Buscar

posters-seminarios

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 89 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 89 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 89 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Metodologia do Trabalho Científico
Vitor R. Coluci
Faculdade de Tecnologia - UNICAMP
http://www.ft.unicamp.br/vitor
Visualização Científica
Apresentação Científica
Posters e Seminários
Roteiro
Motivação
Ilustração: Tabelas e Figuras
Softwares para elaboração de Gráficos
Dicas para elaborar um bom gráfico 
(Exemplos)
Etapa importante no trabalho científico: 
Divulgação e apresentação dos resultados obtidos
-Revistas científicas especializadas nacionais e 
internacionais
-Teses e Relatórios
Visualização científica é o processo de representar 
dados científicos como imagens que podem auxiliar o 
entendimento dos significados dos dados.
Tabelas - Figuras 
Motivação
Ilustração
Tabela Figuras
Fotos
Esquemas
Desenhos
Gráficos
pronounced ion acceleration pointing in laser propagation
direction which might also be connected to quasimonoe-
nergetic ion emission [6] in the case of water droplets.
Since the droplets are not grounded the decreasing of the
charge can not be explained as in [21] by redistribution of
charge supported by the mounting. The charge neutraliza-
tion can be driven by the ionized surrounding background
gas. The 0.14 nC charge corresponds to a lack of 9! 108
electrons. Electrons can stem from the neighbor droplets
and the background gas. The electric field of the charged
droplet can field-ionize the neighbor droplets as well as the
background gas, which is caused by the evaporation of the
droplets. Also the laser beam is quite more extended
(around 100 !m) at IL ¼ 1012–1013 W=cm2 and ionizes
the background gas. From pressure measurement we esti-
mate the ion density of the ambient plasma to be
1012 cm#3. In an analytical approach the potential of the
droplet is derived from Poisson equation with an exponen-
tial screening term [22] and the electrons move in this field.
Thus the traveling time of an electron along the radius of an
ambient plasma sphere which contains the amount of
charge for compensation of the droplet charge resembles
the ‘‘discharge’’ time of the droplet.
Following Ref. [23], one can calculate the hot electron
temperature Th of the electrons produced by the CPA2
laser pulse: Th$mec2ð"L#1Þ, "L¼ð1þ0:7I18#2L;!mÞ1=2
withme—the electron rest mass, I18—the laser intensity in
units of 1018 W=cm2 and #L;!m—the laser wavelength in
!m. The number of electrons Neh which can overcome the
electrostatic barrier at the rear side can be estimated by
[24]: Neh $ mec24$"0rL=e20ð"L # 1Þ, e0—elementary
charge, rL—scales roughly with the laser beam radius
which produces an electron bunch with a similar radius.
For the experiment with I18 ¼ 2 one obtains Th $
190 keV and Neh $ 1! 109 for rL ¼ 5–8 !m which can
account for a target charge of around 0.1–0.17 nC. The
charge is increasing over only a few picoseconds while the
hot electrons are leaving.
The movement of electrons in the ambient plasma
around the droplet is described by
€xþ % _x ¼ #eqðxÞ
TerDðx0 þ 1Þ
e#ðx#x0Þ
x
!
1þ 1
x
"
; (1)
where x ¼ r=rD is the relative coordinate concerning the
radial distance r, normalized to the Debye length rD of the
ambient plasma (with an initial electron temperature of
Te $ 1 keV) and the relative damping rate is % ¼ ð%ei þ
%plÞ=!pe incorporating the electron-ion collision %ei, the
plasma wave damping rate [25,26] %pl and the plasma
electron frequency !pe. Analytical solutions exist for the
limits %( 1 and %) 1. We solved the equation numeri-
cally for our parameters where %< 1 and %ei > %pl. The
movement of electrons to the center of charge x0 deceases
the droplet charge which is adapted to an effective charge
FIG. 4 (color). 2D-PIC simulation [27] of a laser irradiated
droplet: distribution of the electric field 220 fs after the irradia-
tion peak of a 40 fs, 2! 1018 W=cm2 laser pulse. (Laser from
the left.)
a b
FIG. 3 (color online). (a) Accumulated proton spectra (50 shots) emitted from the droplet, (b) Scan through the proton image (black
line) in comparison to scans through simulated images with varying decay time &2. The shape of the experimental trace could be
reproduced best with a decay time of about 50 ps.
PRL 103, 135003 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
25 SEPTEMBER 2009
135003-3

 
 
 
 
 

 
 
