Prévia do material em texto
Pergunta 1 1 em 1 pontos Números e raciocínio lógico, de maneira geral, agradam de forma particular aquelas pessoas que possuem a chamada inteligência lógico-matemática desenvolvida. Tais pessoas são caracterizadas pelo gosto e pela competência na interpretação e categorização dos fatos e da informação, no cálculo, no raciocínio lógico e na busca de explicação, geralmente matemática, para tudo. Sentem-se desafiadas perante problemas envolvendo raciocínio, que procuram resolver de forma metódica e persistente. É comum ver essas pessoas divertindo-se ao resolver os "quebra-cabeças" das revistas e dos jornais (HERRERA HIDALGO, 2017). HERRERA HIDALGO, P. J. Inteligencia lógico-matemática. Trabalho de Conclusão de Curso. LATACUNGA. UTC, 2017. Sobre a inteligência lógico-matemática no ciclo de alfabetização, é correto afirmar que: Resposta Selecionada: a inteligência lógico-matemática é definida como a habilidade para o raciocínio dedutivo e para solucionar problemas matemáticos. Tal inteligência é a mais associada à ideia tradicional de inteligência na escola: um aluno é tido como inteligente quando tira boas notas em matemática; Resposta Correta: a inteligência lógico-matemática é definida como a habilidade para o raciocínio dedutivo e para solucionar problemas matemáticos. Tal inteligência é a mais associada à ideia tradicional de inteligência na escola: um aluno é tido como inteligente quando tira boas notas em matemática; Feedback da resposta: Resposta correta. Sua resposta está correta! A inteligência lógico-matemática é, de forma geral, a habilidade para o raciocínio dedutivo e para solucionar problemas matemáticos. Atualmente é a mais associada à ideia tradicional de inteligência na escola, uma vez que é comum ouvir das pessoas que um determinado aluno é inteligente apenas quando tira boas notas nas provas de matemática. Pergunta 2 1 em 1 pontos Referente aos objetivos do ensino de geometria no ciclo de alfabetização, o Conselho Nacional dos Professores de Matemática dos Estados Unidos da América (NCTM) aponta, dentre outras coisas, que, com a geometria, as crianças devem ser levadas a analisarem características e propriedades de formas geométricas bidimensionais e tridimensionais, desenvolvendo argumentos matemáticos acerca das relações geométricas estabelecidas; e identificarem localizações e descreverem relações espaciais recorrendo à geometria de coordenadas e a outros sistemas de representação (NCTM, 2000). NCTM. National Council of Teachers of Mathematics. Principles and Standards for School Mathematics. Reston, Va: NCTM, 2000. Sobre o uso de recursos metodológicos para o ensino de geometria no ciclo de alfabetização, é correto afirmar que: Resposta Selecionada: o uso de caixas para a exploração de conceitos geométricos é uma possibilidade para o desenvolvimento do trabalho em sala de aula, no entanto, é preciso ser cauteloso quanto às associações feitas. A caixa, por exemplo, não pode ser chamada de quadrado, mas pode ser semelhante à figura de um cubo, ou um armário não pode ser chamado de retângulo, pois é apenas semelhante a um paralelepípedo; Resposta Correta: o uso de caixas para a exploração de conceitos geométricos é uma possibilidade para o desenvolvimento do trabalho em sala de aula, no entanto, é preciso ser cauteloso quanto às associações feitas. A caixa, por exemplo, não pode ser chamada de quadrado, mas pode ser semelhante à figura de um cubo, ou um armário não pode ser chamado de retângulo, pois é apenas semelhante a um paralelepípedo; Feedback da resposta: Resposta correta. Sua resposta está correta! Utilizar caixas para o estudo de geometria em sala de aula é uma possibilidade de fácil acesso aos professores, no entanto, é preciso ser cauteloso quanto às associações feitas principalmente no que diz respeito às nomenclaturas da geometria plana e espacial. Pergunta 3 1 em 1 pontos Dentro de um contexto escolar, a atividade matemática se inicia a partir da dialética entre professor e aluno mediante práticas voltadas para conteúdos específicos. Nessa relação, os professores, muitas vezes, são abordados pelos alunos com questões que, hoje, estão se tornando clássicas em sala de aula matemática, como: Para que serve esse assunto ou onde vamos usá-lo? Por mais que insistamos em respostas indicadoras da ideia de que a evolução da ciência e da tecnologia foi possível por conta da matemática, muitas vezes, esse argumento não convence. Então, uma possibilidade