180�/s) versus slow (i.e.
30�/s) eccentric training [44], although improvements can
also occur following training at moderate (i.e. 60�/s) con-
traction speeds [45]. Fast contractions have also been
proposed to allow for a greater transfer of eccentric training
to concentric strength [7].
Compared with changes in muscle strength, relatively
few studies investigated changes in muscle power
[13, 14, 19, 34, 46, 47] or contractile rate of force devel-
opment (RFD) [27, 33]. Muscle power, as assessed pri-
marily by lower body jump variations, increased with
eccentric training within a number of studies, while con-
centric or traditional training had no clear effect
[13, 34, 46, 47]. Furthermore, the finding of Colliander and
Tesch [14], where vertical jump increased following con-
centric, but not eccentric, training, may have been a sta-
tistically spurious observation. Closer inspection of their
data indicates that eccentric training was, at least practi-
cally, superior to concentric training (i.e. 8 vs. 4 %;
Cohen’s d 0.36). Vertical jump performance involves an
SSC component, and variables associated with SSC per-
formance appear to improve to a greater extent with
eccentric training. SSC efficiency (i.e. taken as the ratio of
countermovement to squat jump performance), drop jump
Fig. 1 Search strategy
Neuromuscular Adaptations to Chronic Eccentric Training
123
T
a
b
le
1
S
tu
d
ie
s
co
m
p
ar
in
g
th
e
ef
fe
ct
s
o
f
ec
ce
n
tr
ic
-o
v
er
lo
ad
an
d
co
u
p
le
d
m
ax
im
al
ec
ce
n
tr
ic
an
d
co
n
ce
n
tr
ic
co
n
tr
ac
ti
o
n
s
w
it
h
tr
ad
it
io
n
al
an
d
co
n
ce
n
tr
ic
-o
n
ly
re
si
st
an
ce
tr
ai
n
in
g
o
n
m
u
sc
le
m
ec
h
an
ic
al
fu
n
ct
io
n
S
tu
d
y
,
y
ea
r
P
o
p
u
la
ti
o
n
M
u
sc
le
g
ro
u
p
s
(m
o
d
al
it
y
)
In
te
rv
en
ti
o
n
T
ra
in
in
g
d
u
ra
ti
o
n
T
ra
in
in
g
ef
fe
ct
(p
\
0
.0
5
)
B
ar
st
o
w
et
al
.
[4
3
],
2
0
0
3
E
C
C
n
=
1
3
,
T
R
A
D
n
=
1
3
,
C
O
N
T
n
=
1
3
(8
F
,
3
1
M
);
m
ea
n
ag
e:
2
2
.2
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
3
m
o
n
th
s’
re
si
st
an
ce
tr
ai
n
in
g
E
F
(i
so
in
er
ti
al
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
3
se
ts
o
f
8
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
1
0
0
/6
0
%
1
R
M
,
T
R
A
D
g
ro
u
p
:
6
0
%
1
R
M
;
te
m
p
o
:
2
s
E
C
C
,
2
s
C
O
N
C
1
2
w
ee
k
s
(2
se
ss
io
n
s
p
er
w
ee
k
)
N
o
d
if
fe
re
n
ce
s
in
C
O
N
C
E
F
st
re
n
g
th
(1
R
M
)
b
et
w
ee
n
E
C
C
(1
6
%
),
T
R
A
D
(1
4
%
)
o
r
C
O
N
T
(1
0
%
)
B
en
-S
ir
a
et
al
.
[1
0
],
1
9
9
5
E
C
C
H
e
a
v
y
n
=
8
,
T
R
A
D
n
=
8
,
E
C
C
L
ig
h
t
n
=
1
0
,
C
O
N
C
n
=
1
2
,
C
O
N
T
n
=
1
0
(4
8
F
);
m
ea
n
ag
e:
2
1
.1
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
in
er
ti
al
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
E
C
C
H
e
a
v
y
g
ro
u
p
:
3
se
ts
o
f
5
re
p
et
it
io
n
s,
T
R
A
D
,
E
C
C
L
ig
h
t
an
d
C
O
N
C
g
ro
u
p
:
3
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
H
e
a
v
y
g
ro
u
p
:
1
3
5
/6
5
%
1
R
M
,
T
R
A
D
,
E
C
C
L
ig
h
t
an
d
C
O
N
C
g
ro
u
p
s:
6
5
%
1
R
M
;
te
m
p
o
:
3
s
E
C
C
,
1
s
C
O
N
C
8
w
ee
k
s
(2
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(1
R
M
)
w
it
h
E
C
C
H
e
a
v
y
(2
3
%
)
an
d
T
R
A
D
(1
9
%
)
v
s.
C
O
N
T
(4
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
B
la
ze
v
ic
h
et
al
.
[1
1
],
2
0
0
7
E
C
C
n
=
1
1
,
C
O
N
C
n
=
1
0,
C
O
N
T
n
=
9
(1
6
F
,
1
4
M
);
m
ea
n
ag
e:
2
2
.8
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
5
se
ts
o
f
6
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
3
0
�/
s
1
0
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
6
%
)
an
d
C
O
N
C
(2
4
%
)
v
s.
C
O
N
T
(1
%
),
b
u
t
g
re
at
er
in
cr
ea
se
w
it
h
C
O
N
C
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(3
9
%
)
an
d
C
O
N
C
(3
6
%
)
v
s.
C
O
N
T
(3
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
B
la
ze
v
ic
h
et
al
.
[3
3
],
2
0
0
8
E
C
C
n
=
1
1
,
C
O
N
C
n
=
1
0
(1
1
F
,
1
0
M
);
m
ea
n
ag
e:
2
2
.8
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
5
se
ts
o
f
6
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
3
0
�/
s
1
0
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
IS
O
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
0
%
)
an
d
C
O
N
C
(1
3
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
R
F
D
3
0
m
s
(N
�s-
1
)
w
it
h
E
C
C
(2
8
%
)
an
d
C
O
N
C
(5
0
%
),
g
re
at
er
in
cr
ea
se
w
it
h
C
O
N
C
v
s.