•  
•  
•  







quadlayer (QL),32 is shown schematically in Figure 1. The
exponential growth observed in the ellipsometric data in
Figure 1c is believed to be caused by interdiffusion of the
weak polyelectrolytes (PEI and PAA) during deposition.33,34
This system has a thickness of approximately 174 nm after
only six quadlayers are deposited onto silicon. Quartz crystal
microbalance data confirm both the exponential growth
trend observed with ellipsometry and uniform clay deposi-
tion, with all clay layers containing approximately the same
mass per layer (Figure 1d).35 A five QL film contains 26.2
wt % clay (Table 1), which is nearly an order of magnitude
greater than most conventional bulk composites.13,14 Fur-
thermore, QCM confirms the clay concentration decreases
with the number of QLs deposited, which is expected
because it is the polyelectrolyte pairs that are contributing
to the exponential growth, rather than the clay (see Table
1). UV-vis spectroscopy reveals that a five QL film has an
average light transmission of 95% across the visible light
spectrum (390-750 nm), as shown in Figure 2a.36 This high
level of transparency is common to LbL films containing high
concentrations of well-separated clay platelets and is a key
requirement for display encapsulation (Figure 2b).
A transmission electronmicroscope (TEM) image of a five
QL film cross section is shown in Figure 3a.37 Individual clay
platelets can be seen as dark lines in this micrograph, which
reveals a more open nano brick wall structure than seen
recently for more traditional polymer-clay bilayer assem-
blies.29 This image emphasizes the high level of clay orienta-
tion, with all platelets lying parallel to the polystyrene
substrate. Many individual platelets can be resolved, as well
as a few intercalated stacks of platelets, suggesting a high
level of clay exfoliation. A small amount of platelet edge
overlap can be observed in this image. An atomic force
microscopy (AFM) phase image of this five QL film’s surface
(Figure 3b)38 reveals tight clay packing and a cobblestone-
path-like structure, which has been reported previously in
LbL clay-polymer films.28,29When taken together, the TEM
and AFM images suggest that all clay platelets deposit in the
film parallel to the substrate surface. Obtaining this extent
of clay exfoliation and near-perfect orientation is only pos-
sible with the LbL process, due to its self-assembling and self-
terminating growth. Other techniques, where direct mixing
of clay and polymer were used, have also achieved a good
level of clay orientation16,17 but cannot achieve the same
tightly packed, laminar clay layers shown here (Figure 3).
Films from these “one pot” mixtures suffer from poor clay
exfoliation, transparency, and barrier. During LbL deposi-
tion, the negatively charged surface of MMT is electrostati-
cally attracted to the positively charged film surface created
FIGURE 1. Illustrations of (a)the LbL process and (b) the nano brick
wall structure resulting from the alternate adsorption of PEI (blue),
PAA (green), PEI, and MMT (red) onto a substrate. (c) Thickness as a
function of cycles deposited on silicon wafers of (PEI/PAA)2n (0) (R2
) 0.982) and (PEI/PAA/PEI/MMT)n (O) (R2 ) 0.998), where PEI/PAA
growth is shown to emphasize the source of exponential growth in
the quadlayers. (d) Mass deposited as a function of quadlayers
measured by quartz crystal microbalance, where (PEI/PAA/PEI) mass
deposition is denoted as filled points and MMT as unfilled points.
TABLE 1. Composition, Thickness, and Oxygen Permeability of
Thin Film Assemblies
permeability (10-16 cm3
(STP)·cm/(cm2·s·Pa))
thin film
assembly
clay concn
(wt %)
film thickness
(nm) filma,b totalb
(PEI/PAA)3.5 0 48.7 0.227 16.80
2 QL 53.7 16.1 0.066 16.70
3 QL 48.6 28.3 0.002 4.79
4 QL 36.7 50.9 e0.000005 e0.001
5 QL 26.2 82.6 <0.000009 <0.001
a Film permeability was decoupled from the total permeability
using a previously described method, ref 28. b The low end detection
limit for an Ox Tran 2/21 L module is 0.005 cm3/(m2·day·atm).
FIGURE 2. (a) Visible light transmission as a function of wavelength
for a 5 QL film on a fused quartz slide. (b) Image of a 5 QL film on
179 µm PET film in front of a screen to demonstrate optical clarity
for potential use with flexible displays.
© XXXX American Chemical Society B DOI: 10.1021/nl103047k | Nano Lett. XXXX, xxx, 000-–000
presented remains valid. Once the applied stress is with-
drawn, the strain in the CNWs is released and so is the
piezoelectric field; the inductive charges in the electrode
plates have to flow back. This is the process of producing
an ac output current.22
For easy visualization of the calculated potential, the
orientation relationship between the realistic model for the
measurement (Figure 2a) and the representing cross sections
(Figure 2b) at which the distribution of the potential were
exhibited (Figure 2c and 2d) can be correlated by the (x, y,
z) coordinate as indicated in the corresponding figures. The
piezopotential inside the CNWs is rather high so that it is
plotted separately in Figure 2c. Owing to the conical shape
of the nanowires and the opposite c axis, the piezopotentials
inside the two CNWs are opposite in sign under compressive
strain, but with a small separation in the charge centers in
the direction normal to the substrate surface, which is the
fundamental mechanism for creating the inductive charges
at the top and bottom electrodes. By adjusting the display
scale of the piezopotential in the space outside of the CNWs,
a 0.8 V inductive potential difference across the two elec-
trodes is clearly shown (Figure 2d), which is generated by
an applied compressive strain of 0.12% at the fixed end of
the CNW (maximum strain). This is the driving force for the
ac nanogenerator. As a verification of the conical shape of
the NW being the key of the piezopotential in our design, a
calculation for cylindrical nanowires23 with zero conical
angle showed that there is no potential difference across the
two electrodes (Figure 2e). Our calculation also predicts that
the voltage across the top and bottom electrodes is ap-
proximately proportional to the thickness projected density
of CNWs if the total deposition is less than a monolayer
(Figure 2f).
FIGURE 2. Simulation of the nanogenerator. (a) Schematic model showing the setup for measuring the energy conversion. The polystyrene
substrate used to hold the NG at its upper side, where the force F is applied, is not shown here for clarity of presentation. The CNWs are under
compressive strain during the deformation. (b) The unit cell and model used for calculating the potential distribution across the top and
bottom electrodes of the NG with the presence of a pair of CNWs, where the corresponding cross sections at which the potential distributions
were exhibited are indicated by dashed lines, and the results are shown in (c, d), respectively. Owing to the large magnitude variation in the
potential distribution across the cross section, we use both color grade and equal potential lines to present the local potential. The blank
region close to the CNWs is the region where the calculated piezopotential is smaller than -0.4 V, beyond the range selected for the color
plotting. In order to show the detail in this region, we only used equal potential lines to present it. The CNWs were positioned close to the
bottom of the unit cell in (b) to ensure that they were under compressive strain once a transverse force was applied in order to match the
experimental case. (e) We also calculated the potential induced by perfect cylindrical NWs (e.g., zero conical angle). The result indicated that
there was no potential difference being generated at the two electrodes. Presented is the cross section output of the calculated piezopotential
similar to part d. (f) Calculated potential difference between the top and bottom electrodes of a nanogenerator as a function of the thickness
projected conical nanowire density. The distance between the top and bottom electrode was kept constant (5 µm). The density required for
a uniform, fully packed, monolayer coverage of the substrate is ∼90000/mm2.
© XXXX American Chemical Society C DOI: 10.1021/nl103203u | Nano Lett. XXXX, xxx, 000-–000
Representar dados numéricos
- podem incluir alto grau de precisão (grande número de dígitos 
significativos)
- facilitam localização de um dado.
Tabelas
From: http://physics.nist.gov/constants
Fundamental Physical Constants — Universal constants
Relative std.
Quantity Symbol Value Unit uncert. ur
speed of light in vacuum c, c0 299 792 458 m s�1 (exact)
magnetic constant µ0 4�� 10�7 N A�2
= 12.566 370 614...� 10�7 N A�2 (exact)
electric constant 1/µ0c2 �0 8.854 187 817...� 10�12 F m�1 (exact)
characteristic impedance
of vacuum
�
µ0/�0 = µ0c Z0 376.730 313 461... � (exact)
Newtonian constant
of gravitation G 6.674 28(67)� 10�11 m3 kg�1 s�2 1.0� 10�4
G/h¯c 6.708 81(67)� 10�39 (GeV/c2)�2 1.0� 10�4
Planck constant h 6.626 068 96(33)� 10�34 J s 5.0� 10�8
in eV s 4.135 667 33(10)� 10�15 eV s 2.5� 10�8
h/2� h¯ 1.054 571 628(53)� 10�34 J s 5.0� 10�8
in eV s 6.582 118 99(16)� 10�16 eV s 2.5� 10�8
h¯c in MeV fm 197.326 9631(49) MeV fm 2.5� 10�8
Planck mass (h¯c/G)1/2 mP 2.176 44(11)� 10�8 kg 5.0� 10�5
energy equivalent in GeV mPc2 1.220 892(61)� 1019 GeV 5.0� 10�5
Planck temperature (h¯c5/G)1/2/k TP 1.416 785(71)� 1032 K 5.0� 10�5
Planck length h¯/mPc = (h¯G/c3)1/2 lP 1.616 252(81)� 10�35 m 5.0� 10�5
Planck time lP/c = (h¯G/c5)1/2 tP 5.391 24(27)� 10�44 s 5.0� 10�5
Page 1

 
 
 





 
 
 
 
 
 
 
 
 
 
 
Partes de uma tabela
http://abacus.bates.edu/~ganderso/biology/resources/writing/HTWtablefigs.html
Tabela:
- deve ser clara
- deve ser numerada (mencionada no texto)
- deve ter um legenda (entendimento sem precisar voltar 
ao texto principal)
- deve ser necessária....

 






 
 


 


 

±” 






 



 




 


