Buscar

Apostila Genética Vegetal

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 144 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 144 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 144 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

CENTRO DE CIÊNCIAS NATURAIS E EXATAS – CCNE 
DEPARTAMENTO DE BIOLOGIA DISCIPLINA DE 
GENÉTICA 
AGRONOMIA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GENÉTICA VEGETAL 
 
 
 
 
Prof.: Luiz Augusto Salles Das Neves 
Compilado e Editado por: Napoleão Zeituni Júnior 
 
SUMÁRIO 
Unidade 1 – Genética Molecular .......................................................................................................................... 5 
1. Introdução .................................................................................................................................................... 5 
2. O gene e a Enzima ....................................................................................................................................... 5 
3. Constituição do DNA ................................................................................................................................... 7 
3.1. As Ligações no DNA ............................................................................................................................ 7 
4. A Duplicação do DNA ................................................................................................................................. 7 
4.1. A Duplicação do DNA é semiconservativa .......................................................................................... 8 
5. O Processo de Expressão Fenotípica............................................................................................................ 8 
5.1. A Transcrição ........................................................................................................................................ 9 
5.2. Transformações no pré-RNAm ........................................................................................................... 10 
5.3. A Tradução .......................................................................................................................................... 11 
6. O Código Genético..................................................................................................................................... 12 
7. A Tabela de códons .................................................................................................................................... 13 
8. A Proteína .................................................................................................................................................. 13 
9. Regulação da produção de enzimas ........................................................................................................... 14 
10. Referências bibliográficas ........................................................................................................................ 15 
Exercícios ........................................................................................................................................................... 15 
Unidade 2 – Transmissão dos Genes Entre as Gerações .................................................................................... 14 
1. Introdução .................................................................................................................................................. 14 
2. A Célula, Um breve histórico .................................................................................................................... 14 
3. O núcleo interfásico ................................................................................................................................... 15 
4. Os cromossomos e suas estruturas ............................................................................................................. 15 
5. O Cariótipo ................................................................................................................................................. 16 
5.1. A importância do estudo de Cariótipos ............................................................................................... 17 
6. A divisão nuclear. Considerações iniciais .................................................................................................. 18 
6.1. Mitose ................................................................................................................................................. 19 
6.2. Meiose. Considerações iniciais ........................................................................................................... 20 
7. A reprodução sexuada das plantas ............................................................................................................. 22 
7.1. Microsporogênese e Macrosporogênese ............................................................................................. 22 
8. Referências Bibliográficas ......................................................................................................................... 24 
Exercícios ........................................................................................................................................................... 24 
Unidade 3 – Genética de Poliploides ................................................................................................................. 26 
1. Introdução .................................................................................................................................................. 26 
2. Origem dos Poliploides .............................................................................................................................. 26 
3. Os Euploides .............................................................................................................................................. 27 
3.1. Os autopoliploides............................................................................................................................... 27 
3.2. Os alopoliploides................................................................................................................................. 30 
4. A formação do genoma poliploide em plantas cultivadas.......................................................................... 30 
4.1. Níveis de fertilidade a partir da hibridação interespecífica ................................................................. 31 
5. Efeitos da Poliploidia ................................................................................................................................. 31 
6. Os aneuploides ........................................................................................................................................... 32 
 
7. O uso de alterações cromossômicas no Melhoramento de Plantas ............................................................ 32 
7.1. Utilização dos haploides ..................................................................................................................... 33 
8. Método de evolução das culturas de aveia (Avena sativa L.) e de feijão (Phaseolus vulgaris L.) ............ 34 
8.1. Evolução do gênero Avena ................................................................................................................. 34 
8.2. Evolução do gênero Phaseolus ........................................................................................................... 38 
9. Conclusão ................................................................................................................................................... 42 
10. Referencias Bibliográficas ....................................................................................................................... 42 
Exercícios ........................................................................................................................................................... 44 
Triploide ......................................................................................................................................................... 45 
Unidade4 - Mutação .......................................................................................................................................... 47 
1. Introdução .................................................................................................................................................. 47 
2. Mutações espontâneas e mutações induzidas ............................................................................................. 47 
3. Agentes mutagênicos ................................................................................................................................. 47 
3.1. Mutagênicos Físicos ............................................................................................................................ 48 
3.2. Mutagênicos químicos ........................................................................................................................ 48 
3.3. Outros mutagênicos............................................................................................................................. 48 
4. Mutações a nível molecular ....................................................................................................................... 48 
4.1. Tipos de mutação ................................................................................................................................ 48 
5. Metodologia de análise de mutantes .......................................................................................................... 53 
5.1. Análise de efeitos fisiológicos ............................................................................................................ 54 
5.2. Análise dos efeitos morfológicos ........................................................................................................ 54 
5.3. Análise das características herdadas ................................................................................................... 54 
6. Modificações do genoma por causas ambientais ....................................................................................... 54 
6.1. A temperatura como fator mutagênico ................................................................................................ 55 
6.2. Efeitos mutagênicos dos biocidas ....................................................................................................... 55 
7. Efeito biológico da radiação a nível celular ............................................................................................... 56 
7.1. Radiação e metabolismo do DNA ....................................................................................................... 56 
7.2. Radiação e o ciclo celular ................................................................................................................... 56 
7.3. Radiação e metabolismo do RNA ....................................................................................................... 57 
7.4. A radiação e o metabolismo de proteínas e a atividade enzimática .................................................... 57 
7.5. O ciclo celular e a radiação ................................................................................................................. 57 
7.6. A radiação sobre os cromossomos, núcleos, mitocôndrias e fuso de divisão ..................................... 58 
8. A mutação induzida e o melhoramento de plantas ..................................................................................... 58 
9. Conclusões ................................................................................................................................................. 59 
10. Referências Bibliográficas ....................................................................................................................... 60 
Exercícios ........................................................................................................................................................... 61 
Unidade 5 – Herança Mendeliana e suas Variações .......................................................................................... 63 
1. Introdução .................................................................................................................................................. 63 
2. O Trabalho de Mendel ............................................................................................................................... 64 
2.1. Alguns Conceitos ................................................................................................................................ 64 
2.2. Monohibridismo .................................................................................................................................. 64 
2.3. Dihibridismo ....................................................................................................................................... 66 
 
2.4. Aplicação do trabalho de Mendel ....................................................................................................... 67 
2.5. Aplicação do teste 2ּא para frequências genéticas ................................................................................ 67 
2.6. Combinações superiores ..................................................................................................................... 68 
3. Alterações das frequências mendelianas .................................................................................................... 69 
3.1. Herança intermediária e codominância ............................................................................................... 69 
3.2. Alelos Múltiplos ou Polialelia ............................................................................................................. 69 
3.3. Epistasia .............................................................................................................................................. 70 
4. Bibliografia Recomendada ......................................................................................................................... 73 
Exercícios ........................................................................................................................................................... 74 
Unidade 6 – Genética de Populações ................................................................................................................. 77 
1. Introdução .................................................................................................................................................. 77 
2. Análise de frequências mendelianas. Teorema de Hardy-Weimberg. ....................................................... 77 
2.1. Determinação das frequências alélicas................................................................................................ 78 
3. Determinação das Frequências Genotípicas ............................................................................................... 79 
3.1. Frequências genotípicas iniciais .......................................................................................................... 79 
4. Fatores que afetam as frequências alélicas e genotípicas ........................................................................... 82 
4.1. Seleção Genotípica .............................................................................................................................. 82 
4.2. Introdução de germoplasma ................................................................................................................ 85 
4.3. Mutação ............................................................................................................................................... 86 
5. Referências Bibliográficas ......................................................................................................................... 87 
Exercícios ...........................................................................................................................................................87 
Fatores que afetam as frequências alélicas ..................................................................................................... 89 
Estudo dirigido ............................................................................................................................................... 90 
Unidade 7 – Ligação e Recombinação ............................................................................................................... 93 
1. Introdução .................................................................................................................................................. 93 
2. Segregação independente dos genes .......................................................................................................... 94 
3. A ligação genética ...................................................................................................................................... 94 
4. Tipos e formas de ligações dos genes ........................................................................................................ 94 
5. Identificação dos paternais e dos recombinantes ....................................................................................... 95 
5.1. Exemplo de ligações entre dois genes ................................................................................................. 95 
5.2. Cálculo da frequência de recombinação ............................................................................................. 96 
5.3. Exemplo de ligação de três genes – Teste dos 3 pontos...................................................................... 97 
6. Utilização dos mapas genéticos ................................................................................................................. 99 
6.1. Determinação da geração F2 a partir do mapa molecular .................................................................. 101 
7. Determinação da frequência de recombinação com os dados da F2......................................................... 102 
7.1. F1 em fase de associação (AB/ab) ..................................................................................................... 102 
7.2. F1 em fase de repulsão (Ab/aB) ........................................................................................................ 102 
8. Referências bibliográficas ........................................................................................................................ 102 
Exercícios ......................................................................................................................................................... 102 
Unidade 8 – Herança Poligênica ...................................................................................................................... 105 
1. Introdução ................................................................................................................................................ 105 
2. Tipos de ações gênicas ............................................................................................................................. 106 
 