E
C
C
B
ra
n
d
en
b
er
g
an
d
D
o
ch
er
ty
[1
2
],
2
0
0
2
E
C
C
n
=
8
,
T
R
A
D
n
=
1
0
(1
8
M
);
m
ea
n
ag
e:
N
R
,
u
n
iv
er
si
ty
st
u
d
en
ts
;
tr
ai
n
in
g
st
at
u
s:
1
y
ea
r
re
si
st
an
ce
tr
ai
n
in
g
E
F
an
d
E
E
(i
so
in
er
ti
al
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
E
C
C
g
ro
u
p
:
3
se
ts
o
f
1
0
re
p
et
it
io
n
s,
T
R
A
D
g
ro
u
p
:
4
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
1
1
5
/7
5
%
1
R
M
,
T
R
A
D
g
ro
u
p
:
7
5
%
1
R
M
;
te
m
p
o
:
2
s
E
C
C
,
2
s
C
O
N
C
9
w
ee
k
s
(2
.8
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
E
F
st
re
n
g
th
(1
R
M
)
w
it
h
E
C
C
(9
%
)
an
d
T
R
A
D
(1
1
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
C
O
N
C
E
E
st
re
n
g
th
(1
R
M
)
w
it
h
E
C
C
(2
4
%
)
an
d
T
R
A
D
(1
5
%
),
b
u
t
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
tr
ai
n
in
g
C
o
ll
ia
n
d
er
an
d
T
es
ch
[1
3
],
1
9
9
0
E
C
C
?
C
O
N
C
n
=
1
1
,
C
O
N
C
n
=
1
1
,
C
O
N
T
n
=
7
(2
9
M
);
m
ea
n
ag
e:
2
6
.3
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
E
C
C
?
C
O
N
C
g
ro
u
p
:
4
.8
se
ts
o
f
6
C
O
N
C
re
p
et
it
io
n
s
an
d
6
E
C
C
re
p
et
it
io
n
s,
C
O
N
C
g
ro
u
p
:
4
.8
se
ts
o
f
1
2
C
O
N
C
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
?
C
O
N
C
g
ro
u
p
:
E
C
C
an
d
C
O
N
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
6
0
�/
s
1
2
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
?
C
O
N
C
(3
6
%
)
an
d
C
O
N
C
(1
9
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(-
5
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
?
C
O
N
C
v
s.
C
O
N
C
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
?
C
O
N
C
(2
5
%
)
an
d
C
O
N
C
(1
4
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(-
2
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
lo
w
er
b
o
d
y
st
re
n
g
th
(b
ac
k
sq
u
at
3
R
M
)
w
it
h
E
C
C
?
C
O
N
C
(2
5
%
)
an
d
C
O
N
C
(1
5
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(2
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
lo
w
er
b
o
d
y
p
o
w
er
(v
er
ti
ca
l
ju
m
p
;
cm
)
w
it
h
E
C
C
?
C
O
N
C
(8
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(3
%
)
o
r
C
O
N
T
(-
1
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
J. Douglas et al.
123
T
a
b
le
1
co
n
ti
n
u
ed
S
tu
d
y
,
y
ea
r
P
o
p
u
la
ti
o
n
M
u
sc
le
g
ro
u
p
s
(m
o
d
al
it
y
)
In
te
rv
en
ti
o
n
T
ra
in
in
g
d
u
ra
ti
o
n
T
ra
in
in
g
ef
fe
ct
(p
\
0
.0
5
)
C
o
ll
ia
n
d
er
an
d
T
es
ch
,
[1
4
]
1
9
9
2
E
C
C
?
C
O
N
C
n
=
1
0
,
C
O
N
C
n
=
8
,
C
O
N
T
n
=
7
(2
5
M
);
m
ea
n
ag
e:
2
6
.6
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
E
C
C
?
C
O
N
C
g
ro
u
p
:
4
.8
se
ts
o
f
6
C
O
N
C
re
p
et
it
io
n
s
an
d
6
E
C
C
re
p
et
it
io
n
s,
C
O
N
C
g
ro
u
p
:
4
.8
se
ts
o
f
1
2
C
O
N
C
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
?
C
O
N
C
g
ro
u
p
:
E
C
C
an
d
C
O
N
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
6
0
�/
s
1
2
w
ee
k
s
(3
se
ss
io
n
s
per
w
ee
k
)
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
?
C
O
N
C
(3
7
%
)
an
d
C
O
N
C
(1
8
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
?
C
O
N
C
(2
6
%
)
an
d
C
O
N
C
(1
3
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
lo
w
er
b
o
d
y
st
re
n
g
th
(b
ac
k
sq
u
at
3
R
M
)
w
it
h
E
C
C
?
C
O
N
C
(2
3
%
)
an
d
C
O
N
C
(1
3
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
lo
w
er
b
o
d
y
p
o
w
er
(v
er
ti
ca
l
ju
m
p
;
cm
)
w
it
h
C
O
N
C
(4
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
?
C
O
N
C
(8
%
)
o
r
C
O
N
T
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
D
u
n
ca
n
et
al
.
[3
8
],
1
9
8
9
E
C
C
n
=
1
6
,
C
O
N
C
n
=
1
4
,
C
O
N
T
n
=
1
8
(4
8
M
);
m
ea
n
ag
e:
2
3
.9
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
1
se
t
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
1
2
0
�/
s
6
w
ee
k
s
(2
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
;
6
0
,
1
2
0
an
d
1
8
0
�/
s)
w
it
h
E
C
C
(2
9
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(7
%
)
o
r
C
O
N
T
(-
1
%
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
;
1
8
0
�/
s)
w
it
h
C
O
N
C
(8
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(1
%
)
o
r
C
O
N
T
(-
5
%
)
E
ll
en
b
ec
k
er
et
al
.
[1
5
],
1
9
8
8
E
C
C
n
=
1
1
,
C
O
N
C
n
=
1
1
(2
2
F
an
d
M
);
m
ea
n
ag
e:
N
R
,
u
n
iv
er
si
ty
st
u
d
en
ts
;
tr
ai
n
in
g
st
at
u
s:
v
ar
si
ty
te
n
n
is
at
h
le
te
s
E
R
an
d
IR
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
6
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
p
y
ra
m
id
ac
ro
ss
si
x
se
ts
(6
0
,
1
8
0
,
2
1
0
,
2
1
0
,
1
8
0
,
6
0
�/
s)
6
w
ee
k
s
(2
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
E
R
st
re
n
g
th
(M
V
C
;
6
0
,
1
8
0
,
2
1
0
�/
s)
w
it
h
E
C
C
(N
R
)
an
d
C
O
N
C
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
C
O
N
C
IR
st
re
n
g
th
(M
V
C
;
6
0
,
1
8
0
,
2
1
0
�/
s)
w
it
h
E
C
C
(N
R
)
an
d
C
O
N
C
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
E
R
st
re
n
g
th
(M
V
C
;
2
1
0
�/
s)
w
it
h
E
C
C
(N
R
)
an
d
C
O
N
C
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
IR
st
re
n
g
th
(M
V
C
;
6
0
an
d
1
8
0
�/
s)
w
it
h
C
O
N
C
(8
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(N
R
)
E
lm
er
et
al
.