“Almost Everything You Wanted to Know About Making Tables and 
Figures,” Department of Biology, Bates College
The oak seedlings grew at 
temperature between 20 and 
40oC; no measurable growth 
occurred at temperatures 
below 20oC or above 40oC.
Magnetic walls are assumed in the symmetry planes. A mesh
with 2847 tetrahedral elements was used, generating 2797 cotrees,
and 456 trees. The parameter s was 104 which is enough to shift
the spectrum of DC modes out of the region of analysis. Table 1
shows the results only for solenoidal modes and those obtained
from the method reported by Ref. 9. The DC modes generated by
(6) is not shown. However, when the proposed method is used,
the first eigenvalue obtained is a physical mode. From this table,
it is possible to observe that the solenoidal solutions obtained
from unconstrained and constrained formulations are exactly the
same. Also, these results concur with those described in Ref. 9.
Finally, as described in Section 2, the matrix [K] has a problem
of the singularity. Conversely, the condition number of [K0] is
approximately 7 ! 106, which means that the developed method
improved the conditioning of the matrix system.
The second example is a circular cavity with er ¼ 30 as
shown in Figure 2. The geometry of this resonator cavity is
enclosed by an electric wall. The mesh used has 1397 tetrahe-
dral elements, 1662 cotrees, and 393 trees, which correspond to
393 DC modes. Table 2 shows the results obtained for solenoi-
dal fields. Once again, the results obtained from the uncon-
strained and constrained formulations are the same. However,
the constrained formulation does not show the DC modes. In
this example, the condition numbers of [K0] is 7 ! 105.
5. CONCLUSION
A new approach to overcome the problem of DC modes in the
solutions of eigenvalue problems was presented. The method uses
only the edge basis functions and the constraint condition is
imposed directly on the matrix system, improving the condition-
ing of the matrix system. Two different resonator cavities were
analyzed to validate the formulation. In both cases, the DC modes
were eliminated without affecting the solenoidal solutions.
ACKNOWLEDGMENTS
The authors thank the partial support of FAPESP and FAEPEX/
UNICAMP, Brazil.
REFERENCES
1. J.M. Jin, The finite element method in electromagnetics, 2nd ed.,
Wiley, New York, 2002.
2. M.S. Gonc¸alves, H.E. Hern!andez-Figueroa, and A.C Bordonalli,
Time-domain full- band method using orthogonal edge basis func-
tions, IEEE Photon Technol Lett 18 (2006), 52–54.
3. J.B. Manges and Z.J. Cendes, A generalized tree-cotree gauge for
magnetic field computation, IEEE Trans Magn 31 (1995), 1342–1345.
4. N.V. Venkatarayalu and J.-F. Lee, Removal of spurious DC modes
in edge element solutions for modeling three-dimensional resona-
tors, IEEE Trans Microwave Theory Tech 54 (2006), 3019–3025.
5. R. Wang, D.J. Riley, and J.M. Jin, Application of tree-cotree split-
ting to the time- domain finite-element analysis of electromagnetic
problems, IEEE Trans Antennas Propag 58 (2010), 1590–1600.
6. S.C. Lee, J.F. Lee, and R. Lee, Hierarchical vector finite elements
for analyzing waveguiding structures, IEEE Trans Microwave
Theory Tech 51 (2003), 1897–1905.
7. J Webb, Edge elements and what they can do for you, IEEE Trans
Magn 29 (1993), 1460–1465.
8. R. Dyczij-Edlinger, G. Peng, and J.F. Lee, A fast vector-potential
method using tangentially continuous vector finite elements, IEEE
Trans Microwave Theory Tech 46 (1998), 863–868.
9. I. Bardi, O. Biro, and K. Preis, Finite element scheme for 3D cav-
ities without spurious modes, IEEE Trans Magn 27 (1991),
4036–4039.
VC 2012 Wiley Periodicals, Inc.
DESIGN OF TRI-BAND MICROSTRIP
BPF USING SLR AND QUARTER-
WAVELENGTH SIR
Hong-Wei Deng,1 Yong-Jiu Zhao,1 Yong Fu,1 Xiao-Jun Zhou,1
and Yan-Yun Liu2
1College of Electronic and Information Engineering, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, China;
Corresponding author: hwdeng@nuaa.edu.cn
2 Institute of Command Automation, PLA University of Science and
Technology, Nanjing 210007, China
Received 24 April 2012
ABSTRACT: A tri-band microstrip bandpass filter (BPF) with compact
size and high selectivity is presented by using the stub-loaded resonator
(SLR) and quarter-wavelength stepped-impedance resonator (SIR). The
TABLE 1 First Six Eigenvalues for a Resonator Cavity (m21)
of Figure 1
Mode
Bardi
et al. [9]
Unconstrained
k0 (m
#1)
Unconstrained
k0 (m
#1)
1 5.397 5.331 5.331
2 7.814 7.854 7.854
3 9.916 9.879 9.879
4 10.635 10.615 10.615
5 11.600 11.569 11.569
6 12.409 12.359 12.359
Figure 2 Circular cavity filled with a dielectric of er ¼ 30
TABLE 2 First Four Eigenvalues for a Resonator Cavity (m21)
of Figure 2
Mode No. Analytical
Unconstrained Constrained
k0 (m
#1) Error (%) k0 (m
#1) Error (%)
TE010 87.754 88.772 1.16 88.772 1.16
TM111 132.873 132.957 0.063 132.957 0.063
TM110 139.822 140.942 0.801 140.942 0.801
TM011 144.369 144.367 0.0013 144.367 0.0013
212 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 55, No. 1, January 2013 DOI 10.1002/mopDOI: 10.1002/mop.27256
Magnetic walls are assumed in the symmetry planes. A mesh
with 2847 tetrahedral elements was used, generating 2797 cotrees,and 456 trees. The parameter s was 104 which is enough to shift
the spectrum of DC modes out of the region of analysis. Table 1
shows the results only for solenoidal modes and those obtained
from the method reported by Ref. 9. The DC modes generated by
(6) is not shown. However, when the proposed method is used,
the first eigenvalue obtained is a physical mode. From this table,
it is possible to observe that the solenoidal solutions obtained
from unconstrained and constrained formulations are exactly the
same. Also, these results concur with those described in Ref. 9.
Finally, as described in Section 2, the matrix [K] has a problem
of the singularity. Conversely, the condition number of [K0] is
approximately 7 ! 106, which means that the developed method
improved the conditioning of the matrix system.
The second example is a circular cavity with er ¼ 30 as
shown in Figure 2. The geometry of this resonator cavity is
enclosed by an electric wall. The mesh used has 1397 tetrahe-
dral elements, 1662 cotrees, and 393 trees, which correspond to
393 DC modes. Table 2 shows the results obtained for solenoi-
dal fields. Once again, the results obtained from the uncon-
strained and constrained formulations are the same. However,
the constrained formulation does not show the DC modes. In
this example, the condition numbers of [K0] is 7 ! 105.
5. CONCLUSION
A new approach to overcome the problem of DC modes in the
solutions of eigenvalue problems was presented. The method uses
only the edge basis functions and the constraint condition is
imposed directly on the matrix system, improving the condition-
ing of the matrix system. Two different resonator cavities were
analyzed to validate the formulation. In both cases, the DC modes
were eliminated without affecting the solenoidal solutions.
ACKNOWLEDGMENTS
The authors thank the partial support of FAPESP and FAEPEX/
UNICAMP, Brazil.
REFERENCES
1. J.M. Jin, The finite element method in electromagnetics, 2nd ed.,
Wiley, New York, 2002.
2. M.S. Gonc¸alves, H.E. Hern!andez-Figueroa, and A.C Bordonalli,
Time-domain full- band method using orthogonal edge basis func-
tions, IEEE Photon Technol Lett 18 (2006), 52–54.
3. J.B. Manges and Z.J. Cendes, A generalized tree-cotree gauge for
magnetic field computation, IEEE Trans Magn 31 (1995), 1342–1345.
4. N.V. Venkatarayalu and J.-F. Lee, Removal of spurious DC modes
in edge element solutions for modeling three-dimensional resona-
tors, IEEE Trans Microwave Theory Tech 54 (2006), 3019–3025.
5. R. Wang, D.J. Riley, and J.M. Jin, Application of tree-cotree split-
ting to the time- domain finite-element analysis of electromagnetic
problems, IEEE Trans Antennas Propag 58 (2010), 1590–1600.
6. S.C. Lee, J.F. Lee, and R. Lee, Hierarchical vector finite elements
for analyzing waveguiding structures, IEEE Trans Microwave
Theory Tech 51 (2003), 1897–1905.
7. J Webb, Edge elements and what they can do for you, IEEE Trans
Magn 29 (1993), 1460–1465.
8. R. Dyczij-Edlinger, G. Peng, and J.F. Lee, A fast vector-potential
method using tangentially continuous vector finite elements, IEEE
Trans Microwave Theory Tech 46 (1998), 863–868.
9. I. Bardi, O. Biro, and K. Preis, Finite element scheme for 3D cav-
ities without spurious modes, IEEE Trans Magn 27 (1991),
4036–4039.
VC 2012 Wiley Periodicals, Inc.
DESIGN OF TRI-BAND MICROSTRIP
BPF USING SLR AND QUARTER-
WAVELENGTH SIR
Hong-Wei Deng,1 Yong-Jiu Zhao,1 Yong Fu,1 Xiao-Jun Zhou,1
and Yan-Yun Liu2
1College of Electronic and Information Engineering, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, China;
Corresponding author: hwdeng@nuaa.edu.cn
2 Institute of Command Automation, PLA University of Science and
Technology, Nanjing 210007, China
Received 24 April 2012
ABSTRACT: A tri-band microstrip bandpass filter (BPF) with compact
size and high selectivity is presented by using the stub-loaded resonator
(SLR) and quarter-wavelength stepped-impedance resonator (SIR). The
TABLE 1 First Six Eigenvalues for a Resonator Cavity (m21)
of Figure 1
Mode
Bardi
et al. [9]
Unconstrained
k0 (m
#1)
Unconstrained
k0 (m
#1)
1 5.397 5.331 5.331
2 7.814 7.854 7.854
3 9.916 9.879 9.879
4 10.635 10.615 10.615
5 11.600 11.569 11.569
6 12.409 12.359 12.359
Figure 2 Circular cavity filled with a dielectric of er ¼ 30
TABLE 2 First Four Eigenvalues for a Resonator Cavity (m21)
of Figure 2
Mode No. Analytical
Unconstrained Constrained
k0 (m
#1) Error (%) k0 (m
#1) Error (%)
TE010 87.754 88.772 1.16 88.772 1.16
TM111 132.873 132.957 0.063 132.957 0.063
TM110 139.822 140.942 0.801 140.942 0.801
TM011 144.369 144.367 0.0013 144.367 0.0013
212 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 55, No. 1, January 2013 DOI 10.1002/mop
Fotos: mostram um alto grau de detalhe
Figuras
tory. Based on the launch speeds we used, the two cameras
recorded the ball’s trajectory during about one-third of its
time in the air. Both high-speed cameras recorded at a rate of
1000 frames/s.
There are more elaborate and expensive experimental set-
ups available, such as the HAWK-EYE system,28 which is used
in cricket, tennis, and, more recently, snooker. Our budget
allowed the use of two quality high-speed cameras !"$2500
per camera#. More sophisticated systems, which employ as
many as six high-speed cameras for full three-dimensional
data acquisition, are an order of magnitude more expensive
than our system. Such systems are capable of tracking pro-
jected objects, although determining accurate rotation rates is
still a challenge.