é buscar na arte argumentos plausíveis para o entendimento da necessidade de um acesso a conteúdos específicos de matemática (PACHECO, 2008). PACHECO, A. B. Matemática : equações e arte. Anais do 2º Simpósio Internacional de Pesquisa em Educação Matemática (SIPEMAT), Recife - PE, 2008. Sobre a presença da matemática na arte do pintor Alfredo Volpi, assinale com V as alternativas verdadeiras e com F as alternativas falsas. ( ) Alfredo Volpi foi um artista cuja inteligência espacial era bastante desenvolvida, uma vez que, ao analisar suas obras, é possível perceber que ele, na maioria das vezes, buscava representar situações relacionadas ao seu convívio com os demais fazendo uso, sobretudo, de elementos geométricos. ( ) Por se tratar de um artista cuja geometria é bastante presente nas obras, a exploração das formas geométricas a partir das pinturas de Alfredo Volpi é uma possibilidade para o professor do ciclo de alfabetização mostrar ao aluno como a matemática não se relaciona com outros campos do conhecimento. ( ) Dentre as possibilidades de exploração de elementos da obra de Alfredo Volpi estão a análise das figuras presentes, a determinação das figuras geométricas predominantes nas obras, o estudo dos traços feitos pelo pintor, dentre outros aspectos. ( ) Por serem compostas por figuras de diferentes formas, tamanhos, cores e traços, dentre outros elementos, as obras de Alfredo Volpi nas aulas de matemática podem possibilitar uma discussão que envolva unidades de medidas e comparações, dentre outros assuntos, além de apenas conceitos geométricos. Agora, assinale a alternativa que apresenta a sequência correta de respostas. Resposta Selecionada: V, F, V, V. Resposta Correta: V, F, V, V. Feedback da resposta: Resposta correta. Sua resposta está correta! Alfredo Volpi sempre representava situações relacionadas ao seu convívio social, o que denota que sua inteligência espacial era bastante evidente. A geometria é bastante presente em suas obras, o que mostra a relação da matemática com outros campos do conhecimento, neste caso, a arte. Analisar as figuras presentes na obra de Volpi assim como os traços feitos por ele são opções para se trabalhar as obras em aulas de matemática. Pergunta 4 1 em 1 pontos A Teoria das Inteligências Múltiplas foi desenvolvida por Howard Gardner que, insatisfeito com a visão tradicional de inteligência, passou a estudar diversos fatores que pudessem, de alguma forma, influenciar no desenvolvimento da inteligência de um sujeito. Como os sujeitos são diferentes e os fatores também, consequentemente, as inteligências possíveis não são únicas. Os fatores estudados pelo autor envolvem o desenvolvimento de diferentes habilidades, a análise de lesões cerebrais e um estudo sobre o desenvolvimento cognitivo dos seres humanos ao longo dos últimos milênios (GARDNER, 1999). GARDNER, H. Inteligência um conceito reformulado. Editora Objetiva, 1999. Sobre a Teoria das Inteligências Múltiplas, relacione as colunas a seguir. (1) Inteligência Espacial ( ) Capacidade de o sujeito utilizar o próprio corpo para expressar diferentes ideias e sentimentos. (2) Inteligência Cinestésico Corporal ( ) Capacidade de conhecer-se e estar bem consigo mesmo, de administrar os próprios sentimentos a favor de seus projetos. (3) Inteligência Interpessoal ( ) Capacidade de reproduzir, por meio de desenhos, situações reaisou mentais; organizar elementos visuais de forma harmônica; capacidade de situar-se e localizar-se no espaço. (4) Inteligência Intrapessoal ( ) Capacidade de compreender as pessoas e de interagir bem com os demais, ou seja, ter sensibilidade para o sentido de expressões faciais, voz, gestos e posturas de habilidade para responder de forma adequada à determinada situação. Assinale a alternativa que apresenta a correlação verdadeira. Resposta Selecionada: 2, 4, 1, 3. Resposta Correta: 2, 4, 1, 3. Feedback da resposta: Resposta correta. Sua resposta está correta! A inteligência espacial envolve uma capacidade de reproduzir e organizar elementos por meio de desenhos e a inteligência cinestésico-corporal é a capacidade de o sujeito utilizar o próprio corpo para expressar diferentes ideias e sentimentos. As inteligências interpessoal e intrapessoal são, respectivamente, a capacidade de compreender as pessoas e de interagir bem com os demais e conhecer-se e estar bem consigo mesmo. Pergunta 5 0 em 1 pontos A utilização de diferentes materiais nas aulas de matemática pode ser tida como importante