[4
6
],
2
0
1
2
E
C
C
n
=
6
,
C
O
N
C
n
=
6
(1
2
M
);
m
ea
n
ag
e:
2
5
.0
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
H
E
an
d
K
E
(i
so
k
in
et
ic
cy
cl
in
g
;
m
u
lt
i-
jo
in
t)
V
o
lu
m
e:
2
1
m
in
;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
3
0
%
co
n
ce
n
tr
ic
cy
cl
in
g
p
ea
k
p
o
w
er
,
C
O
N
C
g
ro
u
p
:
1
9
%
co
n
ce
n
tr
ic
cy
cl
in
g
p
ea
k
p
o
w
er
;
te
m
p
o
:
6
0
rp
m
7
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
le
g
sp
ri
n
g
st
if
fn
es
s
(k
N
/m
)
w
it
h
E
C
C
(1
0
%
)
v
s.
C
O
N
C
(-
2
%
)
In
cr
ea
se
in
ju
m
p
in
g
p
o
w
er
(W
)
w
it
h
E
C
C
(7
%
)
v
s.
C
O
N
C
(-
2
%
)
E
n
g
li
sh
et
al
.
[1
6
],
2
0
1
4
E
C
C
1
3
8
n
=
8
,
E
C
C
1
0
0
n
=
8
,
C
O
N
C
6
6
n
=
8
,
C
O
N
C
3
3
n
=
8
,
C
O
N
C
n
=
8
(4
0
M
);
m
ea
n
ag
e:
3
4
.9
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
H
E
,
K
E
an
d
A
E
(i
so
k
in
et
ic
le
g
p
re
ss
;
m
u
lt
i-
jo
in
t)
V
o
lu
m
e:
3
.7
5
se
ts
o
f
5
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
1
3
8
g
ro
u
p
:
1
3
8
/7
6
%
1
R
M
,
E
C
C
1
0
0
g
ro
u
p
:
1
0
0
/7
6
%
1
R
M
,
C
O
N
C
6
6
g
ro
u
p
:
6
6
/7
6
%
1
R
M
,
C
O
N
C
3
3
:
3
3
/7
6
%
1
R
M
,
C
O
N
C
:
0
/7
6
%
1
R
M
;
te
m
p
o
:
N
R
8
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
H
E
an
d
K
E
st
re
n
g
th
(l
eg
p
re
ss
1
R
M
)
w
it
h
E
C
C
1
3
8
(2
0
%
),
E
C
C
1
0
0
(1
3
%
),
C
O
N
C
6
6
(8
%
),
C
O
N
C
3
3
(8
%
)
an
d
C
O
N
C
(8
%
),
b
u
t
E
C
C
1
3
8
g
re
at
er
th
an
C
O
N
C
6
6
,
C
O
N
C
3
3
an
d
C
O
N
C
In
cr
ea
se
in
C
O
N
C
A
E
st
re
n
g
th
(c
al
f
ra
is
e
1
R
M
)
w
it
h
E
C
C
1
3
8
(1
1
%
),
E
C
C
1
0
0
(1
2
%
),
C
O
N
C
6
6
(7
%
)
an
d
C
O
N
C
3
3
(8
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(5
%
),
n
o
d
if
fe
re
nce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
Neuromuscular Adaptations to Chronic Eccentric Training
123
T
a
b
le
1
co
n
ti
n
u
ed
S
tu
d
y
,
y
ea
r
P
o
p
u
la
ti
o
n
M
u
sc
le
g
ro
u
p
s
(m
o
d
al
it
y
)
In
te
rv
en
ti
o
n
T
ra
in
in
g
d
u
ra
ti
o
n
T
ra
in
in
g
ef
fe
ct
(p
\
0
.0
5
)
F
ar
th
in
g
an
d
C
h
il
ib
ec
k
[1
7
],
2
0
0
3
E
C
C
F
a
st
,
C
O
N
C
F
a
st
n
=
1
3
(9
F
,
4
M
),
E
C
C
S
lo
w
,
C
O
N
C
S
lo
w
n
=
1
1
(4
F
,
7
M
),
C
O
N
T
n
=
1
0
(8
F
,
2
M
);
m
ea
n
ag
e:
2
2
.2
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
E
F
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
4
.6
se
ts
o
f
8
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
s:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
s:
C
O
N
C
M
V
C
;
te
m
p
o
:
fa
st
g
ro
u
p
s:
1
8
0
�/
s,
sl
o
w
g
ro
u
p
s:
3
0
�/
s
8
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
E
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
F
a
st
(2
3
%
)
g
re
at
er
th
an
C
O
N
C
F
a
st
(1
%
),
C
O
N
C
S
lo
w
(6
%
)
an
d
C
O
N
T
(0
%
),
b
u
t
n
o
t
E
C
C
S
lo
w
(1
6
%
)
In
cr
ea
se
in
E
C
C
E
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
F
a
st
(1
6
%
)
g
re
at
er
th
an
C
O
N
C
F
a
st
(-
1
%
),
E
C
C
S
lo
w
(6
%
),
C
O
N
C
S
lo
w
(5
%
)
an
d
C
O
N
T
(0
%
)
F
ar
th
in
g
an
d
C
h
il
ib
ec
k
[4
4
],
2
0
0
3
E
C
C
F
a
st
,
C
O
N
C
F
a
st
n
=
1
3
(9
F
,
4
M
)
E
C
C
S
lo
w
,
C
O
N
C
S
lo
w
n
=
1
1
(4
F
,
7
M
),
C
O
N
T
n
=
1
0
(8
F
,
2
M
);
m
ea
n
ag
e:
2
2
.2
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
E
F
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
4
.6
se
ts
o
f
8
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
s:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
s:
C
O
N
C
M
V
C
;
te
m
p
o
:
fa
st
g
ro
u
p
s:
1
8
0
�/
s,
sl
o
w
g
ro
u
p
s:
3
0
�/
s
8
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
co
n
tr
al
at
er
al
E
C
C
E
F
st
re
n
g
th
(M
V
C
;
1
8
0
�/
s)
w
it
h
E
C
C
F
a
st
an
d
C
O
N
C
F
a
st
(2
3
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
S
lo
w
,
C
O
N
C
S
lo
w
(-
1
7
%
)
o
r
C
O
N
T
(8
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
F
ar
u
p
et
al
.