We also used markers on the ground to note the range of
each launched ball. Based on visual observation of the land-
ing positions, we estimate our range error to be no more than
!5 cm.
CINE VIEWER29 was used to convert a cine to AVI format.
We did not notice any frame loss, a problem sometimes
found when converting to AVI. Our software was used to
track the ball and to obtain Cartesian coordinates of the ball’s
center of mass.30 Figure 3 shows a sample of the data taken
from camera 1. Figure 4 shows data taken from camera 2 of
the launch shown in Fig. 3.
Once the data points were loaded into a file, the initial
launch condition was obtained. The launch position is deter-
mined by measuring the height of the ball launcher’s exit.
The components of the initial velocity were determined us-
ing Richardson extrapolation,31,32 which gives, among other
results, a forward-difference expression for the first deriva-
tive using three points. If we want the derivative of a func-
tion f!t# at t0 and we know the value of f!t# at t0, t1, and t2,
where t1= t0+"t and t2= t0+2"t for a step size "t, then the
Richardson extrapolation gives for the first derivative at t0
f!!t0# $
− 3f!t0# + 4f!t1# − f!t2#
2"t
, !4#
where the error is of order !"t#2.
The spin rate was determined by following a given point
on the ball as the ball turned either a half turn !for slow
spins# or a full turn !for fast spins#. We achieved initial spin
rates in the range from no spin to about 180 rad/s !more than
1700 rpm#, though most tests were carried out for spin rates
less than 125 rad/s.
III. FORCES ON BALL
The forces on projectiles moving through air have been
discussed in many articles33 and books.34 Figure 5 shows the
various forces on the ball. We assume the soccer ball’s tra-
jectory to be close enough to the surface of the Earth so that
the gravitational force on the ball, mg! , is constant. The mass
of the ball is m=0.424 kg.
The air exerts a force on the soccer ball. The contribution
to the air’s force from buoyancy is small !"0.07 N# and is
ignored. A scale used to determine weight will have that
small force subtracted off anyway. The major contributions
Fig. 1. Ball launcher used for the trajectory experiments. Note the ball
emergingfrom the launcher and the location of camera 1 on the right side of
the photo.
Fig. 2. A not-to-scale sketch of the experimental setup. Camera 1, about
1.5 m from the plane of the trajectory, records the launch of the soccer ball.
Camera 2, about 13 m from the plane of the trajectory, records a portion of
the trajectory near the apex of the flight. The z axis !not shown# points out
of the page.
Fig. 3. Data from camera 1 for a launch with no spin. The centers of the
circles denote the ball’s center of mass in 0.005 s intervals. The ball was
launched with speed of v0$18 m /s at an angle of #0$22° from the
horizontal.
Fig. 4. Data from camera 2 for the no-spin launch in Fig. 3. Each circle’s
center notes the ball’s center of mass in 0.010 s intervals. For more accurate
results we zoom the image to four times what is shown. The ball landed
21.9 m from the launcher’s base.
1021 1021Am. J. Phys., Vol. 77, No. 11, November 2009 John Eric Goff and Matt J. Carré
Desenhos: grau menor de detalhes (para enfatizar certos aspectos) 
permitem capturar aspectos que não podem ser fotografados
Figuras
http://agetec.com.br/news/4/114/Aplicacao-do-processo-de-flotacao-para-separacao-de-fases-em-ETA/
http://www.portalsaofrancisco.com.br/alfa/celula-vegetal/imagens/celula-vegetal-7.gif
Figuras
Ronaldo Giro; Márcio Cyrillo; Douglas Soares Galvão 
Mat. Res. vol.6 no.4 São Carlos Oct./Dec. 2003
doi: 10.1590/S1516-14392003000400017 
Esquemas: 
Esquemas (Figuras em geral):
Camera
Control 
Terminal Printer
ComputerDigitizer
Missile
Electro-
mechanical 
interface
The testing hardware of the missile shown in Figure 11-6 has five 
main components: camera, digitizer, computer, I/O interface, and 
mechanical interface. Commands are generated by the computer and 
then passed through the I/O interface to the mechanical interface 
where the keyboard of the ICU is operated. The display of the ICU is 
read with a television camera and digitized. This information is the 
manipulated by the computer to direct the next command to the I/O 
interface.
-Precisão
-Clareza
-Familiaridade
-Fluidez
Esquema confuso...
Esquemas:
Camera
Computer
Digitizer
Missile
Electro-
mechanical 
interface
Our system for testing the safety devices of the missile consists of 
four main parts: computer, camera, digitizer, and electromechanical 
interface to the missile. In this system, shown in Figure 11-6, the 
computer generates test commands to the missile through the 
electromechanical interface. The test results are read with a television 
camera and then digitized. The computer receives the information 
from the digitizer and then directs the next test command.
Figure 11-6. System for testing 
the safety devices of missile.
Esquema OK...
Gráficos: 
- comparar teoria e experimento;
- mostrar relações entre variáveis
- evidenciar tendências
O gráfico deve ser bem feito para ser bem interpretado e 
efetivamente útil. 
Figuras
http://www.astro.ucla.edu/~wright/sne_cosmology.html
ment and van der Waals forces along incidental
points (and lines) of contact. These observa-
tions enable prediction of the actuator proper-
ties that are ultimately obtainable for non-
bundled nanotubes, which have extraordinarily
high surface area and mechanical properties (8).
The concept of using either nanotube sheets or
single nanotubes as actuators, and the effect of
nanotube bundling, are schematically illustrated
in Fig. 2.
The commercially obtained nanotubes were
made by the dual pulsed-laser vaporization
method and purified by a published method that
involves nitric acid reflux, cycles of washing
and centrifugation, and cross-flow filtration (4,
9). Materials made by this method consist of
hexagonally packed bundles of carbon nano-
tubes that have diameters of 12 to 14 Å, an
intertube separation within a bundle of!17 Å,
an average bundle diameter of !100 Å, and
lengths of many micrometers (4, 10). The nano-
tube sheets were formed by vacuum filtration of
a nanotube suspension on a poly(tetrafluoreth-
ylene) filter, and the dried nanotube sheets were
peeled from the filter (4, 9). These freestanding
sheets (composed of highly entangled nano-
tube bundles) were used as they were ob-
tained, without any effort to optimize the
mechanical properties, surface area, or elec-
trical conductivity that are important for the
actuator application.
The electrochemical charge injection pro-
cess was characterized by measurement of the
gravimetric capacitance (CG) of the nanotube
paper in various electrolytes [all potentials are
versus a saturated calomel electrode (SCE)].CG
was derived from the slope of specific current
versus voltage scan rate in a cell containing
nanotube paper for both a working electrode
and a counterelectrode. After a few cycles to
ensure the maximum degree of electrode wet-
ting, the measured CG increased up to about 15
F/g for aqueous solutions of both 1MNaCl and
38% by weight H2SO4. Similar CGs were ob-
served for 1 M LiClO4 in acetonitrile (12 to 17
F/g) or in propylene carbonate (13 to 14 F/g),
and a higher CG was observed for a 5 M
aqueous KOH solution (30 F/g), which readily
wet the nanotube paper.
These measurements and estimates of the
available surface area suggest that double-layer
charge injection for the nanotube bundles is
similar to that for the basal plane of graphite.
The gravimetric surface area of the nanotube
paper (AG) measured by the Brunauer-Emmett-
Teller (BET) method is about 285 m2/g (11);
this value is near the 300 m2/g surface area of
100 Å diameter cylinders having the crystallo-
graphically derived bundle density of 1.33
g/cm3 (10), which suggests that the N2 in the
BET measurement does not access significant
surface area in the space between nanotubes in
a bundle. An areal capacitance (CA) of 4 to 10
"F/cm2 results for the above range of ob-
served gravimetric capacitances and an AG
of 300 m2/g. This value is in the approxi-
mate range of measured CAs for the basal
plane of graphite (12), which has a mini-
mum at !3 "F/cm2 (for either 0.9 M aque-
ous NaF or 0.2 M tetrapropylammonium
tetrafluoride solution in acetonitrile).
Our first demonstration of a carbon nano-
tube actuator was surprisingly simple to pro-
duce. Similar to a design for a polyaniline con-
ducting polymer actuator (3) (Fig. 3), this ac-
Fig. 1. Experimentally derived changes in basal
plane strain as a function of nominal charge
derived from data (6) for graphite intercalation
compounds.
A B
Fig. 2. Schematic illustration of charge injec-
tion in a nanotube-based electromechanical ac-
tuator and the effect of nanotube bundling. (A)
An applied potential injects charge of opposite
sign in the two pictured nanotube electrodes, which are in a liquid or solid electrolyte (blue
background). These indicated charges in each electrode are completely balanced by ions from the
electrolyte (denoted by the charged spheres on each nanotube cylinder). The pictured single
nanotube electrodes represent an arbitrary number of nanotubes in each electrode that mechan-
ically and electrically act in parallel. Depending on the potential and the relative number of
nanotubes in each electrode, the opposite electrodes can provide either in-phase or out-of-phase
mechanical deformations. (B) Charge injection at the surface of a nanotube bundle is illustrated,
which is balanced by the pictured surface layer of electrolyte cations. Although penetration of
electrolyte and gases into interstitial sites and nanotube cores might occur for the investigated
bundled nanotubes, this has no noticeable effect on the observed BET surface area (11) or the
measured electrode capacitance.
Fig. 3. Schematic edge-
view of a cantilever-based
actuator operated in aque-
ous NaCl, which consists of
two strips of SWNTs (shad-
ed)that are laminated to-
gether with an intermedi-
ate layer of double-sided
Scotch tape (white). The
Na# and Cl– ions in the
nanotube sheets represent
ions in the double layer
at the nanotube bundle
surfaces, which are com-
pensated by the indicated
charges that are injected
into the nanotube bundles.
The equality between the
lengths of the two nano-
tube sheets (center) is dis-
rupted when a voltage is
applied, causing the indi-
cated actuator displace-
ments to the left or right. The possible existence of a small amount of double-layer charge before
the application of a voltage is ignored.
R E P O R T S
www.sciencemag.org SCIENCE VOL 284 21 MAY 1999 1341
 o
n
 S
e
p
te
m
b
e
r 
2
8
, 
2
0
0
9
 
