Buscar

METABOLISMO DE LIPIDIOS

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 5 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

BIOQUIMICA – 06/05/2020
Metabolismo de lipídios
· Importância dos lipídios: vitamina K (coagulação sanguínea), função energética, termogênese, transdução de sinal, surfactante, hormonal, antioxidante (vitamina E), estrutural (membranas celulares), sinalizadores, isolamento térmico, metabolismo do cálcio (vitamina D). Características que tornam os ácidos graxos eficientes de armazenamento: peso, rendimento energético, concentração e capacidade de armazenamento. Desequilíbrio no metabolismo de lipídios: obesidade, diabetes, dislipidemias, cardiovasculares, entre outras.
· Quem tem deficiência em lipídios pode apresentar uma série de problemas de saúde. A baixa produção de hormônios e tudo decorrente disto, o baixo ou aumento de peso e até mesmo o crescimento retardado são alguns dos principais exemplos. Em vista disso, é recomendável ingerir regularmente uma certa quantidade desta propriedade. Isto está diretamente relacionado à dieta de cada um e o que cada pessoa consome no seu dia a dia. É importante não comer nem de menos e nem demais. De acordo com médicos e nutricionistas, o ideal é comer de 15% a 30% do cardápio diário em lipídios. Via de regra, isto corresponde de 30g a 60g por dia em dietas normais.
· Os principais lipídios de origem animal: carnes vermelhas; leite e derivados como certos tipos de queijo; manteiga; ovos; peixes; mel; óleo de peixes;
· Os principais lipídios de origem vegetal: abacate; aveia; azeite de oliva; centeio; cevada; coco e o óleo de coco; gergelim; milho; oleaginosas (castanhas, nozes, macadâmia, amêndoas e gergelim, por exemplo); soja.
· Os triacilgliceróis correspondem 90% ou mais dos lipídios da dieta, os 10% restantes são formados por fosfolipídios, colesterol, ácidos graxos livres e vitaminas.
· Cerca de 80% dos lipídeos provenientes da dieta são predominantemente triacilgliceróis ou triglicerídeos.
· Boca:
-O início da digestão de lipídeos da alimentação não começa na boca efetivamente. Embora, nenhuma hidrólise de triglicérides ocorra na boca, os lipídeos estimulam a secreção da lipase das glândulas serosas na base da língua (por isso se chama lipase lingual), mas como não permanece na boca sua função é quase nula.
· Estomago:
-A lipase gástrica provavelmente corresponde àquela secretada pela língua. Porém, o pH extremamente ácido do estômago não possibilita a ação integral desta lipase gástrica, diminuindo a velocidade de sua ação enzimática, havendo apenas a quebra de algumas ligações de ésteres de Ácidos Graxos de cadeia curta.
-A ação gástrica na digestão dos lipídios está relacionada com os movimentos peristálticos do estômago, produzindo uma emulsificação dos lipídios, dispersando-os de maneira equivalente pelo bolo alimentar. 
· Intestino:
-A chegada do bolo alimentar acidificado (presença de gordura e proteína) no duodeno induz a liberação hormônio digestivo colecistocinina CCK. (um peptídeo de 33 aminoácidos, também denominado pancreozimina) que, por sua vez, promove a contração da vesícula biliar, liberando a bile para o duodeno e estimula a secreção pancreática. Os ácidos biliares são derivados do colesterol e sintetizados no fígado. São denominados primários (ácido cólico, taurocólico, glicocólico, quenodesoxicólico e seus derivados) quando excretados no duodeno, sendo convertidos em secundários (desoxicólico e litocólico) por ação das bactérias intestinais. A bile, ainda, excreta o colesterol sanguíneo em excesso, juntamente com a bilirrubina (produto final da degradação da hemoglobina). Sais biliares fazem a emulsificação da gordura, para que a enzima lipase pancreática possa agir quebrando as triglicérides em diglicérides e ácidos graxos livres, os diglicérides sofrem uma nova ação da lipase dando origem a monoglicérides, ácidos graxos e glicerol. Cerca de 70% do diglicerídeos são absorvidos pela mucosa intestinal o restante 30% é o que será convertido em monoglicérides, glicerol e ácidos graxos.