[1
8
],
2
0
1
4
E
C
C
W
h
e
y
an
d
E
C
C
n
=
1
1
,
C
O
N
C
W
h
e
y
an
d
C
O
N
C
n
=
1
1
,
w
it
h
in
-s
u
b
je
ct
d
es
ig
n
(2
2
M
);
m
ea
n
ag
e:
2
3
.9
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
in
er
ti
al
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
9
.3
se
ts
o
f
1
0
.7
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
s:
9
0
/7
5
%
1
R
M
,
C
O
N
C
g
ro
u
p
s:
7
5
%
1
R
M
;
te
m
p
o
:
E
C
C
:
2
s,
C
O
N
C
:
2
s
1
2
w
ee
k
s
(2
.7
5
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(4
%
),
C
O
N
C
W
h
e
y
(7
%
)
an
d
C
O
N
C
(2
0
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
W
h
e
y
(2
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
IS
O
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
W
h
e
y
(6
%
)
E
C
C
(1
0
%
),
C
O
N
C
W
h
e
y
(1
7
%
)
an
d
C
O
N
C
(2
0
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
W
h
e
y
(1
0
%
),
E
C
C
(8
%
),
C
O
N
C
W
h
e
y
(8
%
)
an
d
C
O
N
C
(1
9
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
F
ra
n
ch
i
et
al
.
[3
7
],
2
0
1
4
E
C
C
n
=
6
,
C
O
N
C
n
=
6
(1
2
M
);
m
ea
n
ag
e:
2
5
.0
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
H
E
an
d
K
E
(i
so
k
in
et
ic
;
m
u
lt
i-
jo
in
t)
V
o
lu
m
e:
4
se
ts
o
f
9
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
8
0
%
E
C
C
1
R
M
,
C
O
N
C
g
ro
u
p
:
8
0
%
C
O
N
C
1
R
M
;
te
m
p
o
:
E
C
C
g
ro
u
p
:
3
s,
C
O
N
C
g
ro
u
p
:
2
s
1
0
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
IS
O
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
1
%
)
an
d
C
O
N
C
(9
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
F
ri
ed
m
an
n
-
B
et
te
et
al
.
[1
9
],
2
0
1
0
E
C
C
n
=
1
4
,
T
R
A
D
n
=
1
1
(2
5
M
);
m
ea
n
ag
e:
2
4
.4
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
st
re
n
g
th
tr
ai
n
ed
K
E
(i
so
in
er
ti
al
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
E
C
C
g
ro
u
p
:
5
se
ts
o
f
8
re
p
et
it
io
n
s,
T
R
A
D
g
ro
u
p
:
6
se
ts
o
f
8
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
:
1
5
2
/8
0
%
1
R
M
,
T
R
A
D
:
8
0
%
1
R
M
;
te
m
p
o
:
N
R
;
ex
p
lo
si
v
e
E
C
C
an
d
C
O
N
C
6
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(1
R
M
)
w
it
h
E
C
C
(1
6
%
)
an
d
T
R
A
D
(1
9
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
sq
u
at
ju
m
p
(c
m
)
w
it
h
E
C
C
(7
%
),
no
ch
an
g
e
w
it
h
T
R
A
D
(1
%
)
G
o
d
ar
d
et
al
.
[2
0
],
1
9
9
8
E
C
C
n
=
9
,
T
R
A
D
n
=
9
,
C
O
N
T
n
=
1
0
(1
7
F
,
2
1
M
);
m
ea
n
ag
e:
2
2
.4
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
re
cr
ea
ti
o
n
al
ly
ac
ti
v
e
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
1
se
t
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
1
2
0
/8
0
%
1
R
M
,
T
R
A
D
g
ro
u
p
:
8
0
%
1
R
M
;
te
m
p
o
:
3
0
�/
s
1
0
w
ee
k
s
(2
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(8
1
%
)
an
d
T
R
A
D
(8
2
%
)
v
s.
C
O
N
T
(7
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
J. Douglas et al.
123
T
a
b
le
1
co
n
ti
n
u
ed
S
tu
d
y
,
y
ea
r
P
o
p
u
la
ti
o
n
M
u
sc
le
g
ro
u
p
s
(m
o
d
al
it
y
)
In
te
rv
en
ti
o
n
T
ra
in
in
g
d
u
ra
ti
o
n
T
ra
in
in
g
ef
fe
ct
(p
\
0
.0
5
)
G
ro
ss
et
al
.
[3
4
],
2
0
1
0
E
C
C
n
=
8
,
T
R
A
D
n
=
7
(1
5
M
);
m
ea
n
ag
e:
1
7
.6
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
ju
n
io
r
n
at
io
n
al
sk
ie
rs
H
E
an
d
K
E
(i
so
k
in
et
ic
an
d
is
o
in
er
ti
al
;
m
u
lt
i-
jo
in
t)
V
o
lu
m
e:
E
C
C
g
ro
u
p
:
1
2
se
ts
o
f
3
0
re
p
et
it
io
n
s
w
ei
g
h
t
tr
ai
n
in
g
an
d
2
0
m
in
E
C
C
cy
cl
in
g
,
T
R
A
D
g
ro
u
p
:
2
2
.5
se
ts
o
f
3
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
4
0
%
1
R
M
w
ei
g
h
t
tr
ai
n
in
g
an
d
5
3
2
W
E
C
C
cy
cl
in
g
,
T
R
A
D
g
ro
u
p
:
4
0
%
1
R
M
;
te
m
p
o
:
E
C
C
cy
cl
in
g
:
7
0
rp
m
,
w
ei
g
h
t
tr
ai
n
in
g
:
N
R
6
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
IS
O
H
E
an
d
K
E
st
re
n
g
th
(l
eg
p
re
ss
M
V
C
)
w
it
h
E
C
C
(1
0
%
)
an
d
T
R
A
D
(1
2
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
D
ec
re
as
e
in
sq
u
at
ju
m
p
(c
m
)
w
it
h
T
R
A
D
(-
4
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(2
%
)
In
cr
ea
se
in
co
u
n
te
rm
o
v
em
en
t
ju
m
p
(c
m
)
w
it
h
E
C
C
(7
%
),
n
o
ch
an
g
e
w
it
h
T
R
A
D
(3
%
)
H
aw
k
in
s
et
al
.