w
w
w
.s
c
ie
n
c
e
m
a
g
.o
rg
D
o
w
n
lo
a
d
e
d
 f
ro
m
 
Carbon Nanotube Actuators
Ray H. Baughman, et al
Science 21 May 1999 284: 1340-1344
 [DOI: 10.1126/science.284.5418.1340]

 
 
 
•  
•  
•  
• 
 
• 
 
•  
 
 


 


 
 
Partes de um gráfico
Softwares
1) SciGraphica 
2) LabPlot 
http://labplot.sourceforge.net/
3) Veusz (Linux,Windows, MacOS) 
http://home.gna.org/veusz/
4) Gnuplot (Linux,Windows, MacOS)
http://www.gnuplot.info/
5) Xmgrace (Linux, Windows)
http://plasma-gate.weizmann.ac.il/Grace/
6) PSTricks (http://tug.org/PSTricks/main.cgi/)
Lista
http://en.wikipedia.org/wiki/List_of_graphing_software
SciGraphica
SciGraphica
Scigraphica
LabPlot
LabPlot
Gnuplot 
Command-line driven interactive data and function plotting utility (UNIX, 
IBM OS/2, MS Windows, DOS, Macintosh, VMS, Atari, etc). 
2D and 3D plots. 
Lines, points, boxes, contours, vector fields, surfaces, and various 
associated text. 
Different types of output: interactive screen terminals (with mouse and 
hotkey functionality), 
Direct output to pen plotters or modern printers, 
Output to many file formats 
(eps, fig, jpeg, LaTeX, metafont, pbm, pdf, png, postscript, svg, ...). 
Gnuplot
# set terminal png transparent nocrop enhanced font arial 8 size 420,320 
# set output 'simple.1.png'
set key inside left top vertical Right noreverse enhanced autotitles box linetype -1 linewidth 1.000
set samples 50, 50
plot [-10:10] sin(x),atan(x),cos(atan(x))
$ gnuplot s1.gnu
# set terminal png transparent nocrop enhanced font arial 8 size 420,320 
# set output 'contours.1.png'
set view 60, 30, 0.85, 1.1
set samples 20, 20
set isosamples 21, 21
set contour base
set title "3D gnuplot demo - contour plot" 
set xlabel "X axis" 
set ylabel "Y axis" 
set zlabel "Z axis" 
set zlabel offset character 1, 0, 0 font "" textcolor lt -1 norotate
splot x*y
Xmgrace
Xmgrace
Xmgrace
Dicas para a preparação de um bom 
gráfico
Guia para Física Experimental: 
Caderno de Laboratório, Gráficos e Erros
Carlos H. de Brito Cruz, Hugo L. Fragnito, Ivan F. da Costa e 
Bernardo de A. Mello
http://www.ifi.unicamp.br/~brito/apost.html
Dicas para a preparação de um bom 
gráfico
Um gráfico bem feito é talvez a melhor forma de apresentar dados
Informação do que será transmitido - argumentação para o que 
está se querendo demonstrar
Ajuda visual para sua argumentação e para que o leitor entenda 
rapidamente o que você está querendo apresentar/demonstrar
Vários parâmetros: Escalas/Posição dos dados, Cores, Tamanho 
de Fontes, Tamanho de símbolos, etc
Experiência, bom senso, ...
Dicas
1. Título: breve descrição do que trata o gráfico; 
2. Uma legenda para cada eixo indicando que valores estão 
sendo ali colocados, qual a sua unidade; 
3. Uma escala para cada eixo:
 