2.1. Ação Aditiva ..................................................................................................................................... 106 
2.2. Ação de Dominância ......................................................................................................................... 107 
2.3. Ação de sobredominância ................................................................................................................. 109 
2.4. Ação epistática .................................................................................................................................. 111 
3.2. A variância ........................................................................................................................................ 113 
3.3. Herdabilidade .................................................................................................................................... 115 
4. Estimativa da variância pelas causas da variação estatística .................................................................... 117 
5. Estimativa do número de poligenes ......................................................................................................... 117 
6. Exemplo desenvolvido (segundo Ramalho et al.; 1994). ......................................................................... 118 
7. Referências bibliográficas ........................................................................................................................ 119 
Exercícios ......................................................................................................................................................... 120 
Unidade 9 – Plantas Transgênicas .................................................................................................................... 124 
1. Introdução ................................................................................................................................................ 124 
2. A descoberta da célula ............................................................................................................................. 124 
3. Os fatores mendelianos ............................................................................................................................ 125 
4. A cromatina nas células ........................................................................................................................... 125 
5. O Ácido Desoxirribonucleico – O DNA .................................................................................................. 125 
6. Os cruzamentos entre plantas ................................................................................................................... 127 
7. A química do entrecruzamento das cromátides homólogas ..................................................................... 128 
8. O melhoramento convencional e a busca da variabilidade ...................................................................... 129 
8.1. A variabilidade .................................................................................................................................. 129 
9. As enzimas de restrição. Tesouras genéticas. .......................................................................................... 130 
9.1. A transferência de DNA nas plantas. ................................................................................................ 131 
10. A fixação do nitrogênio. Uma simbiose perfeita. .................................................................................. 131 
11. Técnicas modernas da engenharia genética ........................................................................................... 132 
11.1. O sistema Agrobacterium ................................................................................................................ 133 
11.2. Outros sistemas de transferência de genes ...................................................................................... 134 
12. Algumas modificações realizadas e suas consequências ....................................................................... 136 
13. Plantas transgênicas e relação com outras áreas da ciência ................................................................... 137 
14. Referências bibliográficas ...................................................................................................................... 137 
 
 
 
Unidade 1 – Genética Molecular 
 
1. Introdução 
Ao se analisar um indivíduo, seja uma planta, seja um animal, o que se vê é o conjunto de fatores que ao 
agirem, cada um há seu tempo, produzem o que se denomina fenótipo. Esse conjunto é composto pelos 
componentes celulares, sobretudo pelo núcleo, além de um componente chamado ambiental. 
O núcleoé o que age de forma decisiva na expressão do fenótipo, ou aparência do indivíduo, pois ele contém o 
que se denomina a molécula da vida, ou DNA. 
Mas o que tem esse DNA que faz com que as ervilhas de Mendel sejam amarelas ou verdes, lisas ou rugosas? 
Que o feijão tenha flores roxas ou brancas e que suas sementes sejam pretas, marrons ou brancas? O que tem 
esse DNA que faz o animal engordar mais rápido num bom pasto, em relação a outros animais que não engordam 
tanto com a mesma forragem? Que estruturas moleculares contribuem para fazer com que esse fenótipo se 
manifeste diferentemente em épocas específicas de desenvolvimento dos indivíduos? O que faz que tecidos de 
crescimento vegetativo se transformem em reprodutivos e, por último, como isso passa através das gerações? 
A Genética Molecular consegue responder a essas questões, inclusive estabelecendo relações com a 
Fisiologia Vegetal. Como se trabalha apenas com exemplos vegetais tentar-se-á usá-los, em sua maioria, para 
explorar essas questões e evidenciar a importância de se conhecer intimamente o DNA, sua composição e sua 
transmissão através das gerações. 
Na década de 50 a estrutura da molécula de DNA foi descoberta por Watson e Crick que estabeleceram um 
modelo de conformação dessa molécula que se encontra no núcleo das células dos vegetais e animais, nos seres 
humanos e procariontes (há vírus que tem o RNA como material genético no lugar do DNA). O modelo da 
estrutura do DNA atualmente é muito divulgado, dada sua grande importância em todas as áreas relacionadas 
com a Biologia, como a Física, a Química, a Bioquímica e a Fisiologia Vegetal. Pode-se nesse momento dizer 
que genes e enzimas estabelecem um par perfeito para o funcionamento celular, pois um está em estreita relação 
com o outro. 
O presente capítulo tem por objetivo descrever a funcionalidade do DNA do núcleo das células e como os genes, 
que estão no DNA, se transformam em proteínas para o funcionamento das plantas. 
 
2. O gene e a Enzima 
Ao se cruzar cultivares de feijão (Phaseolusvulgaris L.) que têm flores brancas, que sejam homozigotas, 
obtém-se a primeira geração filial, a F1, com flores de cor púrpura. Sabe-se que a geração F1 é, por excelência, 
heterozigota, derivada do cruzamento entre paternais homozigotos, portanto possuem em seu genótipo as duas 
formas alélicas em todos seus genes. 
Ao se cruzar as plantas da F1 entre si obtêm-se a geração F2, onde se percebe que a proporção de flores 
púrpuras para brancas é de 9:7. Com essa proporção chega-se a concluir que são dois genes que estão agindo 
para a manifestação do fenótipo e que o produto proteico resultante possui uma interação do tipo Epistasia (Ver 
Unidade 5). 
É de conhecimento que na epistasia um alelo de um gene pode inibir o outro, ou que, quando os dois alelos 
ou apenas um de um gene não está presente no genótipo, o fenótipo fica alterado. Para melhor se entender a 
proporção epistática mencionada o tabela 1.1 demonstra a segregação fenotípica e a relação com a proporção 
epistática dos genes. 
CENTRO DE CIÊNCIAS NATURAIS E EXATAS – CCNE 
DEPARTAMENTO DE BIOLOGIA 
DISCIPLINA DE GENÉTICA AGRONOMIA 
 
 
1 
Tabela 1.1 – Demonstração do genótipo, fenótipo e proporção epistática em F2 com dois genes interagindo entre 
si. 
Número Genótipo Fenótipo Proporção Epistática 
9 A- B- Púrpura 9 
3 A- bb Branca 
3 aa B- Branca 7 
1 aabb Branca 
 
Portanto para a produção da cor púrpura os dois alelos dominantes A e B deverão estar nos mesmos 
indivíduos. Na falta de um deles a cor passa a ser branca. O que têm estão esses dois alelos para produzirem a 
cor púrpura? 
A cor das flores depende dos pigmentos que são produzidos e esses derivam de rotas metabólicas específicas 
de transformações de substratos. E a transformação dos substratos depende de enzimas. As enzimas são proteína 
com atividade catalítica constituídas de sequências de aminoácidos. Para que a sequência de aminoácidos 
funcione como uma enzima é necessária ter uma informação prévia que dite onde se colocará a alanina ou a 
serina, se a metionina deve ou não ficar na sequência. E quem determina isso tudo é o DNA que é constituído 
de um conjunto ordenado de nucleotídeos, que são os precursores para a formação das cadeias de 
proteínas. 
Então para se responder como a cor púrpura é produzida deve-se levar em consideração que um alelo 
dominante de um gene A deve estar presente. Esse alelo, no DNA, possui a informação, codificada na sequência 
e bases nucleotídicas, que produz uma enzima que transforma o substrato 1 em 2. Assim como, no outro gene 
B, o alelo dominante também deve estar presente para haver a transformação do substrato 2 em 3. 
O substrato 3 é o que produz a cor púrpura. 
Em resumo: 
 
 
 
 
Caso um desses alelos não 
esteja presente no indivíduo à cor 
será branca, porque haverá bloqueio na rota metabólica, conforme esquema abaixo: 
 
Se for considerada uma planta, em princípio, pode-se dizer que todas as suas células possuem o mesmo 
conteúdo genético, portanto o mesmo número de cromossomos e genes. Esta informação é válida, porém várias 
alterações cromossômicas são passíveis de acontecer. Por exemplo, as células dos vasos condutores não 
possuem mais núcleos e as células das folhas podem ter mais de 2 genomas, entretanto quando se refere às 
 
 
 
 
 
 
 
 
 
reprodutoras, aí sim elas possuem o mesmo número cromossômico (são haploides), salvo algum problema 
provocado pro mutagênicos Mas como pode cada geração possuir a mesma informação genética contida no 
DNA? 
 