[2
1
],
1
9
9
9
E
C
C
n
=
8
,
C
O
N
C
n
=
8
(w
it
h
in
-s
u
b
je
ct
d
es
ig
n
),
C
O
N
T
n
=
1
2
(2
0
F
);
m
ea
n
ag
e:
2
1
.4
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
an
d
K
F
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
E
C
C
g
ro
u
p
:
3
se
ts
o
f
3
re
p
et
it
io
n
s,
C
O
N
C
g
ro
u
p
:
3
se
ts
o
f
4
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
N
R
1
8
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
8
%
)
an
d
C
O
N
C
(2
3
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(-
6
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
2
%
)
an
d
C
O
N
C
(1
7
%
)
in
cr
ea
se
d
,
n
o
ch
an
g
e
w
it
h
C
O
N
T
(-
3
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
tr
ai
n
in
g
v
s.
C
O
N
C
In
cr
ea
se
in
C
O
N
C
K
F
st
re
n
g
th
(M
V
C
)
E
C
C
(1
3
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(6
%
)
o
r
C
O
N
T
(N
R
)
In
cr
ea
se
in
E
C
C
K
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
4
%
)
an
d
C
O
N
C
(1
3
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
H
ig
b
ie
et
al
.
[3
9
],
1
9
9
6
E
C
C
n
=
1
9
,
C
O
N
C
n
=
1
6
,
C
O
N
T
n
=
1
9
(5
4
F
);
m
ea
n
ag
e:
2
0
.5
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
3
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
;
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
6
0
�/
s
1
0
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
C
O
N
C
(1
8
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(7
%
)
o
r
C
O
N
T
(5
%
),
g
re
at
er
in
cr
ea
se
w
it
h
C
O
N
C
tr
ai
n
in
g
v
s.
E
C
C
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(3
6
%
)
an
d
C
O
N
C
(1
3
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(-
2
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
tr
ai
n
in
g
v
s.
C
O
N
C
In
cr
ea
se
in
C
O
N
C
K
E
ac
ti
v
at
io
n
(E
M
G
)
w
it
h
C
O
N
C
(2
2
%
)
g
re
at
er
th
an
C
O
N
T
(-
8
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(7
%
)
In
cr
ea
se
in
E
C
C
K
E
ac
ti
v
at
io
n
(E
M
G
)
w
it
h
E
C
C
(1
7
%
)
an
d
C
O
N
C
(2
0
%
)
g
re
at
er
th
an
C
O
N
T
(-
9
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
Neuromuscular Adaptations to Chronic Eccentric Training
123
T
a
b
le
1
co
n
ti
n
u
ed
S
tu
d
y
,
y
ea
r
P
o
p
u
la
ti
o
n
M
u
sc
le
g
ro
u
p
s
(m
o
d
al
it
y
)
In
te
rv
en
ti
o
n
T
ra
in
in
g
d
u
ra
ti
o
n
T
ra
in
in
gef
fe
ct
(p
\
0
.0
5
)
H
o
rt
o
b
ag
y
i
et
al
.
[2
2
],
1
9
9
6
E
C
C
n
=
7
,
C
O
N
C
n
=
8
,
C
O
N
T
n
=
6
(2
1
M
);
m
ea
n
ag
e:
2
1
.3
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
5
.3
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
6
0
�/
s
1
2
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(3
3
%
)
an
d
C
O
N
C
(5
3
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
1
6
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(4
0
%
)
o
r
C
O
N
T
(N
R
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
tr
ai
n
in
g
v
s.
C
O
N
C
In
cr
ea
se
in
C
O
N
C
K
E
ac
ti
v
at
io
n
(E
M
G
)
w
it
h
C
O
N
C
(2
8
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(6
2
%
)
o
r
C
O
N
T
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
K
E
ac
ti
v
at
io
n
(E
M
G
)
w
it
h
E
C
C
(1
8
8
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(1
0
%
)
o
r
C
O
N
T
(N
R
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
tr
ai
n
in
g
v
s.
C
O
N
C
H
o
rt
o
b
ag
y
i
et
al
.
[4
5
],
1
9
9
7
E
C
C
n
=
7
,
C
O
N
C
n
=
8
,
C
O
N
T
n
=
6
(2
1
M
);
m
ea
n
ag
e:
2
1
.3
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
5
.3
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
6
0
�/
s
1
2
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
co
n
tr
al
at
er
al
C
O
N
C
K
E
S
tr
en
g
th
(M
V
C
)
w
it
h
C
O
N
C
(3
0
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(1
8
%
)
o
r
C
O
N
T
(0
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
co
n
tr
al
at
er
al
IS
O
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(3
9
%
)
an
d
C
O
N
C
(2
2
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(2
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
In
cr
ea
se
in
co
n
tr
al
at
er
al
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(7
7
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(1
8
%
)
o
r
C
O
N
T
(4
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
H
o
rt
o
b
ag
y
i
et
al
.
[2
3
],
2
0
0
0
E
C
C
n
=
1
2
,
E
C
C
?
C
O
N
C
n
=
1
2
,
C
O
N
C
n
=
1
2
,
C
O
N
T
n
=
2
4
(2
4
F
,
2
4
M
);
m
ea
n
ag
e:
2
2
.0
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
5
.3
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
E
C
C
?
C
O
N
C
g
ro
u
p
:
E
C
C
an
d
C
O
N
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
6
0
�/
s
1
2
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
5
%
),
E
C
C
?
C
O
N
C
(4
0
%
)
an
d
C
O
N
C
(4
4
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
IS
O
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(4
2
%
),
E
C
C
?
C
O
N
C
(3
8
%
)
an
d
C
O
N
C
(3
1
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(N
R
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
an
d
E
C
C
?
C
O
N
C
v
s.
C
O
N
C
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(8
6
%
),
E
C
C
?
C
O
N
C
(7
0
%
)
an
d
C
O
N
C
(2
0
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(N
R
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
K
am
in
sk
i
et
al
.