recurso por meio do qual os estudantes são possibilitados a ampliarem seus conhecimentos geométricos formais (aqueles vistos em sala de aula), muitas vezes adquiridos de maneira informal, por meio da observação do mundo, de objetos e formas que os cercam, por exemplo. Assim, pesquisas no âmbito da Educação Matemática já têm apresentado uma série de opções para serem utilizadas como recursos: dobraduras de papel, material dourado, caixas de papelão, jogos infantis, dentre outros (RÊGO; RÊGO; GAUDÊNCIO JÚNIOR, 2004). RÊGO, R. G.; RÊGO, R. M.; GAUDÊNCIO JUNIOR, S. A geometria do Origami: atividades de ensino através de dobraduras. João Pessoa: Editora Universitária/UFPB, 2004. Sobre alguns dos recursos metodológicos discutidos em pesquisas da área de Educação Matemática, relacione as colunas a seguir. (1) Origamis ( ) Podem ser consideradas no ciclo de alfabetização, uma vez que, por proporcionar uma grande interação entre as crianças, envolvendo o cumprimento de regras, por exemplo, promove novas e diferentes formações cognitivas nas mesmas. (2) Caixas de papelão ( ) Possibilitam a exploração de conceitos da geometria plana e espacial por meio da planificação de diferentes sólidos geométricos. (3) Material Dourado ( ) Trata-se de uma arte japonesa de dobrar geometricamente uma peça de papel, sem cortes e/ou colagens, com o intuito de se criar objetos e personagens. (4) Brincadeiras Infantis ( ) É um conjunto de materiais, geralmente composto por peças de madeira ou plástico que possibilitam que os estudantes estabeleçam relações matemáticas principalmente relacionadas ao conceito de números e operações. Assinale a alternativa que apresenta a correlação correta. Resposta Selecionada: 4, 2, 3, 1. Resposta Correta: 4, 2, 1, 3. Pergunta 6 1 em 1 pontos Aspectos de conversão de unidades e a utilização de fórmulas algébricas não são focos do ciclo de alfabetização. No entanto, privilegiar aspectos relacionados à construção da noção de grandeza e de medida por meio de uma abordagem adequada do ponto de vista conceitual e didático nesta fase da escolaridade poderá ajudar a minimizar muitas dificuldades de aprendizagem nos ciclos posteriores. Assim, é importante que tais conceitos sejam explorados com as crianças por meio de atividades lúdicas que, de alguma maneira, possibilitem que os estudantes atribuam significados àquilo que está sendo estudado (BRASIL, 2014). BRASIL. Secretaria de Educação Básica. Diretoria de Apoio à Gestão Educacional. Pacto Nacional pela Alfabetização na Idade Certa: Grandezas e Medidas. Ministério da Educação. Brasília: MEC, SEB, 2014. Sobre o ensino de grandezas e medidas no ciclo de alfabetização, considere as seguintes afirmações: I. É necessário trabalhar grandezas e medidas no ciclo de alfabetização porque, desde criança, atividades como medir e registrar medidas são muito comuns. Portanto, introduzir este conteúdo desde cedo, permitirá que as crianças compreendam a abstração do conceito de medidas na idade adulta. II. É possível explorar conceitos de medidas no ciclo de alfabetização a partir de experiências práticas, como a observação e comparação de temas como peso, altura, distância, dentre outros. III. É importante lembrar que, paralelamente ao ato de medir, o conceito de número também aparecerá nas atividades desenvolvidas com as crianças, uma vez que, para haver a compreensão de um conceito, é necessário conhecer o outro. É correto o que se afirma em: Resposta Selecionada: I, II e III; Resposta Correta: I, II e III; Feedback da resposta: Resposta correta. Sua resposta está correta! É necessário trabalhar grandezas e medidas no ciclo de alfabetização porque atividades como medir e registrar medidas são muito comuns desde a infância. Tal estudo pode se dar a partir de experiências práticas, como a observação e comparação de temas como peso, altura, distância, dentre outros. Pergunta 7 1 em 1 pontos A geometria é um dos temas fundamentais da matemática e um dos seus objetivos é permitir que o homem compreenda o mundo e dele participe ativamente, visto que possibilita uma interpretação mais completa daquilo que o rodeia. Entretanto, apesar de muito presente em nosso cotidiano, é possível observar certa dificuldade do professor no trabalho com a geometria, principalmente no ciclo de alfabetização, seja pela complexidade dos conteúdos, ou mesmo pela escassez de tempo para se cumprir todo o programa curricular desta etapa da escolarização. De modo geral, o que se percebe é