-A colecistocinina possui, ainda, função de estímulo do pâncreas para a liberação do suco pancreático, juntamente com outro hormônio liberado pelo duodeno, a secretina. O suco pancreático possui várias enzimas digestivas (principalmente proteases e carboidratases) sendo a lipase pancreática a responsável pela hidrólise das ligações ésteres dos Lipídios liberando grande quantidades de colesterol, Ácidos Graxos, glicerol e algumas moléculas de monoacilgliceróis. 
· Os ácidos graxos são uma forma importante de armazenamento de energia para o nosso corpo. Possui maior rendimento energético do que os glicídios, pois se apresenta na forma reduzida e anidra. Além do valor energético, os lipídeos são componentes de fosfolipídios e glicolipídios, modificadores lipófilos1 de proteínas e hormônios. São armazenados na forma de triacilglicerídeos. 
· Quando há necessidade de sua mobilização (para uma posterior geração de energia), as triglicérides são hidrolisadas por lipases pancreáticas à ácidos graxos livres e monoacilglicerois. Os lipídeos ingeridos são emulsionados pelos sais biliares para que sejam transportados e mais facilmente degradados. Ao chegar à parede da mucosa, os ácidos graxos e monoacilglicerol são reconvertidos a triglicerídeos para serem transportados daí em diante na forma de quilomícrons. Ao serem absorvidos pelas células intestinais são envolvidos por lipoproteínas que irão formar a estrutura estável do quilomícrons para ser encaminhado ao sistema linfático e deste, para o sangue.
· Os ácidos graxos são sintetizados no citosol e a unidade de formação dessas moléculas é a acetil-CoA quando em excesso e não utilizadas no ciclo de Krebs. Como a molécula de acetil-CoA é formada somente na mitocôndria essa deve ser transportada para o citosol. Como a acetil-CoA é impermeável à membrana mitocondrial, essa é condensada com o oxaloacetato se transformado Bioquímica Metabólica 109 em citrato o qual sai da mitocôndria e é quebrado novamente em oxaloacetato e acetil-CoA citosólico a qual é utilizada para síntese dos ácidos graxos.
· Os lipídeos para serem degradados, com o objetivo de gerar energia, devem antes ser mobilizados por influência de sinais hormonais. Isso ocorre quando hormônios como a epinefrina, glucagon e ACTH ativam as lipases que os quebram em ácidos graxos livres e gliceróis. Estes são incorporados em albumina para serem transportados do sangue até as células do tecido que está necessitando.
· A célula adiposa é capaz de retirar lipídios circulantes do sangue e armazená-los na forma de depósito de gordura neutra, os triacilgliceróis. A célula adiposa também é capaz de remover glicose da corrente sanguínea, degradá-la até Acetil-coA e no interior de suas mitocôndrias utilizálas para a síntese de ácidos graxos, e posteriormente triglicérides e fosfolipídios pelo processo denominado lipogênese. 
· Quando necessário, a gordura armazenada é hidrolisada em glicerol e ácidos graxos que são lançados na corrente sanguínea, podendo ser utilizados pelo fígado e músculos. 
· Células musculares degradam e queimam ácidos graxos até CO2 e H2O, utilizando a energia liberada para a produção de ATP que é utilizada no processo de contração muscular. 
· O fígado utiliza ácidos graxos para a produção de triglicéride. O colesterol que é utilizado para a produção de sais biliares, corpos cetônicos que serão lançados para a corrente sanguínea e consumidos pelos músculos, em caso de excesso, excretado pelos pulmões e rins. 
· A maior parte da reserva energética do organismo encontra-se armazenada sob a forma de triacilglicerídeos. Estes, assim como os ligados em outras moléculas, podem ser hidrolisados por lipases à glicerol e ácidos graxos. 
· A molécula de glicerol liberada pode seguir para a glicólise depois de oxidado à dihidroxiacetona fosfatada na face externa da membrana interna da mitocôndria. Os dois elétrons libertados nesta oxidação, carreados por NADH+H+ são transferidos para a mitocôndria e recebidos pela ubiquinona ou coenzima Q, e esses fazem parte do conjunto de elétrons transferidos pela cadeia de transportes de elétrons acoplada a formaçãode ATP.