3. Constituição do DNA 
O DNA é constituído pelo açúcar (desoxirribose), o fósforo (H3PO4) e bases nitrogenadas (Púricas – Adenina e 
Guanina e Pirimídicas – Citosina e Timina). 
O açúcar e o fósforo constituem o que se chama de corrimão e as bases nitrogenadas ligadas entre si, duas 
a duas, os degraus de uma escada imaginária enrolada de forma helicoidal. A molécula de DNA possui filamento 
duplo. 
3.1. As Ligações no DNA 
As ligações entre a molécula de fósforo e o açúcar são do tipo fosfodiéster. O fósforo (-PO4) liga-se ao 
carbono 5 do açúcar de um nucleotídeo e ao carbono 3 do nucleotídeo subsequente. Portanto, ao longo de um 
dos filamentos do DNA, a ligação é 5’ >>> 3’. Sendo o DNA uma molécula dupla o outro filamento possui a 
ligação, entre o fósforo e o açúcar, na sequência 3’ >>> 5’. Diz-se então que os filamentos são Antiparalelos. 
Para manter ambos os filamentos unidos os degraus da escala, que são as bases nitrogenadas, estão ligadas 
entre si por pontes de hidrogênio. As bases nitrogenadas possuem uma ordenação específica de ligação. A 
Adenina liga-se com 2 pontos de hidrogênio a Timina e a Citosina com 3 pontes a Guanina. Esse pareamento é 
constante, apenas as quantidades se alteram. 
Toda molécula de DNA, num organismo, encerra a informação para o desenvolvimento desse mesmo 
organismo. A cor do hipocótilo, a posição e a pigmentação das folhas, das flores, o tamanho das vagens ou das 
espigas, o peso das sementes, a produtividade são características determinadas pelos genes que estão no DNA. 
E, além disso, possui também a informação para a produção de enzimas que irão desdobrar os substratos no 
interior das células, para que essas características possam se manifestar. 
Portanto, a molécula de DNA tem o que se denomina de gene. Se o gene está presente à característica que 
ele determina aparecerá. Se a sua forma alélica estiver presente no genótipo, outra característica se manifestará, 
dependendo do tipo de interação que estiver envolvido esse gene. 
Uma das propriedades funcionais do DNA é a sua duplicação. Essa propriedade permite que uma cópia do 
DNA já existente na célula sirva de molde para que outra seja formada. Esse processo de duplicação do DNA 
ocorre numa fase do ciclo celular vegetal chamado de interfase. 
 
4. A Duplicação do DNAAs pesquisas sobre o comportamento do DNA foram elaboradas inicialmente em bactérias, principalmente 
em Echerichia coli, mas devido ao comportamento celular dos eucariontes serem semelhantes, inferiu-se o 
modelo de conformação e de duplicação do DNA para todos os organismos. A própria conformação da estrutura 
da molécula de DNA pressupõe sua duplicação, segundo seus descobridores. 
Para entender como e porque o DNA se duplica é necessário dividir-se o ciclo de vida de uma célula em duas 
partes: a interfase e a divisão celular, conforme esquema abaixo: 
 
 
 
 
É na interfase que os genes se expressam, pois ocorre a diferenciação celular. 
O período de interfase pode ser subdividido em três subperíodos: G1, S e G2. Ambos subperíodos, G1 e 
G2, derivam da primeira letra da palavra gap, que, em inglês significa parada. No período G1 são produzidas 
enzimas para o crescimento e diferenciação celular, e enzimas que atuarão sobre o DNA no subperíodo seguinte. 
Neste estágio o DNA recebe o nome de cromatina. Ela está desespiralizada permitindo a expressão fenotípica 
do gene, através de outra macromolécula denominada RNA. 
No período S (síntese) é onde ocorre a duplicação de toda molécula do DNA. Enzimas específicas já 
produzidas agem sobre o DNA fazendo sua duplicação. 
Esse processo, como não poderia deixar de ser, é de forma ordenada. Nas extremidades e ao longo do 
DNA, ao mesmo tempo, proteínas começam a agir desenrolando os filamentos, são as chamadas 
DNAtopoisomerases. A DNA-helicase provavelmente quebre as pontes de hidrogênio no local de origem da 
duplicação. Com o afrouxamento dos fios de DNA a principal enzima de duplicação pode agir. É a DNA 
polimerase. 
4.1. A Duplicação do DNA é semiconservativa 
A DNA polimerase coloca novos nucleotídeos apenas diante de um molde de DNA. Portanto um dos filamentos 
dos novos DNA’s será velho e outro será novo, por isso a denominação semiconservativa. 
Para a DNA-polimerase iniciar sua atividade necessita de uma extremidade livre 3’OH, que é gerada por 
uma enzima chamada primase. Essa enzima é responsável pela colocação de um primer (pequeno segmento de 
RNA ou de DNA, também chamado de “disparador”) no filamento cuja polaridade é 5’ >>> 3’. Esse primer é 
colocado na extremidade 3’ da cadeia molde. A partir daí a DNA-polimerase sintetiza novos nucleotídeos. Esse 
primer posteriormente é retirado pelo processo enzimático de correção, feito pela própria DNA-polimerase. 
 A DNA-polimerase só funciona diante de um molde, cuja polaridade é 3’ >>> 5’. Se os fios do DNA são 
antiparalelos como agiria a DNA polimerase no molde 5’ >>> 3’? Vários modelos de duplicação foram 
propostas pelos pesquisadores moleculares. O modelo “faca” e o “descontínuo” foram os primeiros, entretanto 
o modelo descontínuo ganhou maiores evidências (GARDNER, 1975). 
O modelo descontínuo prevê que o filamento original da polaridade 3’ >>> 5’ seja duplicado 
continuamente (filamento leading) e o filamento 5’ >>> 3’ de forma descontínua (filamento leaging). Para isso, 
conforme já descrito a primase sintetiza um primer no local de origem da duplicação, junto ao filamento 5’ >>> 
3’ e a partir daí a DNA polimerase sintetiza o novo filamento dirigindo-se para o lado oposto da origem da 
duplicação. Esse modelo tem se mantido até então, desde que R. Okazaki o concebeu. Os fragmentos no fio 
leaging formados receberam o nome do descobridor – Fragmentos de Okazaki. Após a duplicação, formando o 
fragmento de Okazaki e a retirada da molécula de primer pela ação de correção da DNA polimerase, a enzima 
ligase promove a ligação dos fragmentos, completando toda a duplicação. 
Além dessa importante ação enzimática sobre o DNA para sua duplicação, no período S da interfase, 
salienta-se que no final de todo o processo a quantidade de DNA fica duplicada. Portanto, essas moléculas agora 
duplicadas, possuem a mesma informação genética. E quando ocorre a condensação para a divisão igualitária 
dos genes entre as células, os cromossomos se formam já com as cromátides-irmãs. Pode-se afirmar, então, que 
as cromátides-irmãs, dos cromossomos homólogos são produzidas neste subperíodo. Essas cromátides-irmãs 
dividir-se-ão nas fases de anáfase e anáfase II, da mitose e meiose, respectivamente, levando para as gerações 
seguintes à mesma informação.(Ver Unidade 2). Essa geração pode ser celular, no mesmo tecido, no mesmo 
indivíduo, por exemplo, tecido meristemático, como geração populacional. 
Essa descrição referiu-se a primeira funcionalidade da molécula de DNA. A segunda funcionalidade é 
a transferência da informação do gene para formação das proteínas. 
 
5. O Processo de Expressão Fenotípica 
O DNA pode ser copiado em novo DNA, como processo acima descrito, ou ser copiado para uma nova 
macromolécula chamada RNA (ácido ribonucleico). 
 
