Buscar

Efeito Compton

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 6 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 6 páginas

Prévia do material em texto

Efeito Compton
Foi no ano de 1922 que Arthur Holly Compton, após realizar alguns estudos sobre a interação radiação-matéria, percebeu que quando um feixe de raios X incidia sobre um alvo de carbono, sofria um espalhamento. Inicialmente, Compton não percebeu nada de errado, pois suas medidas indicavam que o feixe espalhado tinha frequência diferente do feixe incidente logo após atravessar o alvo.
De acordo com a teoria ondulatória, tal conceito era dado como certo, pois a frequência de uma onda não é alterada por nenhum fenômeno que ocorre com ela, sendo característica da fonte que a produz. Mas o que se constatou, através da experimentação, foi que a frequência dos raios X espalhados era sempre menor do que a frequência dos raios X incidentes, dependendo do ângulo de desvio. A figura abaixo nos mostra o esquema da ocorrência desse fenômeno, conhecido como Efeito Compton.
Para explicar o sucedido, Compton inspirou-se na abordagem de Einstein, ou seja, ele interpretou os raios X como sendo feixes de partículas e a interação como sendo uma colisão de partículas. A energia do fóton incidente, de acordo com Einstein e Planck, seria h.f; e o fóton espalhado teria elétron, em respeito à lei da conservação da energia.
A abordagem funcionou perfeitamente, mas Compton foi ainda mais longe. Ele investigou também a interação do ponto de vista da lei da conservação do momento linear. Experimentalmente, verificou que essa lei valia para diversos ângulos de espalhamento, desde que o momento linear do fóton fosse definido como
Onde:
· c – é a velocidade da luz no vácuo
· h – é a constante de Planck
· λ – é o comprimento de onda da radiação
O inventor da Câmara de Nuvens (Charles Wilson) obteve experimentalmente as trajetórias dos fótons e dos elétrons espalhados, em colaboração com Compton. Duas características são notáveis na expressão acima: uma é a própria redefinição do momento linear, que não pode ser escrito como m.v, porque o fóton não tem massa; e a outra característica que pode ser observada é o estabelecimento de uma clara associação entre uma grandeza típica de corpúsculos, isto é, a matéria, e uma grandeza caracteristicamente ondulatória.
Compton ainda desenvolveu um método que provava que o fóton e o elétron eram espalhados simultaneamente, o que impedia explicações envolvendo absorção e posterior emissão de radiação.
Efeito fotoelétrico
O efeito fotoelétrico é um fenômeno de origem quântica que consiste na emissão de elétrons por algum material que é iluminado por radiações eletromagnéticas de frequências específicas. Os elétrons emitidos por esses materiais são chamados de fotoelétrons. 
Quem descobriu o efeito fotoelétrico?
O efeito fotoelétrico foi descoberto em 1886 pelo físico alemão Heinrich Hertz (1857-1894). Na ocasião, Hertz percebeu que a incidência da luz ultravioleta em chapas metálicas auxiliava a produção de faíscas. A explicação teórica para o efeito fotoelétrico, entretanto, só foi apresentada pelo físico alemão Albert Einstein, em 1905.
A dúvida que existia na época estava relacionada com a energia cinética dos elétrons que eram ejetados do metal: essa grandeza não dependia da intensidade da luz incidente. Einstein percebeu que o agente responsável pela ejeção de cada elétron era um único fóton, uma partícula de luz que transferia aos elétrons uma parte de sua energia, ejetando-o do material, desde que sua frequência fosse grande o suficiente para tal. Para tanto, Einstein muniu-se das ideias do físico alemão Max Planck (1858-1947).
Planck afirmava que a luz irradiada por um corpo negro era quantizada, isto é, apresentava um valor mínimo de energia, como em pequenos pacotes. Einstein ampliou a ideia para todas as ondas eletromagnéticas e conseguiu resolver o problema do efeito fotoelétrico. Einstein e Planck receberam mais tarde o prêmio Nobel de Física por suas descobertas relacionadas à quantização da luz.
Como funciona o efeito fotoelétrico?
O efeito fotoelétrico consiste na ejeção de elétrons de um material exposto a uma determinada frequência de radiação eletromagnética. Os pacotes de luz, chamados de fótons, transferem energia para os elétrons. Se essa quantidade de energia for maior do que a energia mínima necessária para se arrancar os elétrons, estes serão arrancados da superfície do material,formando uma corrente de fotoelétrons.
A energia de cada fóton depende de sua frequência (f), portanto, existe uma frequência mínima necessária para arrancar os elétrons do material. A energia mínima que cada fóton deve ter para promover o efeito fotoelétrico é chamada de função trabalho. A equação a seguir permite calcular a energia de um único fóton de frequência f:
Na equação acima, h é uma constante física chamada constante de Planck, de valor igual a 4,0.10-15 eV.s. A energia cinética que o elétron adquire após ser atingido por um fóton é determinada pela diferença da energia do fóton com a função trabalho (Φ):
A função trabalho é uma característica de cada material e depende do quão ligados estão os elétrons no material. Confira uma tabela com valores de função trabalho, em unidades de eV (elétrons-volts - cada eV equivale a 1,6.10-19 J), para alguns metais:
	Material
	Valor da função trabalho (eV)
	Sódio
	2,28
	Cobalto
	3,90
	Alumínio
	4,08
	Cobre
	4,70
Aplicações tecnológicas do efeito fotoelétrico
A mais famosa aplicação tecnológica baseada no efeito fotoelétrico é a célula fotovoltaica, utilizada nos painéis solares para gerar energia elétrica limpa e renovável.
 
BIBLIOGRAFIA: 
SILVA, Domiciano Correa Marques da. "Efeito Compton"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/fisica/efeito-compton.htm. Acesso em 21 de novembro de 2019.
HELERBROCK, Rafael. "O que é efeito fotoelétrico?"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/o-que-e/fisica/o-que-e-efeito-fotoeletrico.htm. Acesso em 21 de novembro de 2019.

Continue navegando

Outros materiais