(a) usando valores com intervalos regulares entre si (de 2 em 2, 
e não de 7.7 em 7.7); 
(b) com valores fáceis de serem lidos, como múltiplos inteiros 
por exemplo; 
(c) os dois eixos não precisam ter a mesma origem e nem tão 
pouco a mesma escala numérica;
Dicas
Evite “ligar os pontos”. Somente deverá ser usada uma curva 
entre os pontos quando for útil apresentar um guia para os olhos ou 
quando um modelo for comparado ou a justado aos pontos 
experimentais. Em ambos os casos, o procedimento, modelo ou 
utilidade da curva deve ser mostrada no texto e a curva claramente 
identificada. 
Quando conectar pontos:
Medidas/Dados obtidos da mesma fonte e depender do ponto 
anterior
(Ex.: Evolução do comprimento de um bebê)
Quando NÃO conectar pontos:
Medidas/Dados obtidos de maneira independente.
(Ex.: Média do preço de memória de computadores durante o ano)
Curva = melhor ajuste aos pontos 
(regressão linear, polinomial, etc...)
Dicas
4. Se forem usadas abreviações no gráfico, elas devem ser 
explicadas no próprio gráfico ou em algum lugar do texto; 
5. Os valores dos pontos nunca devem ser colocados no 
gráfico (tabelas). 
Destaque (evite carregar de informações o gráfico, somente 
indicando o ponto e deixando as explicações para o texto.) 
6. Os pontos das medidas deverão aparecer, quando cabíveis, 
com suas respectivas barras de erro. 
Fonte: Apostila Prof. Varlei Rodrigues, Instituto de Física - UNICAMP
Física Experimental: Caderno de Laboratório, Gráficos, Medidas e Erros
7
ser sempre o conceito de que um gráfico é uma ajuda visual para a sua argumentação e para
que o leitor entenda rapidamente as evidências experimentais.
Os gráficos são figuras e você deve escolher o tamanho das figuras de modo que caibam
na folha de papel do seu texto (seja este no seu caderno de laboratório, relatório ou artigo),
ocupando não mais que a metade da folha. Isto não é um critério estético, é um critério de
eficácia da apresentação baseada no fato de que dificilmente alguém consegue focalizar os
olhos numa área maior a uns 30 cm dos seus olhos.
p
o
s
iç
ã
o
, 
x
 (
c
m
)
Fig. 2.1. Exemplo de gráfico bem feito.
A Figura 2.1 mostra um gráfico eficiente para mostrar que, dentro do erro experimental, os
dados seguem um determinado modelo teórico.
Gráfico Bom
Física Experimental: Caderno de Laboratório, Gráficos, Medidas e Erros
8
Fig. 2.2. Exemplos de gráficos mal feitos.
Os mesmos dados experimentais da Fig. 2.1 estão representados novamente nos quatro
gráficos da Figura 2.2 para ilustrar defeitos típicos de alunos inexperientes. O tamanho dos
pontos deve ser tal que cada ponto seja bem visível; nem muito pequeno como no gráfico 1
nem exagerado como no gráfico 2, onde o tamanho do símbolo é maior que a barra de erro
para a maioria dos pontos. No gráfico 2, os números das escalas são difíceis de ler. No gráfico
3 as escalas foram mal escolhidas,desaproveitando a área; o fator 1/70 e os números das
marcas da escala horizontal dificultam a leitura. No gráfico 4 a escala horizontal não deve ser
indicada com os valores individuais dos pontos.
2.3 Determinação dos coeficientes de uma reta
É muito freqüente em física experimental o problema de determinar os estimadores a e b
dos coeficientes α e β, respectivamente, que melhor representam a relação linear entre duas
variáveis aleatórias X e Y:
Y = αX + β, [2.1]
a partir de um conjunto de pares de valores medidos (yi,xi), i = 1,.., N. Este problema é
considerado em vários livros texto (veja por exemplo as refs. 1 e 2) e reproduziremos aqui os
resultados mais importantes. É preciso antes observar a validade das fórmulas. Os alunos
tendem a utilizar as fórmulas de ajuste por mínimos quadrados ou as de regressão linear sem
Gráficos Ruins
Gráficos Ruins
Não tão bom
Melhor ! (limpo, claro)
Exemplos de gráficos publicados
ment and van der Waals forces along incidental
points (and lines) of contact. These observa-
tions enable prediction of the actuator proper-
ties that are ultimately obtainable for non-
bundled nanotubes, which have extraordinarily
high surface area and mechanical properties (8).
The concept of using either nanotube sheets or
single nanotubes as actuators, and the effect of
nanotube bundling, are schematically illustrated
in Fig. 2.
The commercially obtained nanotubes were
made by the dual pulsed-laser vaporization
method and purified by a published method that
involves nitric acid reflux, cycles of washing
and centrifugation, and cross-flow filtration (4,
9). Materials made by this method consist of
hexagonally packed bundles of carbon nano-
tubes that have diameters of 12 to 14 Å, an
intertube separation within a bundle of!17 Å,
an average bundle diameter of !100 Å, and
lengths of many micrometers (4, 10). The nano-
tube sheets were formed by vacuum filtration of
a nanotube suspension on a poly(tetrafluoreth-
ylene) filter, and the dried nanotube sheets were
peeled from the filter (4, 9). These freestanding
sheets (composed of highly entangled nano-
tube bundles) were used as they were ob-
tained, without any effort to optimize the
mechanical properties, surface area, or elec-
trical conductivity that are important for the
actuator application.
The electrochemical charge injection pro-
cess was characterized by measurement of the
gravimetric capacitance (CG) of the nanotube
paper in various electrolytes [all potentials are
versus a saturated calomel electrode (SCE)].CG
was derived from the slope of specific current
versus voltage scan rate in a cell containing
nanotube paper for both a working electrode
and a counterelectrode. After a few cycles to
ensure the maximum degree of electrode wet-
ting, the measured CG increased up to about 15
F/g for aqueous solutions of both 1MNaCl and
38% by weight H2SO4. Similar CGs were ob-
served for 1 M LiClO4 in acetonitrile (12 to 17
F/g) or in propylene carbonate (13 to 14 F/g),
and a higher CG was observed for a 5 M
aqueous KOH solution (30 F/g), which readily
wet the nanotube paper.
These measurements and estimates of the
available surface area suggest that double-layer
charge injection for the nanotube bundles is
similar to that for the basal plane of graphite.
The gravimetric surface area of the nanotube
paper (AG) measured by the Brunauer-Emmett-
Teller (BET) method is about 285 m2/g (11);
this value is near the 300 m2/g surface area of
100 Å diameter cylinders having the crystallo-
graphically derived bundle density of 1.33
g/cm3 (10), which suggests that the N2 in the
BET measurement does not access significant
surface area in the space between nanotubes in
a bundle. An areal capacitance (CA) of 4 to 10
"F/cm2 results for the above range of ob-
served gravimetric capacitances and an AG
of 300 m2/g. This value is in the approxi-
mate range of measured CAs for the basal
plane of graphite (12), which has a mini-
mum at !3 "F/cm2 (for either 0.9 M aque-
ous NaF or 0.2 M tetrapropylammonium
tetrafluoride solution in acetonitrile).
Our first demonstration of a carbon nano-
tube actuator was surprisingly simple to pro-
duce. Similar to a design for a polyaniline con-
ducting polymer actuator (3) (Fig. 3), this ac-
Fig. 1. Experimentally derived changes in basal
plane strain as a function of nominal charge
derived from data (6) for graphite intercalation
compounds.
A B
Fig. 2. Schematic illustration of charge injec-
tion in a nanotube-based electromechanical ac-
tuator and the effect of nanotube bundling. (A)
An applied potential injects charge of opposite
sign in the two pictured nanotube electrodes, which are in a liquid or solid electrolyte (blue
background). These indicated charges in each electrode are completely balanced by ions from the
electrolyte (denoted by the charged spheres on each nanotube cylinder). The pictured single
nanotube electrodes represent an arbitrary number of nanotubes in each electrode that mechan-
ically and electrically act in parallel. Depending on the potential and the relative number of
nanotubes in each electrode, the opposite electrodes can provide either in-phase or out-of-phase
mechanical deformations. (B) Charge injection at the surface of a nanotube bundle is illustrated,
which is balanced by the pictured surface layer of electrolyte cations. Although penetration of
electrolyte and gases into interstitial sites and nanotube cores might occur for the investigated
bundled nanotubes, this has no noticeable effect on the observed BET surface area (11) or the
measured electrode capacitance.
Fig. 3. Schematic edge-
view of a cantilever-based
actuator operated in aque-
ous NaCl, which consists of
two strips of SWNTs (shad-
ed) that are laminated to-
gether with an intermedi-
ate layer of double-sided
Scotch tape (white). The
Na# and Cl– ions in the
nanotube sheets represent
ions in the double layer
at the nanotube bundle
surfaces, which are com-
pensated by the indicated
charges that are injected
into the nanotube bundles.
The equality between the
lengths of the two nano-
tube sheets (center) is dis-
rupted when a voltage is
applied, causing the indi-
cated actuator displace-
ments to the left or right. The possible existence of a small amount of double-layer charge before
the application of a voltage is ignored.
R E P O R T S
www.sciencemag.org SCIENCE VOL 284 21 MAY 1999 1341
 o
n
 S
e
p
te
m
b
e
r 
2
8
, 
2
0
0
9
 
w
w
w
.s
c
ie
n
c
e
m
a
g
.o
rg
D
o
w
n
lo
a
d
e
d
 f
ro
m
 
Carbon Nanotube Actuators
Ray H. Baughman, et al
Science 21 May 1999 284: 1340-1344
 [DOI: 10.1126/science.284.5418.1340]
Holocene Glacier Fluctuations in the Peruvian
 Andes Indicate Northern Climate Linkages
Joseph M. Licciardi, et al.
Science Vol. 325. no. 5948, pp. 1677 - 1679
DOI: 10.1126/science.1175010
[Fig. 2(a)] are assigned to cyclotron resonance transitions
between adjacent LLs (j!nj ¼ 1) with energies: En ¼
signðnÞ~c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2e@Bjnjp ¼ signðnÞE1 ffiffiffiffiffiffiffiffiffiffiBjnjp [8,9], characteristic
of massless Dirac fermions in graphene sheets with an
effective Fermi velocity ~c. This velocity is the only adjust-
able parameter required to match the energies of the ob-
served and calculated CR transitions. A best match is found
for ~c ¼ ð1:00$ 0:02Þ % 106 m & s'1 in fair agreement
with values found in multilayer epitaxial graphene
[10,11] or exfoliated graphene on Si=SiO2 substrate [12–
14]. As can be seen from Figs. 2(b) and 2(c), the multimode
character of the measured spectra is directly related to
thermal distribution of carriers among different LLs. The
intensity of a given transition is proportional to the differ-
ence in thermal occupation of the involved LLs.Roughly
speaking, the strongest transitions imply LLs in the vicinity
of the Fermi level, which fixes EF at around 6–7 meV from
the Dirac point.
To reproduce the experimental data, we assume the
absorption strength is proportional to the longitudinal con-
ductivity of the system:
!xxð!;BÞ /ð B=!Þ
X
m;n
Mm;n
fn ' fm
Em ' En ' ð@!þ i"Þ ;
where fn is the occupation of the n-th LL, and Mm;n ¼
#$jmj;jnj$1 with# ¼ 2 for n orm equal to 0, otherwise# ¼
1 [10,15]. The calculated traces in Fig. 3 have been drawn
taking " ¼ 35 %eV for the line broadening, ~c ¼ 1:00%
106 m & s'1 and EF ¼ 6:5 meV. To directly simulate the
measured traces, the derivative of the absorption with
respect to the magnetic field has been calculated taking
account of the field modulation !B ¼ 0:5 mT used in the
experiment. In spite of its simplicity, our model is more
than in a qualitative agreement with our experimental data,
see Fig. 3. The calculation fairly well reproduces the
experimental trends: the multimode character of the spec-
tra, the intensity distribution among the lines, as well as its
evolution with temperature; and it allows us to estimate the
characteristic broadening of the CR transitions.
Our modeling could be further improved but at the
expense of additional complexity which we want to avoid
here. Assuming magnetic-field and/or LL index depen-
dence of the broadening parameter " and taking into
account the possible fluctuation of the Fermi level within
-10 -5 0 5 10 15 20 25 30
-10 -5 0 5 10 15
-5
0
5
10
0.0 0.5 1.0
-5
0
5
10
(b)
-2
00
-2
T = 25 KL
n
−> L
n+1
 Magnetic Field (mT)
(a)
65
 
(c)
 
De
riv
at
ive
 
of
 
ab
so
rp
tio
n
 
(ar
b.
u
.
)
-1
n=1
L0
L6
L1
L
-1
L6
L3
L2
L
-2
L
-1
L1
432
1
Microwave 
energy =
 
 Magnetic Field (mT)
 