· Os ácidos graxos terão um destino diferente: a β-oxidação, que ocorre na mitocôndria. Antes de entrarem na mitocôndria, os ácidos graxos são ativados na forma de Acil-CoA (radical do ácido graxo ligado a CoA). A reação de ativação ocorre no citoplasma, e consiste na sua transformação em Acil-CoA. Nessa etapa, um ATP é hidrolisado à AMP, o equivalente à hidrólise de 2 ATP em 2 ADP.
· A membrana da mitocôndria interna é impermeável aos acil-CoA. Para que essa molécula passe para a matriz é necessário reagir com uma molécula de carnitina, em substituição com a coenzima A. A molécula Acil-Carnitina é transportada para dentro da mitocôndria por uma translocase. Dentro da mitocôndria, a carnitina transfere o grupo acil para uma outra molécula da CoA. A carnitina livre volta então para o citoplasma através da translocase. Neste processo não existe transporte da CoA nem para dentro e nem para fora da mitocôndria, pois as reservas citoplasmática e mitocondrial da CoA são independentes.
· Transporte e armazenamento de lipidios: 
-Estado alimentado: triacilgliceróis -> tecido adiposo.
-Jejum: triacilgliceróis do tecido adiposo são hidrolisados -> os produtos são distribuídos por todo o corpo (energia).
-Jejum prolongado (+2 dias): acidos graxos do fígado -> corpos cetonicos (acetoacetato/ b-hidroxibutirato/ cetonas) – energia.
· Classes de lipoproteínas:
-Quilomícrons: consistem em moléculas grandes de lipoproteínas sintetizadas pelas células do intestino, formado em 85-95% de triglicerídeos de origem alimentar (exógeno), pequena quantidade de colesterol livre, fosfolipídeos e 1-2% de proteínas. Uma vez que possui muito mais lipídeos do que proteínas, os quilomícrons são menos densos do que o plasma sanguíneo, flutuando nesse líquido, conferindo um aspecto leitoso ao mesmo, levando a formação de uma camada cremosa quando este é deixado em repouso.
-VLDL (very low density lipoprotein): são lipoproteínas de grande tamanho, porém menores do que os quilomícrons, sintetizadas no fígado. Sua composição compreende 50% de triglicerídeos, 40% de colesterol e fosfolipídeos e 10% de proteínas, especialmente a Apo B-100, Apo C e alguma Apo E. Este tipo de lipoproteína tem como função transportar os triglicerídeos endógenos e o colesterol para os tecidos periféricos, locais onde serão estocados ou utilizados como fontes de energia. Igualmente aos quilomícrons, são capazes de turvar o plasma.
-LDL (low density lipoprotein): o LDL, que são as lipoproteínas de baixa densidade, são partículas diminutas que, mesmo quando em grandes concentrações, não são capazes de turvar o plasma. Aproximadamente 25% desta lipoproteína são compostas por proteínas, em particular a Apo B-100 e pequena quantidade de Apo C, o resto é composto por fosfolipídeos e triglicerídeos. O LDL é a lipoproteínas que mais transporta colesterol para locais onde ela exerce uma função fisiológica, como, por exemplo, para a produção de esteroides. Em sua grande maioria, são produzidos a partir de lipoproteínas VLDL.
- HDL (high density lipoprotein): as lipoproteínas HDL são partículas pequenas, compostas de 50% por proteínas (especialmente a Apo A I e II, e uma pequena parcela de Apo C e Apo E), 20% de colesterol, 30% de triglicerídeos e vestígios de fosfolipídeos. Esta lipoproteína se divide em duas subclasses distintas: HDL 2 e HDL 3. Estas subclasses são distintas em tamanho, composição e densidade, principalmente no que diz respeito ao tipo de apoproteínas. Possuem a função de carrear o colesterol até o fígado diretamente, ou transferem ésteres de colesterol para outras lipoproteínas, em especial as VLDL. A HDL 2 é conhecida pelo papel protetor na formação de aterosclerose.

Continue navegando