[2
4
],
1
9
9
8
E
C
C
n
=
9
,
C
O
N
C
n
=
9
,
C
O
N
T
n
=
9
(2
7
M
);
m
ea
n
ag
e:
2
2
.9
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
F
(i
so
in
er
ti
al
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
2
se
ts
o
f
8
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
1
0
0
/4
0
%
1
R
M
,
C
O
N
C
g
ro
u
p
:
8
0
%
1
R
M
;
te
m
p
o
:
N
R
6
w
ee
k
s
(2
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
F
st
re
n
g
th
(1
R
M
/B
W
)
w
it
h
E
C
C
(2
9
%
)
an
d
C
O
N
C
(1
9
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(5
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
K
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(3
0
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(1
3
%
)
o
r
C
O
N
T
(-
5
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
J. Douglas et al.
123
T
a
b
le
1
co
n
ti
n
u
ed
S
tu
d
y
,
y
ea
r
P
o
p
u
la
ti
o
n
M
u
sc
le
g
ro
u
p
s
(m
o
d
al
it
y
)
In
te
rv
en
ti
o
n
T
ra
in
in
g
d
u
ra
ti
o
n
T
ra
in
in
g
ef
fe
ct
(p
\
0
.0
5
)
K
o
m
i
an
d
B
u
sk
ir
k
[2
5
],
1
9
7
2E
C
C
n
=
1
1
,
C
O
N
C
n
=
1
0
,
C
O
N
T
n
=
1
0
(3
1
M
);
m
ea
n
ag
e:
1
9
.6
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s;
u
n
tr
ai
n
ed
E
F
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
1
se
t
o
f
6
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
N
R
7
w
ee
k
s
(4
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
E
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
6
%
)
an
d
C
O
N
C
(1
2
%
)
v
s.
C
O
N
T
(2
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
IS
O
E
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(7
%
)
v
s.
C
O
N
T
(1
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(6
%
)
In
cr
ea
se
in
E
C
C
E
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
6
%
)
an
d
C
O
N
C
(7
%
)
v
s.
C
O
N
T
(-
4
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
L
aS
ta
y
o
et
al
.
[3
5
],
1
9
9
9
E
C
C
n
=
4
,
C
O
N
C
n
=
5
(5
F
,
4
M
);
m
ea
n
ag
e:
2
1
.5
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
H
E
an
d
K
E
(i
so
k
in
et
ic
cy
cl
in
g
;
m
u
lt
i-
jo
in
t)
V
o
lu
m
e:
2
7
.5
m
in
;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
1
L
/m
in
O
2
co
n
su
m
p
ti
o
n
,
C
O
N
C
g
ro
u
p
:
1
.2
L
/m
in
O
2
co
n
su
m
p
ti
o
n
;
te
m
p
o
:
5
5
rp
m
6
w
ee
k
s
(4
.2
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
IS
O
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
7
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(1
0
%
)
L
aS
ta
y
o
et
al
.
[3
6
],
2
0
0
0
E
C
C
n
=
7
,
C
O
N
C
n
=
7
(1
4
M
);
m
ea
n
ag
e:
2
3
.9
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
H
E
an
d
K
E
(i
so
k
in
et
ic
cy
cl
in
g
;
m
u
lt
i-
jo
in
t)
V
o
lu
m
e:
2
7
.5
m
in
;
in
te
n
si
ty
:
6
2
%
m
ax
im
u
m
h
ea
rt
ra
te
;
te
m
p
o
:
6
0
rp
m
8
w
ee
k
s
(3
.5
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
IS
O
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(3
6
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
C
(2
%
)
L
iu
et
al
.
[4
7
],
2
0
1
3
E
C
C
?
C
O
N
C
F
a
st
n
=
1
0
,
E
C
C
?
C
O
N
C
S
lo
w
n
=
1
0
,
T
R
A
D
n
=
1
0
(3
0
M
);
m
ea
n
ag
e:
1
9
.5
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
H
E
an
d
K
E
(E
C
C
g
ro
u
p
s:
is
o
k
in
et
ic
,
T
R
A
D
g
ro
u
p
:
is
o
in
er
ti
al
;
m
u
lt
i-
jo
in
t)
V
o
lu
m
e:
5
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
;
E
C
C
g
ro
u
p
s:
E
C
C
M
V
C
,
T
R
A
D
g
ro
u
p
:
7
0
%
1
R
M
;
te
m
p
o
:
E
C
C
F
a
st
:
2
.5
H
z,
E
C
C
S
lo
w
an
d
T
R
A
D
:
0
.5
H
z
1
0
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
lo
w
er
b
o
d
y
p
o
w
er
(v
er
ti
ca
l
ju
m
p
;
cm
)
w
it
h
E
C
C
?
C
O
N
C
F
a
st
(4
%
)
an
d
E
C
C
?
C
O
N
C
S
lo
w
(3
%
),
n
o
ch
an
g
e
w
it
h
T
R
A
D
(2
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
?
C
O
N
C
F
a
st
v
s.
E
C
C
?
C
O
N
C
S
lo
w
an
d
T
R
A
D
In
cr
ea
se
in
d
ro
p
ju
m
p
(c
m
)
w
it
h
E
C
C
?
C
O
N
C
F
a
st
(6
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
?
C
O
N
C
S
lo
w
(1
%
)
o
r
T
R
A
D
(1
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
?
C
O
N
C
F
a
st
v
s.
E
C
C
?
C
O
N
C
S
lo
w
D
ec
re
as
e
in
3
0
m
sp
ri
n
t
ti
m
e
(s
)
w
it
h
E
C
C
?
C
O
N
C
F
a
st
(-
0
.2
3
%
),
E
C
C
?
C
O
N
C
S
lo
w
(-
0
.1
2
%
)
an
d
T
R
A
D
(-
0
.1
2
%
),
g
re
at
er
im
p
ro
v
em
en
t
w
it
h
E
C
C
?
C
O
N
C
F
a
st
v
s.
E
C
C
?
C
O
N
C
S
lo
w
an
d
T
R
A
D
In
cr
ea
se
in
st
re
tc
h
sh
o
rt
en
in
g
cy
cl
e
ef
fi
ci
en
cy
w
it
h
E
C
C
?
C
O
N
C
F
a
st
(1
1
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
?
C
O
N
C
S
lo
w
(4
%
)
o
r
T
R
A
D
(2
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
?
C
O
N
C
F
a
st
v
s.