Se se entendesse o gene como uma conta, o DNA pode ser entendido como um “colar de contas”. Os genes 
desta forma estariam dispostos linearmente ao longo de todo DNA. 
Hoje se sabe que nem todos os genes se transformam em proteínas para originarem fenótipos. Há genes nos 
eucariontes que não funcionam. Esses já funcionaram durante o processo de evolução da espécie ou poderão 
funcionar, permitindo sua readaptação a ambientes modificados, como tem acontecido nos últimos tempos. 
Há no genoma sequências de genes não repetidas e sequências altamente repetitivas decorridas de processo 
de duplicação ao longo da evolução. A maioria dos genes estruturais está nas sequências não repetitivas 
produzindo as proteínas. Em ervilhas, cerca de 15% do DNA é constituído de cópias únicas ou com pouca 
repetição (MANTELL et al,1994). Esses autores citam que o DNA altamente repetitivo forma a heterocromatina 
nos centrômeros dos cromossomos. 
Ao longo do DNA existem genes que controlam genes. São chamados de controladores ou reguladores. 
Esses genes produzem proteínas que se ligam ou se desligam do DNA permitindo a produção ou não de 
proteínas pelos genes estruturais. 
Os genes estruturais são os que realmente produzem enzimas que entrarão nas rotas metabólicas para a 
transformação de substratos e, por consequência, a caracterização do fenótipo. Por isso pode-se afirmar que 
esses são os genes que se transformam em fenótipos. Entretanto, para a manifestação do fenótipo, outras 
estruturas são necessárias. São os RNA’s. Três RNA’s são os mais salientados para que os genes estruturais 
possam funcionar, o RNA mensageiro, o RNA ribossômico e o RNA transportador. 
Todos esses RNA’s são copiados do DNA pelo processo enzimático, entretanto cada um tem forma e função 
especifica. 
Os RNA’s ribossômicos (RNAr) são produzidos na região organizadora do nucléolo (RON) e se constitui 
na maior quantidade de RNA celular. Originam os ribossomos através do enrolamento da fita de RNA e pode 
ser encontrado, a nível celular, no reticulo endoplasmático formando o reticulo endoplasmático rugoso. Possuem 
a função de reunir o RNAm e o RNAt e os aminoácidos no processo de tradução. 
Os RNA’s transportadores (RNAt) são estruturas mais simples de RNA e possuem a forma de trevo. Sua 
função é carregar os aminoácidos livres no citoplasma para os ribossomos. O RNAt possui o que se denomina 
de anticódon. São três bases ribonucleotídicas numa das extremidades da molécula que tem estreita relação com 
o aminoácido que será carregado numa das alças do trevo. 
O RNA mensageiro (RNAm) é de forma linear e é um transcrito de uma das fitas do DNA, ou mais 
especificamente, do(s) gene(s) estrutural(is). 
Por um processo semelhante o da duplicação do DNA, o RNA é produzido sendo mediado pela enzima RNA 
polimerase DNA dependente e esse processo chama-se transcrição. 
5.1. A Transcrição 
A transcrição é o processo de copiar o DNA para o RNA. Isto é um processo normal na célula, porque o 
RNA é uma molécula pequena, em relação ao DNA, e, portanto, pode-se locomover através dos poros dacarioteca, indo do núcleo para o citoplasma, mais especificamente, para o retículo endoplasmático rugoso. 
Na transcrição pode-se dizer que os genes são “escolhidos” para serem transcritos, dependendo do órgão 
em que estiverem e do estágio de desenvolvimento do vegetal. Genes da raiz não se manifestarão nas folhas e 
vice-versa, dada à especificidade do tecido vegetal. 
No ponto onde o gene ou grupo de genes se encontram os filamentos do DNA se afrouxam e a RNA 
polimerase liga-se ao sítio promotor. Esse sítio permite a síntese, porém, quando o gene não deve ser transcrito 
o sítio promotor não permitirá a ação a RNA polimerase. 
Essas regiões, ditas promotoras, possuem sequências de bases constante em todos os organismos, 
apresentando somente pequenas variações e são chamadas de TATA box porque são ricas em adenina e timina 
(TATAATG em bactérias e TATAAAT em eucariontes). Elas podem ser chamadas, respectivamente de 
Pribnowbox e Hogness box, lembrando os pesquisadores que as encontraram. 
 
As regiões promotoras encontram-se sempre antes do trecho que será copiado do DNA para o RNAm, é 
nesse local que a RNA polimerase se liga. O local dessa região é variável; pode estar de 5 a 10 bases antes da 
região codificante, para alguns autores. Outros citam, no caso da zeína no milho, estar à região promotora, cerca 
de 20 a 30 bases antes do gene estrutural (MANTELLet al, 1994). 
Outra sequência também conhecida que participa do controle da síntese de proteínas é a região chamada 
CATA box. Está localizada, no caso da zeína, no milho, cerca de 70 a 80 bases antes do local da síntese, 
conforme abaixo. 
Elemento de Controle Região Promotora Gene Estrutural 
GCCCAATCT TATAAAA -70 TACTGCGATCGAAATTTCCCTATATG 
 
A partir desse sítio a RNA polimerase inicia o processo de transcrição da fita de DNA copiando-a de forma 
complementar, apenas com duas alterações: uma nas bases, a base nitrogenada que irá parear com a adenina 
será a uracila e a outra é no açúcar, que é uma ribose. Dessa forma simples o RNA mensageiro vai se formando, 
até que a RNA polimerase encontre o ponto de término da transcrição. A direção dessa síntese é da extremidade 
5’ >>> 3’ da molécula de DNA. 
Guilfoyle e Malcolm em 1980 (citado por MANTELLet al, 1994) isolaram a enzima RNA polimerase em 
embriões de soja, enquanto Jendrirak (1980), citado pelos mesmos autores, a isolou em trigo. Isto foi à 
confirmação da analogia do que ocorre entre os processos de transcrição em organismos diferentes, no caso a 
soja e o trigo. 
Deve-se aqui por uma ressalva: nos eucariontes o RNA produzido da forma acima descrita recebe, 
atualmente, o nome de pré-RNA, pois ele contém partes que irão se transformar em proteínas e partes que não 
fazem parte das proteínas, naquele momento. 
Após a produção do pré-RNA algumas transformações devem ocorrer para que ele possa atravessar a 
carioteca e ir até os ribossomos. Essas modificações são necessárias porque grande parte dos genes eucariontes 
é interrompida. Entretanto, a RNA polimerase copia todo segmento, indiscriminadamente, do DNA para formar 
o pré-RNA. As transformações posteriores são para que 
passe somente cheguem ao citoplasma, partindo do 
núcleo, as informações na forma de bases nucleotídicas 
que codificarão a proteína. As estruturas no pré-RNA 
que se transformarão em proteínas se chamam exons e 
segmentos que não são traduzidos que se denominam de 
introns. (Figura 1.1) 
Figura 1.1–Formas de produção de RNAm a partir 
de diferentes exons que ocorre em diferentes 
tecidos vegetais (Alternativesplicing) (Fonte: 
http://pandasthumb.org/imagens/altsplice.jpg) 
 
5.2. Transformações no pré-RNAm 
Quatro etapas são importantes para a transformação do pré-RNA em RNAm: 
a) Retirada dos introns - Os introns não deverão passar para o citoplasma, porque não irão ser traduzidos 
em proteínas. Isto é o que se denomina de economia celular. 
b) Ligação dos exons–Os exons ligados originarão a sequência correta de nucleotídeos que é a informação 
para originar a cadeia polipeptídica. 
c) A adição do CAP – Uma molécula de 7-metil-guanosina é adicionada na extremidade 5’ do préRNA 
com a finalidade de direcionar o RNAm até os ribossomos. 
d) A adição da cauda de Poli A – Várias sequências de adenina são adicionadas na extremidade 3’. 
http://pandasthumb.org/imagens/altsplice.jpg
http://pandasthumb.org/imagens/altsplice.jpg
 
(C) 
(B) 
(D) 
Após essas transformações, que ocorrem ainda dentro do núcleo, o RNAm está pronto para ir até o retículo 
endoplasmático e iniciar o processo de tradução. 
Nem todos os organismos têm como material genético, o DNA de filamento duplo. Há vírus que possui 
moléculas de RNA como material genético. Um exemplo é o TMV, vírus do mosaico do tomate, que é um 
retrovírus. Antes desse vírus infectar a planta ocorre a produção do DNA a partir do seu RNA usando a enzima 
chamada transcriptase reserva. A partir daí fixa-se sobre a folha e injeta seu DNA no interior da célula 
hospedeira, que possui DNA normal de filamento duplo e após a célula passa a trabalhar com as informações 
genéticas injetadas pelo vírus. 
5.3. A Tradução 
O processo de tradução é o de transformar a informação que o RNAm tem em proteína. Para isso os três 
elementos, RNAm, RNAt e RNAr se encontram formando um só conjunto (Figura 1.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1.2 – Representação da síntese de proteínas (tradução), onde (a) é o inicio da síntese com a 
reunião dos RNA’s e o primeiro códon que é AUG – Metionina; (b) alongamento da cadeia de 
proteínas; (c) continuação do alongamento e (d) termino da síntese com a entrada do códon de fim. 
(Fonte: Snustad, D.P.; Simmons, M.J. p.294-299, 2001) 
 
O RNAr já fixado no retículo endoplasmático possui dois sítios: o sítio A, também chamado de anterior 
ou amino-acil e o sítio P, posterior ou peptidil e o sítio E que é o de saída do RNAm. A entrada do RNAm se 
dá no sítio A, que é reconhecido pelo CAP na extremidade 5’. 
 ( A ) 
(A) 
 
O primeiro códon do RNAm (conjunto de três nucleotídeos) é exposto no sítio A. Neste instante o 
RNAt, livre no citoplasma, e que possui o anticódon, é ativado para encontrar o aminoácido correspondente a 
informação do códon. 
A ativação do aminoácido específico se dá através da enzima aminoacil-RNAt-sintetase e demanda uma 
reação com ATP. O resultado é um aminoácido adenilado com energia para fixar-se ao RNAt. Quando essa 
reação ocorre há liberação de energia e o RNAt está carregado com o aminoácido. Esse é levado até o ribossomo. 
Há então o pareamento do códon com o anticódon no sítio A. A partir de agora a fita do RNAm anda dentro do 
ribossomo. Com esse movimento o par códon-anticódon passa do sítio A para o sítio P e novo códon é exposto 
no sítio A para que outro RNAt seja ativado e traga outro aminoácido. Quando ambos os sítios, A e P, estão 
ocupados com as duplas códons-anticódons ocorre ligação entre os resíduos de aminoácidos. Com o 
deslocamento, mais uma vez, ocorre a liberação do RNAt do sítio P e o do sítio A passa para o P. Dois resíduos 
de aminoácidos já estão ligados entre si. Com a ativação de proteínas de elongação, chamadas fatores e 
elongação (EF), a cadeia de proteínas vai se formando, pois os aminoácidos vão sendo colocados conforme a 
informação ditada pelo códon exposto no sítio A do ribossomo. O processo continua sequencialmente até 
encontrar o ponto final. 
O ponto final é caracterizado por três códons. São eles: UAA, UAG e UGA. Esses códons vêm na 
porção 3’, antes da cauda de Poli A e determina o desligamento do RNAm do RNAr. O que permanece é a 
proteína formada com sua sequência primária de aminoácidos e já com suas outras estruturas, secundária, 
terciária e quaternária, definidas. Essa correlação existente entre códons no RNAm e aminoácidos na proteína, 
permitiram o estabelecimento de um código genético. 
 