La
n
da
u
 
Le
ve
l E
n
er
gy
 
(m
eV
)
1.171 meV
-1
L0
Distribution
T = 25 K
 
Fermi-Dirac
En
er
gy
 
(m
eV
)
EF= 
6.5 meV
FIG. 2 (color online). Magneto-absorption spectrum (after re-
moving a weak linear background seen in the raw data of Fig. 1)
measured at T¼25K and microwave frequency @!¼
1:171meV (a) in comparison with the LL fan chart (b), where
the observed cyclotron resonance (CR) transitions are shown
by arrows. The occupation of individual LLs is given by the
Fermi-Dirac distribution plotted in the part (c). For simplicity,
we considered only n-type doping with EF ¼ 6:5 meV. The
dashed lines show positions of resonances assuming ~c ¼ 1:00%
106 m & s'1.
-100 -80 -60 -40 -20 0 20 40 60 80 100
Decoupled
graphene
Electrons in
hω
c
(3N+1)
N = 
7
6
5 4
7
6
5
7.5 K
 Magnetic Field (mT)
1.171 meV
10 K
15 K
20 K
25 K
30 K
35 K
40 K
T = 50 K
D
er
iv
a
tiv
e
 
o
f A
bs
o
rp
tio
n
 
(ar
b.
u
.
)
4
bulk graphite Microwave 
energy
FIG. 1 (color online). Magneto-absorption spectra (detected
with field modulation technique) of natural graphite specimen
taken in the temperature interval 7.5–50 K at fixed microwave
energy @! ¼ 1:171 meV. The response of low electron concen-
tration graphene layers decoupled from bulk graphite is seen
within the yellow highlighted area. High CR harmonics of K
point electrons in bulk graphite [21], with basic CR frequency
!c corresponding to the effective mass m ¼ 0:054m0 [20] are
shown by numbered arrows. The origin of features denoted by
stars is discussed in the text.
PRL 103, 136403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
25 SEPTEMBER 2009
136403-2
[Fig. 2(a)] are assigned to cyclotron resonance transitions
between adjacent LLs (j!nj ¼ 1) with energies: En ¼
signðnÞ~c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2e@Bjnjp ¼ signðnÞE1 ffiffiffiffiffiffiffiffiffiffiBjnjp [8,9], characteristic
of massless Dirac fermions in graphene sheets with an
effective Fermi velocity ~c. This velocity is the only adjust-
able parameter required to match the energies of the ob-
served and calculated CR transitions. A best match is found
for ~c ¼ ð1:00$ 0:02Þ % 106 m & s'1 in fair agreement
with values found in multilayer epitaxial graphene
[10,11] or exfoliated graphene on Si=SiO2 substrate [12–
14]. As can be seen from Figs. 2(b) and 2(c), the multimode
character of the measured spectra is directly related to
thermal distribution of carriers among different LLs. The
intensity of a given transition is proportional to the differ-
ence in thermal occupation of the involved LLs. Roughly
speaking, the strongest transitions imply LLs in the vicinity
of the Fermi level, which fixes EF at around 6–7 meV from
the Dirac point.
To reproduce the experimental data, we assume the
absorption strength is proportional to the longitudinal con-
ductivity of the system:
!xxð!;BÞ /ð B=!Þ
X
m;n
Mm;n
fn ' fm
Em ' En ' ð@!þ i"Þ ;
where fn is the occupation of the n-th LL, and Mm;n ¼
#$jmj;jnj$1 with# ¼ 2 for n orm equal to 0, otherwise# ¼
1 [10,15]. The calculated traces in Fig. 3 have been drawn
taking " ¼ 35 %eV for the line broadening, ~c ¼ 1:00%
106 m & s'1 and EF ¼ 6:5 meV. To directly simulate the
measured traces, the derivative of the absorption with
respect to the magnetic field has been calculated taking
account of the field modulation !B ¼ 0:5 mT used in the
experiment. In spite of its simplicity, our model is more
than in a qualitative agreement with our experimental data,
see Fig. 3. The calculation fairly well reproduces the
experimental trends: the multimode character of the spec-
tra, the intensity distribution among the lines, as well as its
evolution with temperature; and it allows us to estimate the
characteristic broadening of the CR transitions.
Our modeling could be further improved but at the
expense of additional complexity which we want to avoid
here. Assuming magnetic-field and/or LL index depen-
dence of the broadening parameter " and taking into
account the possible fluctuation of the Fermi level within
-10 -5 0 5 10 15 20 25 30
-10 -5 0 5 10 15
-5
0
5
10
0.0 0.5 1.0
-5
0
5
10
(b)
-2
00
-2
T = 25 KL
n
−> L
n+1
 Magnetic Field (mT)
(a)
65
 
(c)
 
De
riv
at
ive
 
of
 
ab
so
rp
tio
n
 
(ar
b.
u
.
)
-1
n=1
L0
L6
L1
L
-1
L6
L3
L2
L
-2
L
-1
L1
432
1
Microwave 
energy =
 
 Magnetic Field (mT)
 
La
n
da
u
 
Le
ve
l E
n
er
gy
 
(m
eV
)
1.171 meV
-1
L0
Distribution
T = 25 K
 
Fermi-Dirac
En
er
gy
 
(m
eV
)
EF= 
6.5 meV
FIG. 2 (color online). Magneto-absorption spectrum (after re-
moving a weak linear background seen in the raw data of Fig. 1)
measured at T¼25K and microwave frequency @!¼
1:171meV (a) in comparison with the LL fan chart (b), where
the observed cyclotron resonance (CR) transitions are shown
by arrows. The occupation of individual LLs is given by the
Fermi-Dirac distribution plotted in the part (c). For simplicity,
we considered only n-type doping with EF ¼ 6:5 meV. The
dashed lines show positions of resonances assuming ~c ¼ 1:00%
106 m & s'1.
-100 -80 -60 -40 -20 0 20 40 60 80 100
Decoupled
graphene
Electrons in
hω
c
(3N+1)
N = 
7
6
5 4
7
6
5
7.5 K
 Magnetic Field (mT)
1.171 meV
10 K
15 K
20 K
25 K
30 K
35 K
40 K
T = 50 K
D
er
iv
a
tiv
e
 
o
f A
bs
o
rp
tio
n
 
(ar
b.
u
.
)
4
bulk graphite Microwave 
energy
FIG. 1 (color online). Magneto-absorption spectra (detected
with field modulation technique) of natural graphite specimen
taken in the temperature interval 7.5–50 K at fixed microwave
energy @! ¼ 1:171 meV. The response of lowelectron concen-
tration graphene layers decoupled from bulk graphite is seen
within the yellow highlighted area. High CR harmonics of K
point electrons in bulk graphite [21], with basic CR frequency
!c corresponding to the effective mass m ¼ 0:054m0 [20] are
shown by numbered arrows. The origin of features denoted by
stars is discussed in the text.
PRL 103, 136403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
25 SEPTEMBER 2009
136403-2
How Perfect Can Graphene Be? 
P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, and M. Potemski, 
PRL 103, 136403 (2009) 
Apresentação Científica
Posters e Seminários
Etapa importante no trabalho científico: 
Divulgação e apresentação dos resultados obtidos
-Revistas científicas especializadas nacionais e 
internacionais
-Teses e Relatórios
-Posters e Seminários
Motivação
Poster Científico
Posters:
Apresentar o trabalho para uma audiência em 
movimento... (distrações, ....)
Posters:
Propaganda do seu trabalho
Posters:
Qual a audiência? 
Especialistas, público leigo,...
Não são artigos/relatórios colocados num 
quadro
Deve ter menos informações que o artigo
(informação essencial)
Concentre-se em uma única mensagem (ou poucas ...)
Menos é Mais !!!
Posters:
Tipografia: 
-Usar fontes que permita a leitura de longe
-Usar fontes do tipo Sans Serif (Arial, etc..)
Sans Serif vs Serif
- Evite usar bloco de letras maiúsculas 
 