E
C
C
?
C
O
N
C
S
lo
w
an
d
T
R
A
D
M
al
li
ar
as
et
al
.
[2
6
],
2
0
1
3
E
C
C
H
e
a
v
y
n
=
1
0
,
E
C
C
L
ig
h
tn
=
1
0
,
C
O
N
C
n
=
9
,
C
O
N
T
n
=
9
(3
8
M
);
m
ea
n
ag
e:
2
7
.5
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
in
er
ti
al
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
E
C
C
H
e
a
v
y
an
d
C
O
N
C
g
ro
u
p
s:
4
se
ts
o
f
7
.5
re
p
et
it
io
n
s,
E
C
C
L
ig
h
t
g
ro
u
p
:
4
se
ts
o
f
1
3
.5
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
H
e
a
v
y
g
ro
u
p
:
8
0
%
E
C
C
1
R
M
,
E
C
C
L
ig
h
t
an
d
C
O
N
C
g
ro
u
p
s:
8
0
%
C
O
N
C
1
R
M
;
te
m
p
o
:
E
C
C
:
5
s,
C
O
N
C
:
1
s
1
2
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(5
R
M
)
w
it
h
E
C
C
H
e
a
v
y
(7
7
%
),
E
C
C
L
ig
h
t(
6
1
%
)
an
d
C
O
N
C
(5
3
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(N
R
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
H
e
a
v
y
v
s.
E
C
C
L
ig
h
t
an
d
C
O
N
C
Neuromuscular Adaptations to Chronic Eccentric Training
123
T
a
b
le
1
co
n
ti
n
u
ed
S
tu
d
y
,
y
ea
r
P
o
p
u
la
ti
o
n
M
u
sc
le
gro
u
p
s
(m
o
d
al
it
y
)
In
te
rv
en
ti
o
n
T
ra
in
in
g
d
u
ra
ti
o
n
T
ra
in
in
g
ef
fe
ct
(p
\
0
.0
5
)
M
il
le
r
et
al
.
[2
7
],
2
0
0
6
E
C
C
n
=
1
7
,
C
O
N
C
n
=
2
1
(3
8
F
);
m
ea
n
ag
e:
2
0
.0
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
F
an
d
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
4
.5
se
ts
o
f
6
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
6
0
�/
s
2
0
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
5
%
)
an
d
C
O
N
C
(1
0
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
C
O
N
C
K
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
9
%
)
an
d
C
O
N
C
(2
7
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
8
%
)
an
d
C
O
N
C
(1
2
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
In
cr
ea
se
in
E
C
C
K
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(4
0
%
)
an
d
C
O
N
C
(2
0
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
In
cr
ea
se
in
C
O
N
C
K
E
R
F
D
(m
s)
w
it
h
E
C
C
(1
4
%
)
an
d
C
O
N
C
(1
4
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
C
O
N
C
K
F
R
F
D
(m
s)
w
it
h
E
C
C
(3
5
%
)
an
d
C
O
N
C
(2
1
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
K
E
R
F
D
(m
s)
w
it
h
E
C
C
(2
6
%
)
an
d
C
O
N
C
(2
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
In
cr
ea
se
in
E
C
C
K
F
R
F
D
(m
s)
w
it
h
E
C
C
(2
1
%
)
an
d
C
O
N
C
(9
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
M
o
n
t
et
al
.
[2
8
],
1
9
9
4
E
C
C
n
=
8
,
C
O
N
C
n
=
9
,
C
O
N
T
n
=
1
3
(3
0
M
);
m
ea
n
ag
e:
3
3
.0
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
el
it
e
te
n
n
is
p
la
y
er
s
E
R
an
d
IR
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
8
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
p
y
ra
m
id
ac
ro
ss
ei
g
h
t
se
ts
(9
0
,
1
2
0
,
1
5
0
,
1
8
0
,
1
8
0
,
1
8
0
,
1
2
0
,
9
0
�/
s)
6
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
E
R
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(9
%
)
an
d
C
O
N
C
(7
%
)
v
s.
C
O
N
T
(-
9
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
C
O
N
C
IR
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
%
)
an
d
C
O
N
C
(1
2
%
)
v
s.
C
O
N
T
(-
9
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
E
R
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
8
%
)
an
d
C
O
N
C
(1
0
%
)
v
s.
C
O
N
T
(-
1
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
IR
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(5
%
)
an
d
C
O
N
C
(1
8
%
)
v
s.
C
O
N
T
(-
4
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
M
o
o
re
et
al
.
[2
9
],
2
0
1
2
E
C
C
an
d
C
O
N
C
n
=
9
,
w
it
h
in
-
su
b
je
ct
d
es
ig
n
(9
M
);
m
ea
n
ag
e:
2
2
.0
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
E
F
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
E
C
C
g
ro
u
p
4
.4
4
se
ts
o
f
1
0
re
p
et
it
io
n
s,
C
O
N
C
g
ro
u
p
:
4
.4
4
se
ts
o
f
1
4
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
4
5
�/
s
9
w
ee
k
s
(2
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
E
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(1
1
%
)
an
d
C
O
N
C
(1
4
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
IS
O
E
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(9
%
)
an
d
C
O
N
C
(1
9
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
o
n
E
C
C
E
F
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(8
%
)
an
d
C
O
N
C
(1
1
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
J. Douglas et al.
123
T
a
b
le
1
co
n
ti
n
u
ed
S
tu
d
y
,
y
ea
r
P
o
p
u
la
ti
o
n
M
u
sc
le
g
ro
u
p
s
(m
o
d
al
it
y
)
In
te
rv
en
ti
o
n
T
ra
in
in
g
d
u
ra
ti
o
n
T
ra
in
in
g
ef
fe
ct
(p
\
0
.0
5
)
N
ic
k
o
ls
-
R
ic
h
ar
d
so
n
et
al
.
[3
0
],
2
0
0
7
E
C
C
n
=
3
3
,
C
O
N
C
n
=
3
7
(7
0
F
);
m
ea
n
ag
e:
3
5
.0
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
F
,K
E
,
E
F
an
d
E
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
4
.5
se
ts
o
f
6
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
6
0
�/
s
2
0
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
F
and
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
9
%
)
an
d
C
O
N
C
(1
9
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
C
O
N
C
E
F
an
d
E
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
5
%
)
an
d
C
O
N
C
(1
3
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
S
eg
er
et
al
.