6. OCódigo Genético 
Depois das descobertas que: (1) o DNA é o material genético; (2) que o RNAm é uma cópia do DNA e o 
intermediário entre a informação genética e a proteína e (3) que a estrutura primária da proteína está em acordo 
com a informação constante no DNA, ficou estabelecido um código, com pequenas variações entre os 
organismos e que resume todo o processo de tradução. 
Os itens a seguir demonstram o código genético: 
1) Há colinearidade entre genes e proteínas – O RNAm entra nos ribossomos na forma de sequência 
de códons – 3 bases ribonucleotídicas juntas – que determinam a ativação enzimática do RNAt 
respectivo e do aminoácido específico. Se há, por exemplo, 250 códons existirão 250 aminoácidos 
na cadeia polipeptídica. 
2) O código é em trincas – Com a explicação do item anterior percebe-se que cada três bases 
ribonucleotídicas no RNAm corresponde a um códon e que nenhuma dessas bases será aproveitada 
para outro códon, anterior ou posterior. 
3) O código é degenerado – Ao se verificar a tabela de códons percebe-se que vários aminoácidos 
são codificados por mais de um códon, por exemplo, glicina é codificada por GGG, GGC, GGA e 
GGU. Exceção a esta propriedade tem a metionina que é codificada apenas por AUG e triptofano 
por UGG, somente. 
4) O código é dito “não ambíguo” – Em condições naturais cada códon sintetiza sempre o mesmo 
resíduo de aminoácido seja qual for à proteína. A ambiguidade pode ser encontrada em sistemas de 
cultivo de células. Por exemplo, uma linhagem de E. coli sensível ao antibiótico estreptomicina, irá 
codificar isoleucina, leucina ou serina diante do antibiótico para a sequência UUU. Normalmente 
ela codifica para fenilalanina (BURNS e BOTTINO, 1989). 
5) O código tem ponto inicial – O códon de início das cadeias é o AUG que codifica metionina e está 
sempre na porção 5’ do RNAm. Parece que a metionina está presente em todas as sínteses, sempre 
após um ponto final ou no início da cadeia. Se esse aminoácido não tiver função fisiológica na 
cadeia polipeptídica é retirado enzimaticamente. 
6) O código tem ponto final – Na posição 3’ o RNAm traz códons que permitem o desligamento do 
RNAm do ribossomo e da proteína formada, tudo isso enzimaticamente. Esses códons não possuem 
transportadores específicos e são constituídos pelas seguintes sequências de ribonucleotídeos: 
 
UAA, UAG e UGA. O final da cadeia não tem apenas um desses códons e sim vários, para fornecer 
ao ribossomo a informação para que as cadeias possam se desligar. 
 
7. A Tabela de códons 
A tabela de códons abaixo demonstrada é o resultado final do experimento de Marshall Nirenberg e 
Heinrich Matthaei que se utilizaram da bactéria Escherichia coli em meio de cultura (GRIFFITHIS et al, 2006). 
 
 Segunda Base 
Primeira Base G A C U Terceira Base 
G 
GLICINA 
GLICINA 
ÁC. GLUTÂMICO 
ÁC. GLUTÂMICO 
ALANINA 
ALANINA 
VALINA 
VALINA 
G 
A 
 GLICINA ÁC. ASPÁRTICO ALANINA VALINA C 
 GLICINA ÁC. ASPÁRTICO ALANINA VALINA U 
A 
ARGININA 
ARGININA 
LISINA 
LISINA 
TREONINA 
TREONINA 
METIONINA1 
ISOLEUCINA 
G 
A 
 SERINA ASPARAGINA TREONINA ISOLEUCINA C 
 SERINA ASPARAGINA TREONINA ISOLEUCINA U 
C 
ARGININA 
ARGININA 
GLUTAMINA 
GLUTAMINA 
PROLINA 
PROLINA 
LEUCINA 
LEUCINA 
G 
A 
 ARGININA HISTIDINA PROLINA LEUCINA C 
 ARGININA HISTIDINA PROLINA LEUCINA U 
U 
TRIPTOFANO 
FIM DA CADEIA 
FIM DA CADEIA 
FIM DA CADEIA 
SERINA 
SERINA 
LEUCINA 
LEUCINA 
G 
A 
 CISTEÍNA TIROSINA SERINA FENILALANINA C 
 CISTEÍNA TIROSINA SERINA FENILALANINA U 
 
8. A Proteína 
Depois de formada via processos de transcrição e tradução, derivadas de um ou mais genes, a proteína tem a 
função de: catálise enzimática, sustentação mecânica, controle do crescimento e diferenciação celular. 
A catálise enzimática é a expressão fenotípica indireta do gene na qual a proteína formada possui o destino 
de transformar substratos, aumentar a velocidade das reações quando necessário. Pode-se neste caso citar como 
exemplo a enzima fosfofrutocinase que catalisa a transformação da frutose 6-fosfato em frutose 1,6-bifosfato, 
na rota metabólica da glicólise. 
A ação de sustentação mecânica, devido às proteínas está na presença do colágeno, uma proteína fibrosa presente 
na pele e ossos dos animais. 
No controle de crescimento e diferenciação celular, a expressão do gene se dá pelo controle da informação 
genética que permite a multiplicação das células no processo de mitose e na diferenciação dessas células, para que 
 
1 Início da cadeia 
 
elas assumam o papel destinado no local onde se encontram. Exemplos dessas proteínas são os hormônios 
vegetais, tais como, giberelina, auxina, citocinina. 
A expressão fenotípica direta tem-se como exemplo, os genes Z1; Z2 e Z3 que controlam a produção de 
isozimaslipoxigenases, responsáveis pela associação de compostos carbonílicos de cadeia curta às proteínas. Os 
compostos carbonílicos são responsáveis pelo sabor desagradável no grão de soja e seus derivados. 
A síntese de proteínas de reserva das sementes tem sido estudada extensivamente em muitas plantas cultivadas, 
com o objetivo de melhorar o valor nutricional através de técnicas de manipulação genética. Nas leguminosas, as 
proteínas estão nos cotilédones e nas gramíneas no endosperma. Entre as proteínas de reserva das sementes as 
prolaminas e glutelinas estão nos cereais e em gramíneas selvagens, enquanto que as globulinas e as albuminas são 
encontradas em dicotiledôneas. Quando as sementes estão em formação, as proteínas de reserva são produzidas ao 
nível de retículo endoplasmático, sendo posteriormente transportadas para os locais de reserva que são os vacúolos, 
chamados como corpos proteicos. 
 