1-nitropyrene (1-NP), which is mutagenic and carcionogenic, is one of the most 
abundant nitro polycyclic aromatic hydrocarbon (nitro-PAH) in the 
environment. Strategies to remediate organic pollutants have been developed 
and nanomaterials like carbon nanotubes (CNT) are one of them. They present 
high specific surface area, an useful property for molecule adsorption. Nitric 
acid treatment can introduce oxygenated groups (e.g. carboxylic acids) on the 
CNT surfaces increasing water solubility but decreasing the ability of CNT to 
interact with organic molecules. We used samples of acid-treated MWCNT to 
investigate the ability of CNT to adsorb 1-NP. Diferent doses of well 
characterized CNTs were tested against diferent doses of 1-NP and the 
detection of the non-adsorbed 1-NP was performed with the Salmonella/
microsome mutagenicity assay with TA98 strain, which is very sensitive 1-NP. 
The samples of MWCNT were able to bind to 1-NP therefore only free 1-NP 
molecules were able to enter the bacteria causing the mutagenic effect. The 
levels of the oxidation of the MWCNT modulated the mutagenicity of 1-NP.
1-NITROPYRENE (1-NP), WHICH IS MUTAGENIC AND CARCIONOGENIC, 
IS ONE OF THE MOST ABUNDANT NITRO POLYCYCLIC AROMATIC 
HYDROCARBON (NITRO-PAH) IN THE ENVIRONMENT. STRATEGIES TO 
REMEDIATE ORGANIC POLLUTANTS HAVE BEEN DEVELOPED AND 
NANOMATERIALS LIKE CARBON NANOTUBES (CNT) ARE ONE OF THEM. 
THEY PRESENT HIGH SPECIFIC SURFACE AREA, AN USEFUL PROPERTY FOR 
MOLECULE ADSORPTION. NITRIC ACID TREATMENT CAN INTRODUCE 
OXYGENATED GROUPS (E.G. CARBOXYLIC ACIDS) ON THE CNT 
SURFACES INCREASING WATER SOLUBILITY BUT DECREASING THE 
ABILITY OF CNT TO INTERACT WITH ORGANIC MOLECULES. WE USED 
SAMPLES OF ACID-TREATED MWCNT TO INVESTIGATE THE ABILITY OF 
CNT TO ADSORB 1-NP. DIFERENT DOSES OF WELL CHARACTERIZED 
CNTS WERE TESTED AGAINST DIFERENT DOSES OF 1-NP AND THE 
DETECTION OF THE NON-ADSORBED 1-NP WAS PERFORMED WITH THE 
SALMONELLA/MICROSOME MUTAGENICITY ASSAY WITH TA98 STRAIN, 
WHICH IS VERY SENSITIVE 1-NP. THE SAMPLES OF MWCNT WERE ABLE TO 
BIND TO 1-NP THEREFORE ONLY FREE 1-NP MOLECULES WERE ABLE TO 
ENTER THE BACTERIA CAUSING THE MUTAGENIC EFFECT. THE LEVELS OF 
THE OXIDATION OF THE MWCNT MODULATED THE MUTAGENICITY OF 
1-NP.
Posters:
Layout: 
-Organizar seções para facilitar a leitura
-Usar espaços em branco
- Use listas de 2, 3 ou 4 itens 
(maiores os leitores esquecem....)
- Use blocos com poucas linhas
Posters:
Estilo: 
-Inclua figuras, esquemas, representações 
gráficas, etc....
-Use listas verticais em vez de parágrafos 
longos
- Aceite o fato que o poster não deve conter 
tantos detalhes como o artigo
Para casa: Forneça cópias do poster (folha A4)
http://www.swarthmore.edu/NatSci/cpurrin1/posteradvice.htm
Exemplo de ilustração combinada com gráfico
Atraem o 
Leitor
AVP (median, 1st, 3rd quartile)
0
10
20
30
40
50
60
70
80
90
pre 30 60 90 120 post
A
V
P
 (
p
g
/m
l)
control
colic
* 
jpg
png
Atenção para a resolução de figuras!!!
I’ve fallen,
and I can’t get up
Exemplo de posters “bons” e “ruins”
http://www.cns.cornell.edu/documents/ScientificPosters.pdf
Uma lâmpada, por favor !
Oh my gawd!
http://www.cns.cornell.edu/documents/ScientificPosters.pdf
Um óculos escuro, por favor !
Where do I
begin?
http://www.cns.cornell.edu/documents/ScientificPosters.pdf
Gorgeous!
http://www.cns.cornell.edu/documents/ScientificPosters.pdf
-Informação para contato
-Foto
Gorgeous!
Perfect!
http://www.cns.cornell.edu/documents/ScientificPosters.pdf
Cooling Effects of Dirt Purge Holes on the Tips of Gas Turbine Blades
The project goal was to find the film cooling 
effects of these dirt purge holes
In summary, dirt purge holes provide cooling 
to the tip surface
While intended to remove dirt from the blade, dirt 
purge holes also provide cooling to the tip surface. This 
cooling is enhanced with a small tip gap as the dirt 
purge floods the tip region near the leading edge with 
cool air. 
Acknowledgments
The sponsor for this project was Pratt & Whitney.
Eric Couch, Jesse Christophel, Erik Hohlfeld, and Karen Thole
Gas turbine engines run better at higher 
combustion temperatures
At higher combustion temperatures, these 
engines generate more power and use less fuel. 
However, these temperatures are restricted by 
melting temperatures of the turbine blades 
downstream of the combustor (see Figure 1).
To find the effects, we performed wind tunnel 
experiments with scaled turbine blades. The wind 
tunnel was low speed and low temperature, and the 
blades, shown in Figure 3, were scaled at 12 times 
their normal size. To measure temperatures on the 
blade tip, we used an infrared camera. Tip gap sizes 
and amount of coolant flow from the dirt purge holes 
were both varied.
Figure 3. Large-scale turbine blade in wind tunnel.
Figure 4. Measurements of film cooling effectiveness. 
0.19%0.10%
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1 
!
0.29% 0.38%
Large 
Tip Gap
Small 
Tip Gap
Blowing Ratio:
Temperature measurements were converted to 
dimensionless cooling effectiveness 
c
aw
TT
TT
!
"
"
#
$
$
Effectiveness where
T$ = mainstream temperature
Tc = coolant temperature
Taw = adiabatic wall temperature
(on tip surface)
Figure 2. Flow at the tip region of a turbine blade.
[IHPTET pamphlet, 2000]
Dirt purge holes on turbine blade tips allow 
for higher combustion temperatures
Harmful hot gases from the combustor leak 
across the gap between the blade tip and the 
shroud (see Figure 2). Dirt purge holes expel 
foreign particles from the blade tip so that film 
cooling holes are not blocked.
Combustor
T > 2500%C
Figure 1. Pratt & Whitney F119 gas turbine engine. 
Turbine Section
Tmelting point = 1000%C
Cooling increased with blowing ratio
The effectiveness contours of Figure 4 show that 
cooling increased with blowing ratio. 
0.0
0.2
0.4
0.6
0.8
1.0
0.0 0.2 0.4 0.6 0.8 1.0
Small Tip, 0.10%
Small Tip, 0.19%
Small Tip, 0.29%
Small Tip, 0.38%
Large Tip, 0.10%
Large Tip, 0.19%
Large Tip, 0.29%
Large Tip, 0.38%!
X/Bx
y
x
Small Tip, 0.38% Blowing
Large Tip, 0.19% Blowing
Figure 5. Laterally averaged effectiveness plotted 
against normalized axial chord. 
Tip size dramatically affected cooling
In Figure 5, the lateral averages of effectiveness 
plotted against the axial chord length show that tip size 
dramatically affected the cooling. 
http://www.writing.engr.psu.edu/posters.html
BO
M
A. Gargett and J. Wells 
Center for Coastal Physical Oceanography
Old Dominion University
768 W 52nd St.
Norfolk VA 23507 USA
ABSTRACT
ACKNOWLEDGEMENTS
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna ali-
quam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea 
commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu 
feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore 
te feugait nulla facilisi. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea 
commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu 
feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore 
te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut 
laoreet dolore magna aliquam erat volutpat quis nostrud. Ut wisi enim ad minim veniam, quis nostrud. Lorem ipsum dolor sit 
amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut 
wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis 
autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero 
eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Ut 
wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis 
autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero 
eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. 
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna ali-
quam erat volutpat quis nostrud. Ut wisi enim ad minim veniam, quis nostrud.
Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. 
Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at 
vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. 
Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. 
Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at 
vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. 
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna ali-
quam erat volutpat quis nostrud. Ut wisi enim ad minim veniam, quis nostrud.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna ali-
quam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea 
commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu 
feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore 
te feugait nulla facilisi. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea 
commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu 
feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore 
te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut 
laoreet dolore magna aliquam erat volutpat quis nostrud. Ut wisi enim ad minim veniam, quis nostrud.
OBSERVATIONAL SETTING
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat 
volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. 
Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros 
et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Ut wisi enim ad 
minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure 
dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio 
dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, consectetuer 
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat quis nostrud. Ut wisi enim ad minim 
veniam, quis nostrud.Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore 
magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea com-
modo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla 
facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. 
Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem 
vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan 
et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet, con-
sectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat quis nostrud. Ut wisi enim 
ad minim veniam, quis nostrud. ismod tincidunt ut laoreet dolore magna aliquam erat volutpat quis nostrud. Ut wisi enim ad minim veniam, 
quis nostrud.Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna 
aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo 
consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at 
vero eros et accumsan et iusto odio dignissim

Outros materiais