[4
0
],
1
9
9
8
E
C
C
n
=
5
,
C
O
N
C
n
=
5
(1
0
M
);
m
ea
n
ag
e:
2
4
.5
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
m
o
d
er
at
el
y
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
4
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
9
0
�/
s
1
0
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
;
3
0
an
d
9
0
�/
s)
w
it
h
C
O
N
C
(1
2
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(4
%
)
In
cr
ea
se
in
IS
O
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
C
O
N
C
(1
4
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(6
%
)
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
;
3
0
an
d
9
0
�/
s)
w
it
h
E
C
C
(2
4
%
)
an
d
C
O
N
C
(1
3
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
S
p
u
rw
ay
[4
2
],
2
0
0
0
E
C
C
an
d
C
O
N
C
n
=
2
0
,
w
it
h
in
-s
u
b
je
ct
d
es
ig
n
(1
0
F
,
1
0
M
);
m
ea
n
ag
e:
2
4
.0
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
in
er
ti
al
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
3
se
ts
o
f
6
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
8
5
%
E
C
C
1
R
M
,
C
O
N
C
g
ro
u
p
:
8
5
%
C
O
N
C
1
R
M
;
te
m
p
o
:
N
R
6
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
6
%
)
an
d
C
O
N
C
(2
3
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
T
o
m
b
er
li
n
et
al
.
[4
1
],
1
9
9
1
E
C
C
n
=
2
1
,
C
O
N
C
n
=
1
9
,
C
O
N
T
n
=
2
3
(3
2
F
,
3
1
M
);
m
ea
n
ag
e:
2
7
.1
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
K
E
(i
so
k
in
et
ic
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
3
se
ts
o
f
1
0
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
E
C
C
M
V
C
,
C
O
N
C
g
ro
u
p
:
C
O
N
C
M
V
C
;
te
m
p
o
:
1
0
0
�/
s
6
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
C
O
N
C
(8
%
),
n
o
ch
an
g
e
w
it
h
E
C
C
(4
%
)
o
r
C
O
N
T
(-
2
%
),
g
re
at
er
in
cr
ea
se
w
it
h
C
O
N
C
v
s.
E
C
C
an
d
C
O
N
T
In
cr
ea
se
in
E
C
C
K
E
st
re
n
g
th
(M
V
C
)
w
it
h
E
C
C
(2
1
%
)
an
d
C
O
N
C
(1
1
%
),
n
o
ch
an
g
e
w
it
h
C
O
N
T
(5
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
an
d
C
O
N
T
V
ik
n
e
et
al
.
[3
1
],
2
0
0
6
E
C
C
n
=
9
,
C
O
N
C
n
=
8
(1
7
M
);
m
ea
n
ag
e:
2
7
.1
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
re
si
st
an
ce
tr
ai
n
ed
E
F
(i
so
in
er
ti
al
;
si
n
g
le
-j
o
in
t)
V
o
lu
m
e:
3
.9
se
ts
o
f
6
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
9
4
%
E
C
C
1
R
M
,
C
O
N
C
g
ro
u
p
:
9
4
%
C
O
N
C
1
R
M
;
te
m
p
o
:
E
C
C
:
3
.5
s,
C
O
N
C
:
ex
p
lo
si
v
e
1
2
w
ee
k
s
(2
.5
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
C
O
N
C
E
F
st
re
n
g
th
(1
R
M
)
w
it
h
E
C
C
(1
4
%
)
an
d
C
O
N
C
(1
8
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
E
C
C
E
F
st
re
n
g
th
(1
R
M
)
w
it
h
E
C
C
(9
%
)
an
d
C
O
N
C
(3
%
),
g
re
at
er
in
cr
ea
se
w
it
h
E
C
C
v
s.
C
O
N
C
Y
ar
ro
w
et
al
.
[3
2
],
2
0
0
8
E
C
C
n
=
1
0
,
C
O
N
C
n
=
1
2
(2
2
M
);
m
ea
n
ag
e:
2
2
.1
y
ea
rs
;
tr
ai
n
in
g
st
at
u
s:
u
n
tr
ai
n
ed
L
o
w
er
B
o
d
y
/
B
ac
k
S
q
u
at
an
d
U
p
p
er
B
o
d
y
/B
en
ch
P
re
ss
(i
so
in
er
ti
al
;
m
u
lt
i-
jo
in
t)
V
o
lu
m
e:
E
C
C
g
ro
u
p
:
3
se
ts
o
f
6
re
p
et
it
io
n
s,
C
O
N
C
g
ro
u
p
:
4
se
ts
o
f
6
re
p
et
it
io
n
s;
in
te
n
si
ty
:
E
C
C
g
ro
u
p
:
1
1
0
/4
4
%
1
R
M
,
C
O
N
C
g
ro
u
p
:
6
5
%
1
R
M
;
te
m
p
o
:
6
s
p
er
re
p
et
it
io
n
5
w
ee
k
s
(3
se
ss
io
n
s
p
er
w
ee
k
)
In
cr
ea
se
in
lo
w
er
b
o
d
y
st
re
n
g
th
(b
ac
k
sq
u
at
1
R
M
)
w
it
h
E
C
C
(1
9
%
)
an
d
C
O
N
C
(2
5
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
In
cr
ea
se
in
u
p
p
er
b
o
d
y
st
re
n
g
th
(b
en
ch
p
re
ss
1
R
M
)
w
it
h
E
C
C
(9
%
)
an
d
C
O
N
C
(1
0
%
),
n
o
d
if
fe
re
n
ce
b
et
w
ee
n
in
te
rv
en
ti
o
n
s
�/
s
d
eg
re
es
p
er
se
co
n
d
,
cm
ce
n
ti
m
et
re
s,
A
E
an
k
le
ex
te
n
so
rs
,
C
O
N
C
co
n
ce
n
tr
ic
,
C
O
N
T
co
n
tr
o
l,
E
C
C
ec
ce
n
tr
ic
,
E
C
C
?
C
O
N
C
co
u
p
le
d
m
ax
im
al
ec
ce
n
tr
ic
an
d
co
n
ce
n
tr
ic
co
n
tr
ac
ti
o
n
s,
E
E
el
b
o
w
ex
te
n
so
rs
,
E
F
el
b
o
w
fl
ex
o
rs
,
E
M
G
el
ec
tr
o
m
y
o
g
ra
p
h
y

Continue navegando

Outros materiais