9. Regulação da produção de enzimas 
Viu-se no início deste capítulo que a produção de determinado fenótipo, cor púrpura das flores de feijão, é 
dependente exclusivo de dois genes de interação epistática. A cor branca evidencia a falta de um alelo 
dominante. Os fenótipos finais, como resultantes de todo processo molecular, são dependentes dos genes, das 
interações entre si e deles com o meio ambiente de forma que a cor púrpura só será produzida pela presença dos 
dois alelos dominantes. Essa situação mostra que as enzimas são reguladas pelo alelo presente no genótipo das 
plantas. 
Sob esse aspecto e do ponto de vista dos cromossomos, pode-se dizer que todas as células do vegetal possuem 
todos os genes, porém surge uma questão, como é que ocorre a regulação metabólica desses genes? 
Quando se analisa uma cenoura, por exemplo, pode-se perceber que no colo a cor verde aparece quando ela 
fica a descoberta do solo. A luz, portanto é a indutora para que genes responsáveis pela produção de clorofila 
fiquem ligados e o fenótipo verde apareça. No ápice da cenoura a cor é sempre constante. Neste ponto os genes 
responsáveis pela produção de clorofila estão desligados ou bloqueados e a cor verde não se manifesta. 
Outro processo indutivo de regulação gênica pode ser observado quando sementes colocadas no solo 
começam o processo de germinação. Nesse caso é necessário que moléculas de água penetrem pelo tegumento 
atingindo o embrião. Entretanto para que o embrião seja nutrido, a giberelina, um hormônio vegetal é ativado 
e, a partir dele, enzimas são produzidas para a degradação do endosperma. A primeira enzima produzida pela 
indução da giberelina é a alfa-amilase na camada de aleurona, tornando-se, portanto, a principal hidrolase na 
germinação das sementes. É uma endoenzima que hidroliza das ligações -(1,4) ao longo dos polímeros de 
amilose e amilopectina, transformando o amido em açúcares que irão migrar para os pontos de crescimento do 
embrião. 
A giberelina, que é produzida nas células do eixo embrionário, difunde-se até o escutelo e a camada de 
aleurona, onde atua comoum ativador primário na cascata de sinais, que culmina com a indução de um fator de 
transcrição (o GAMyb) e a expressão gênica das enzimas hidrolíticas (UEGUCHI-TANAKA et al., 2000). 
Em ervilhas altas foi identificado o gene Le(le) que promove o alongamento do caule. O alelo Le codifica 
uma enzima que hidrolisa a giberelina GA20 para produzir GA1. O alelo recessivo le codifica uma enzima 
defectiva que tem função diminuída na proporção de 1/20 da normal, deixando as plantas anãs por possuírem 
menos GA1. A giberelina também atua sobre as proteínas que regulam a divisão celular (CDK’s) –proteínas 
quinases dependentes de ciclina – em plantas de arroz submersas. Nessas plantas a giberelina ativa o ciclo 
celular primeiro na transição da fase G1 para a fase S, provocando aumento da atividade mitótica. Os genes 
CDK’s são então ativados nas fases anteriores da mitose e quando atingem essa fase disparam a divisão celular 
no meristema intercalar do caule, aumentando o número de células e também possibilitando seu alongamento. 
Seja pela presença de alelos, seja pela de agentes indutores, o processo de regulação da produção de 
proteínas ocorre quando os genes controladores permitem. Na falta do agente indutor os genes controladores 
produzem uma proteína que se une aos genes operadores, impedindo a ação da RNA polimerase. Quando agente 
indutor estiver presente, esse induz que os genes controladores produzam uma proteína que não mais se liga ao 
gene operador, liberando a transcrição dos genes estruturais. 
 
O mecanismo de liga ou desliga provocado pela presença ou ausência do indutor, segue o modelo 
bioquímico “chave-fechadura”. Na ausência do indutor, o sítio ativo da enzima liga-se ao gene promotor e 
bloqueia a transcrição. Esse mesmo sítio se altera pela presença do agente indutor e agora a enzima não mais se 
liga ao promotor e a transcrição ocorre (Ver apresentação em Power point – Genética Molecular). 
Esse sistema de regulação gênica segue o modelo “operon” descrito por Griffithis (2006) em procariontes. 
Nos organismos eucariontes, entre eles as plantas, o mecanismo de regulação gênica é mais complexo com o 
“silenciamento” ou não dos genes a serem transcritos, de acordo com os estágios de desenvolvimento da planta 
(GRIFFITHISet al., 2006). 
 
10. Referências bibliográficas 
BURNS, G.W.; BOTTINO, P.J. Genética.6.ed. Rio de Janeiro: Guanabara-Koogan. 1991.p.381. 
DE ROBERTIS, E.D.P.; DE ROBERTIS Jr., E.M.F. Bases da Biologia Celular e Molecular. 2.ed. Rio de Janeiro: 
Guanabara-Koogan. 1993. p.307. 
GARDNER, E.J. Genética. 5.ed. Rio de Janeiro: Interamericana. 1977.p.47-79. 
GARDNER, E.J.; SNUSTAD, D.P. Genética. 7.ed. Rio de Janeiro: Interamericana. 1986. p.497. 
MANTEL, S.H.; MATHEWS, J.A.; McKEE, R.A. Princípios de Biotecnologia em Plantas. Ribeirão Preto: 
Sociedade Brasileira de Genética. 1994.p.344. 
RAMALHO, M.; SANTOS, J.B.; PINTO, C.B. Genética na agropecuária. 2.ed. São Paulo: Editora Globo. 1989. 
p.19-59. 
SNUSTAD, D.P.; SIMMONS, M.J. Fundamentos de Genética. 2.ed. Rio de Janeiro: Guanabara-Koogan. 
2001.p.756. 
SUZUKI, D.T.; GRIFFITHS, A.J.F.; MILLER, J.H.; LEWONTIN, R.C. Introdução à Genética. 4.ed. Rio de 
Janeiro: Guanabara-Koogan. 1992.p.633. 
UEGUCHI-TANAKA, M.; FUJISAWA, Y.; KOBAYASHI, M. et al. Rice dwarfmutante dl which is 
defective ini the alpha subunit of the heteromeric G protein, affects gibberellin signal transduction. 
ProcedingsNatural Academic Science. USA. v.97. p.11638-11643, 2000. 
 
 
Exercícios 
 1. Uma célula produz cerca de 4.000 proteínas cada uma com 250 aminoácidos, em média. Calcule o 
comprimento mínimo que deve ter o DNA desta célula, em número de nucleotídeos.R: 3.000.000 de nucleotídeos. 
 
2. Um filamento simples com as seguintes bases nitrogenadas: ...AAAGTTCC... . Pode-se saber se pertenceà 
classe dosRNA’s ou do DNA? Se for o DNA, qual é o seu filamento complementar? Se formasse um RNAm 
destes filamentos de que bases seria constituído?R: DNA. Fio complementar – ..TTTCAAGG.. RNAm - 
..UUUCAAGG.. e ..AAAGUUCC.. 
 
3. Usando a informação da tabela de códons (na página 9), determine quais são os seguintes polipeptídicos 
formados a partir do RNAm dados:R: MET – PRO – GLU – PRO – AS – GLI – GLI – PF | ..MET – FEN – PRO – SER – 
TRE – ALA – PF..| ..LIS – TRE – TRI – ARG – TRE – HIS – PF 
 
 
a. Considerando o primeiro filamento apenas, é possível se determinar a polaridade deste RNAm e do DNA? 
Se sim, quais serão?R: Sim. RNAm 5’ – 3’ | DNA 3’ – 5’ 
 
4. Se uma proteína tiver a seguinte sequência de aminoácidos: 
 
a. Quais as sequências de nucleotídeos no DNA, no RNAm e RNAt que correspondem em cada caso 
(Cite apenas uma possível).R: 1ª sequência: DNA – GCCGTGACTTACTATCACACT / RNAm – CGG CAC UGA 
AUG AUA GUG UGA / RNAt – GCC GUG UAC UAU CAC | 2ª sequência: DNA – TACTAGTTGCATAAGGACATT / 
RNAm – AUG AUC AAC GUA UUC CUG UAA / RNAt – UAC UAG UUG CAU AAG GAC | 3ª sequência: DNA – 
TCCAGCAGTACCCCTACCAGG / RNAm – AGG UCG UCA UGG GGA UGG UCC / RNAt – UCC AGC AGU ACC 
CCU ACC AGG | 4ª sequência: DNA – TACGCGTAAACCATCATCATCTACGTAAGGATC / RNAm – AUG CGC AUU 
UGG UAG UAGUAG AUG CAU UCC UAG / RNAt – UAC GCG UAA ACC UAC GUA ACC. 
b. Determine a polaridade de cada um dos filamentos do DNA que possui a informação genética.R: 1ª 
sequência: 5’ – 3’ / 2ª sequência: 5’ – 3’ / 3ª sequência: indeterminada / 4ª sequência: 5’ – 3’. 
 
5. A distância entre pares de bases no DNA é de 3,4 angstrons. Qual o tamanho do DNA do milho se ele possui 
1,36 x 1010pb? E o fumo, já que ele tem 2,18 x 109pb? Dados: 1 angstrons = 10-10m.R: Milho – 4,624 m. Fumo 
– 0,74m. 
 
6. Em feijão (Phaseolusvulgaris L.) o gene da enzima málica foi codificado e partes dele se encontram abaixo 
especificado. 
 
O fio a ser usado nessa questão é o que tem TIMINA na extremidade 3’. A partir dessa informação: 
a. Qual o pré-RNAm e o RNAm?R: Pré-RNAm – 5’ AUG AAC UCG CAU GUC AAAU AAGUUG GUACCU 
UGGAUGCAGUUUUAG 3’ / RNAm – 5’ AUG AAC UCG CAU AAG UUG UGG AUG CAG UUU UAG 3’ 
b. Quais os aminoácidos que farão parte dessa enzima?R: MET – AS – SER – HIS – LIS – LEU – TRI – MET – GLU – 
FEN – PF 
c. Quantos RNAt diferentes serão necessários para essa síntese?R: 9RNAt 
 
7. Ativações metabólicas são necessárias para que ocorra a síntese de proteínas nos ribossomos. A porção do 
gene abaixo descrito servirá de molde para a produção de uma proteína especifica que a célula utilizará para 
a quebra de cadeias de amido no endosperma das sementes. Baseado nisso diga: 
a. Quais transportadores são ativados.R: RNAt – UAC CCA AUA CCG AUG AAA GCU; 
b. Quais rotas metabólicas são ativadas para produção dos aminoácidos.R: Ciclo de Krebs (oxalacetato); 
Glicólise (3-fosfoglicerato); Glicólise (fosfoenolpiruvato); Glicólise (3-fosfoglicerato); 
c. Qual o destino dessa proteína produzida.R: Glicólise (3-fosfoglicerato); Glicólise (fosfoenolpiruvato); Ciclo de Krebs 
( -cetoglutarato); germinação das sementes. 
 
 
 
8. O gene FLORICAULA (FLO) selvagem controla a formação de flores na espécie Anthirrinum, enquanto 
que o seu floricaula (flo) impede a formação de flores. De acordo com essa informação dê uma explicação, 
pelo ponto de vista da transcrição gênica que esclareça a diferença entre os alelos de um mesmo gene. 
 
9. Descreva o processo enzimático da síntese do DNA e da produção de moléculas de RNA relacionando-os 
com os períodos do ciclo celular. 
 
10. Descreva as funções dos pontos iniciais e do final na síntese de proteínas relacionando-os com as 
propriedades do código genético. 
 
11. Uma molécula de RNAm possui 236 nucleotídeos de purinas e 325 de pirimidinas, para a formação de um 
polipeptídio. Quantos aminoácidos poderão ser formados a partir dessas quantidades de nucleotídeos?R: 79 
aminoácidos a partir das purinas e 108 a partir das pirimidinas; 
 
12. Para a formação das cadeias de proteínas são necessários aminoácidos correspondenteaos códons do 
RNAm. Foi detectada na célula uma cadeia polipeptídica com a seguinte sequência de aminoácidos: 
TIROSINA – VALINA – ASPARTATO – HISTIDINA – LISINA. Baseado nessa cadeia de a origem 
metabólica desses aminoácidos.R: As origens metabólicas de cada um dos aminoácidos são: Glicólise (3-fosfoglicerato); Glicólise 
(piruvato); Ciclo de Krebs (oxalacetato); Ribose-5-fosfato; Ciclo de Krebs (oxalacetato). 
 
 
Unidade 2 – Transmissão dos Genes Entre as Gerações 
1. Introdução 
A Biologia Molecular estuda atualmente genes que pertencem aos organismos com técnicas que permitem 
o sequenciamento das bases nucleotídicas desse gene. É possível se conhecer a sequência de bases nucleotídicas 
do gene das plantas de arroz, aveia, soja, dos bovinos e até mesmo de humanos. O projeto Genoma Humano 
abriu campo para o conhecimento intimo dos genes de todas as espécies. Isso possibilita conhecer também o 
que esses genes produzem nas plantas. Os genes ditos “estruturais” produzem proteínas que atuam no 
desenvolvimento de todas as etapas por que passam os vegetais desde a germinação das sementes até a produção 
de novas sementes. 
Para que a planta cresça e se desenvolva proteínas do tipo hormônios, como a citocinina, são produzidas, 
permitindo, entre outras ações, as divisões celulares. Essas divisões celulares promovem a multiplicação das 
células formando os tecidos da planta. Essas divisões são a mitose e a meiose. 
A mitose é a divisão celular que permite alongamento da planta e ocorre nos tecidos meristemáticos que 
estão nas extremidades das plantas. Enquanto que a meiose está restrita ao tecido reprodutivo e forma gameta 
que formarão novas sementes através da fecundação, levando os genes de uma geração para outra. 
Ambos os processos de divisão celular possuem características próprias com referência à movimentação 
cromossômica no interior do núcleo e com o tipo de célula formada. 
O presente texto fará uma abordagem das estruturas cromossômicas, das divisões celulares e de suas 
consequências, evidenciando, por fim, a formação de gametas e a fecundação por ser esse o objetivo de se 
entender como os genes passam de uma geração para outra. 
 
2. A Célula, Um breve histórico 
Em 1664, o inglês Robert Hooke descreveu a estrutura microscopia dos tecidos vegetais analisando cortiça, 
medula velha de cenoura e a essa estrutura deu nome de célula (do latim Cellula) relacionando o espaço por ele 
visto aos pequenos quartos dos monges no mosteiro. Célula sob esse ponto de vista é o espaço delimitado, em 
forma de caixa observado por Hooke (HARRINSON, 1975). Ainda no século XVII outros investigadores como 
Van Leeuwenhoek, na Holanda, Malpighi, na Itália e Grew, na Inglaterra contribuíram para com os estudos de 
Hooke fazendo descrições das células em outros organismos. 
Somente no século XIX é que o estudo da célula por ter avanços. Isso devido aos fabricantes de 
microscópios Carl Zeiss e Ernest Leitz, de Westzlar, na Alemanha, que produziram equipamento com alto poder 
de resolução. 
Johannes Muller que viveu entre 1801 e 1858, trabalhando na Universidade de Berlim, fundou a disciplina de 
fisiologia comparada baseado nos estudos celulares de várias espécies e, em 1838, um dos seus alunos, 
Matthias Jakob Schleiden (1804 – 1881), publicou um tratado denominado “Contribuição para a Fitogênese”, 
demonstrando que a célula era um elemento comum em todos os tecidos das plantas. Além disso, reconheceu a 
importância do núcleo celular descoberto em 1831, pelo investigador britânico escocês Robert Brown. 
Theodor Schwan (1810 – 1882) estendeu o trabalho de Schleiden para todo o reino animal e em 1839 
publicou seu livro intitulado “Pesquisas Microscópicas em Conformidade com a Estrutura e Crescimento de 
CENTRO DE CIÊNCIAS NATURAIS E EXATAS – CCNE 
DEPARTAMENTO DE BIOLOGIA 
DISCIPLINA DE GENÉTICA AGRONOMIA 
 
 
Plantas e Animais” onde descreve os itens dos escritos de Schleiden e seus, relativo ao conceito de células como 
descrito a seguir (HARRINSON, 1975): 
 
1) Os organismos são constituídos por células microscópicas que são unidades organizadas distintamente; 
2) Dentro de um organismo as células se diferenciam por formarem tipos distintos, que têm propriedades 
características próprias de determinados tecidos; 
3) O núcleo é uma característica comum a todas as células, embora algumas, tal como o floema e os 
glóbulos vermelhos dos mamíferos, o núcleo possa desaparecer durante a diferenciação; 
4) O conteúdo vivo da célula ou protoplasma determina a atividade da célula e assim, coletivamente, de 
todo o organismo; 
5) O crescimento é atingido pelo aumento do número de células; só a divisão das células existentes pode 
dar origem a novas células. 
Nesse breve histórico da descoberta ao aperfeiçoamento do conceito de célula e o resumo da Teoria 
Celular de Schleiden e Schwan é possível se perceber pontos de importância capital. Segundo Virchow, em 
1885 (citado por HARRINSON, 1975) as células derivam sempre de células já existentes, ocorre diferenciação 
entre as células para formarem tecidos também diferentes entre si dentro de um mesmo organismo. O núcleo é 
uma característica comum em todas as células, portanto se torna o constituinte principal. 
Quase no final do século XIX, precisamente em 1865, Gregor Mendel elaborou as leis do 
comportamento gênico em vegetais sem entender como ocorria a divisão celular, principalmente a meiose que 
possibilita a formação de gametas. Daí o termo que usou em seus estudos “fatores”. 
Para entender a movimentação cromossômica dentro da célula que vai se dividir é necessário se 
estudar como a célula e, principalmente o núcleo, se prepara para os processos de divisão nuclear e celular. 
 
3. O núcleo interfásico 
O núcleo interfásico é o núcleo celular entre os períodos G1 e G2 do ciclo celular (Ver item 4 da Unidade 
1). O seu conteúdo principal é a molécula de DNA que está na forma desespiralizada com partes ligadas à 
carioteca. A esse estado do DNA dá-se o nome de cromatina e está presente entre as divisões celulares no tecido 
meristemático que possui continua divisão. Com corantes específicos, que coram somente o DNA como o 
corante de Feulgen, é possível se analisar duas regiões diferenciadas da cromatina, a heterocromatina que é 
densamente corada e a eucromatina que é pouco corada. A posição de grande parte da heterocromatina nos 
cromossomos é constante, sendo então uma característica hereditária. A eucromatina é a região onde se encontra 
a maioria dos genes. Por ser menos helicoidizada é alta a atividade gênica nessa região, devido à transcrição dos 
genes. 
 Os três períodos citados, G1, S e G2 são os que caracterizam o núcleo interfásico. Porém, para que a célula tenha 
material genético (DNA) para dividir entre as células filhas resultantes da divisão nuclear, é necessário que haja 
a duplicação, ficando, portanto com o conteúdo celular dobrado. Guerra (1988) relata que o núcleo G1 possui 
1C de DNA e em G2 2C de DNA, como consequência da duplicação da molécula. 
 Todo esse DNA está desespiralizado no núcleo da célula, entretanto é necessário que haja uma organização de 
toda essa cromatina para que ocorra a divisão igualitária para as células filhas. Para isso a cromatina se 
transforma em cromossomos, pelo processo de condensação. 
 
4. Os cromossomos e suas estruturas 
O cromossomo sendo uma molécula de DNA enrolada contendo todos os genes do indivíduo é o instrumento 
que leva os genes através das gerações. Pode-se considerar geração celular, como no caso dos tecidos 
meristemáticos, como geração entre indivíduos. 
Devido à compactação da molécula de DNA transformando-se em cromossomos, estes, por sua vez, 
possuem estruturas que o definem e caracterizam cada espécie. Cada cromossomo terá sempre o centrômero. 
Também chamado de constrição primária é a região aonde os fios do fuso de divisão irão se ligarpara haver a 
 
segregação. O centrômero é um marco cromossômico que divide o cromossomo em braços. Esses braços 
poderão ser do mesmo tamanho ou de tamanhos distintos. A análise da proporção entre os braços dos 
cromossomos é uma característica de cada espécie. 
Pela posição do centrômero os cromossomos podem ser assim classificados (Figura 2.1). Dentro da classificação 
exposta pode haver cromossomos longos e curtos. 
 
Figura 2.1 – Tipos de cromossomos de acordo 
 
com a posição do centrômero (Fonte: 
 http://www.virtual.epm.br/cursos/genetica/htm/ 
base.htm ). 
 
Nas extremidades de cada cromossomo está a região 
do telômero. Essa região possui a capacidade de impedir 
que os cromossomos se agrupem uns aos outros durante 
o processo de divisão. Entretanto, quebras 
cromossômicas são possíveis e caso isso venha a acontecer à parte que quebrou pode-se ligar a outro 
cromossomo, ficando esse com dois centrômeros. Em Cyparaceae há cromossomos policêntricos, com vários 
centrômeros, cujo fenômeno de quebra e reunião deva ter sido um dos motivos da evolução dessa espécie. A 
parte do cromossomo que quebrou e ficou sem centrômero se torna um micronúcleo que acaba por se perder 
nas divisões celulares seguintes, alterando, dessa forma, o cariótipo da planta. 
Observa-se também nas células que vão entrar em divisão e estão “empacotando” o DNA na forma de 
cromossomos, a Região Organizadora do Nucléolo (RON). Os nucléolos são considerados organelas do núcleo 
que possuem RNA que originarão os ribossomos. Essa RON está associada aos cromossomos e em qual 
cromossomo está associado é uma característica da espécie, por exemplo, em tomate a RON está no 
cromossomo 2. 
Voltando ao centrômero dos cromossomos, pode-se afirmar que é a estrutura mais importante sob aspecto da 
divisão das células, assim como para o estabelecimento e estudo do cariótipo. 
 
5. O Cariótipo 
Cariótipo de uma espécie significa a representação clara e específica do seu conjunto cromossômico. A 
representação do cariótipo pode ser feita na forma de cariograma (imagem dos cromossomos) ou idiograma 
(esquema dos cromossomos). O cariograma é construído após a preparação citogenética de uma lâmina de 
microscópio com tecido vegetal. Ponta de raiz é o mais utilizado. No microscópio procura-se a fase de metáfase, 
onde os cromossomos estão com sua máxima condensação e com as estruturas definidas. 
Fotografa-se-os, revela-se a foto e procede-se o corte dos cromossomos de forma manual colando-os aos 
pares numa folha de papel branca e em ordem de tamanho e forma. A Figura 2.2 demonstra o cariótipo de 
Crotalaria sp e de Passiflora sp. 
http://www.virtual.epm.br/cursos/genetica/htm/base.htm
http://www.virtual.epm.br/cursos/genetica/htm/base.htm
http://www.virtual.epm.br/cursos/genetica/htm/base.htm
http://www.virtual.epm.br/cursos/genetica/htm/base.htm
 
 
5.1. A importância do estudo de Cariótipos 
A ciência aplicada não pode se dissociar da ciência básica e o estudo de cromossomos evidencia tal fato. 
Na ciência aplicada, no caso do Melhoramento de Plantas, por exemplo, o cruzamento entre espécies com a 
finalidade de se obter genótipos desejáveis é um dos instrumentos de seu estudo. Supõe-se nesse caso a 
necessidade da realização de hibridação interespecífica entre duas espécies de mesmo gênero. Uma delas pode 
ser chamada de X0 e a outra X1. X0 é de porte ereto, mas com baixa produção de sementes, enquanto que X1 é 
de boa produtividade, porém com hábito de crescimento decumbente. 
Ambas as espécies são cruzadas. Fazem-se os cruzamentos recíprocos (X0 >> X1) e (X1 >> X0) e se obtém 
plantas entre tantas com características desejadas. O pesquisador verifica que poucas sementes se formam, 
algumas ficam chochas e algumas flores abortam. É um sinal de esterilidade. 
As sementes então, das duas espécies são levadas ao citogeneticista com a finalidade de estudar o cariótipo. 
A análise do cariótipo mostra que as duas espécies possuem 2n = 14 cromossomos, por exemplo, porém ocorre 
variação entre os tipos de cromossomos. A diferença entre os tipos de cromossomos dificulta ou, até mesmo, 
impede a formação de híbridos férteis. 
No caso presente, pode-se supor que a fórmula cromossômica da espécie X0 é constituída dos seguintes 
tipos de cromossomos: F = 2 ml + 2 mc + 1 al + 2 ac, enquanto que a da espécie X1 é: F = 2 ml + 2 smc +3 al. 
Ambas as fórmulas cromossômicas são diferentes, porém alguns pares de cromossomos possuem a mesma 
estrutura. Se nesses cromossomos semelhantes estiverem os genes homólogos é possível um pareamento entre 
eles, todavia nem todos os cromossomos vão parear na meiose, dificultando a segregação e a formação de 
tétrades e posteriormente de gametas. 
A dificuldade no pareamento e na segregação irregular dos cromossomos leva a infertilidade, nesse caso, 
parcial, pois há cromossomos iguais em sua estrutura. O entendimento das fases iniciais da meiose, onde inicia 
o engrossamento dos cromossomos, o pareamento de homólogos e a troca de partes entre as cromátides 
homólogas, resulta na compreensão de que pode ocorrer infertilidade total ou parcial entre as espécies cruzadas 
pelas diferenças estruturais dos cromossomos. Além disso, o acompanhamento das fases seguintes permite a 
compreensão das consequências dos fenômenos que ocorrem na prófase I, embora todas elas estejam sujeitas 
as variações que podem ocorrer de forma aleatória. 
 
 
Vários híbridos interespecíficos que são produzidos apresentam variados graus de esterilidade. Oriza sativa 
L., arroz de origem asiática mostrou alguma fertilidade quando cruzada com Oriza glaberrima Steud, de origem 
africana. Ambas as espécies apresentam 2n = 24 cromossomos (Ver Unidade 3). 
 
6. A divisão nuclear. Considerações iniciais 
Ao se pensar sobre as divisões celulares normais, mitose e meiose, percebe-se a necessidade da formação do 
fuso de divisão e a ligação de seus filamentos ao centrômero dos cromossomos. 
Na metáfase da mitose os cromossomos deverão se posicionar no plano equatorial da célula e já estarem 
ligados aos fios do fuso ou concluindo essa ligação. O posicionamento dos cromossomos no meio da célula é 
para que haja divisão equitativa, enquanto que a ligação aos fios do fuso é para que ocorra migração correta 
para um dos polos, na mesma velocidade, evitando atraso de algum dos cromossomos. 
Tendo em vista que a fase de anáfase é a divisão propriamente dita à velocidade de chegada das cromátides 
irmãs deve ser a mesma, possibilitando que a formação da nova parede celular divida a célula em duas metades. 
Quando se refere à divisão meiótica o fenômeno é o mesmo, com exceção do complexo metáfase – anáfase 
na meiose I, devido ocorrer o pareamento de homólogos, entre outros fenômenos como preparatório da divisão 
celular. É imprescindível que cada cromossomo homólogo esteja ligado a um dos fios do fuso. Desta forma a 
separação de homólogos é correta e o encaminhamento para a meiose II estará pronto. A ausência da prófase II 
é devido a não haver novas sínteses de DNA entre os estágios e o desenrolamento total de todos os cromossomos. 
Esses agora se encaminham para o complexo metáfase II – anáfase II e os fenômenos da mitose se repetem 
nessa fase da meiose. 
A conclusão final da meiose é o aparecimento das tétrades e cada uma com o número cromossômico da espécie 
reduzido, devido à etapa reducional da meiose, que é a meiose I. 
É na forma de cromossomos que o material genético e os genes estão “arrumados” para se dividirem 
igualitariamente para as células filhas. 
Os fenômenos sequenciais da mitose e da meiose basicamente são os mesmos em todos os organismos, 
mesmo que se estude um porífero ou um vertebrado, um musgo ou uma angiosperma. Guerra (1988) sugere por 
isso que esses processos teriam se originado antes dos organismos pluricelulares e que esses teriam tido origem 
comum. 
 
6.1. Mitose 
A mitose (do grego mitos

Continue navegando

Outros materiais