que os professores optam por trabalhar os conteúdos geométricos sempre no final do ano, apresentando-os de forma acelerada e reduzida (SILVA, 2017). SILVA, B. A. C. Geometria no ciclo de alfabetização: um estudo sobre as atitudes dos alunos do ciclo de alfabetização diante da geometria e suas relações com a aprendizagem. Dissertação. Mestrado em Educação para Ciência. UNESP - Bauru, 2017. Sobre o ensino de geometria no ciclo de alfabetização é correto afirmar que: Resposta Selecionada: o ensino de geometria no ciclo de alfabetização se justifica não somente por sua presença predominante no cotidiano dos sujeitos, mas também por sua importância histórica, considerando que conhecimentos geométricos são discutidos desde as civilizações antigas, como a chinesa, mesopotâmica, egípcia e hindu; Resposta Correta: o ensino de geometria no ciclo de alfabetização se justifica não somente por sua presença predominante no cotidiano dos sujeitos, mas também por sua importância histórica, considerando que conhecimentos geométricos são discutidos desde as civilizações antigas, como a chinesa, mesopotâmica, egípcia e hindu; Feedback da resposta: Resposta correta. Sua resposta está correta! Dentre os vários motivos que justificam o ensino de geometria no ciclo de alfabetização pode-se destacar tanto sua presença predominante no cotidiano dos sujeitos e também sua importância histórica, já que discussões a respeito de conceitos geométricos existem desde as antigas civilizações. Pergunta 8 1 em 1 pontos Ventura e Vicente (2010) mostram que o uso de caixas de papelão podem ser uma ferramenta alternativa e concreta para o ensino de geometria tornando o ensino mais atrativo e significativo para o aluno, além de possibilitar a aplicabilidade do conteúdo em sala de aula e na resolução de problemas em situações reais do cotidiano do aluno. Além dos conceitos de geometria plana e espacial, este uso permite desenvolver outros conceitos, como os sistemas de medidas (linear, superfície, volume, capacidade e massa), entre outros. VENTURA, A.; VICENTE, A. O Ensino da Geometria com o Uso das Embalagens. Ciências–Matemática, Especialização: Didática e Metodologia de Ensino. Atuando na EducaçãoBásica do Estado do Paraná. Professor PDE, 2010. Sobre alguns conceitos de geometria, assinale com V as alternativas verdadeiras e com F as alternativas falsas. ( ) Todos os sólidos são formados pela união de figuras planas, as quais podem ser identificadas por meio da planificação. ( ) Um sólido geométrico (geometria espacial) é formado pela união de figuras planas (geometria plana). Uma caixa, em forma de cubo, por exemplo, é formada pela união de oito quadrados. ( ) Ao planificarmos um sólido geométrico, utilizando uma caixa como recurso metodológico, temos acesso a uma série de figuras planas que podemos explorar. Com a planificação de um cilindro, por exemplo, teremos um retângulo e dois círculos. ( ) O uso de caixas como ferramenta metodológica é importante. No entanto, há uma limitação que precisa ser levada em conta: independente do formato de caixa escolhido, sempre poderão ser estudados retângulos e quadrados, ficando de fora todas as outras figuras. Agora, assinale a alternativa que apresenta a sequência correta de respostas. Resposta Selecionada: V, F, V, F. Resposta Correta: V, F, V, F. Feedback da resposta: Resposta correta. Sua resposta está correta! Os sólidos geométricos, estudados na Geometria Espacial, são sempre formados pela união de figuras da Geometria Plana que podem ser identificadas com a planificação. Ao planificarmos um cubo, teremos, por exemplo, seis quadrados, enquanto que com a planificação de um cilindro temos um retângulo e dois circulos. Pergunta 9 1 em 1 pontos Gardner (1995) ressalta que, embora as múltiplas inteligências sejam, até certo ponto, independentes umas das outras, raramente funcionam isoladamente. Isso acontece porque uma série de habilidades e capacidades são requeridas para resolvermos a maior parte dos problemas de nosso cotidiano. Por exemplo, um construtor precisa ter total acuidade da inteligência espacial combinada com a destreza da inteligência cinestésico-espacial para realizar com sucesso suas construções. Assim, sempre são envolvidas mais de uma habilidade na solução de um problema embora, claro, existam certas predominâncias. Portanto, as inteligências, além de se complementarem, se integram. GARDNER, H. Inteligências Múltiplas: a teoria na prática. Tradução de Maria Adriana Veríssimo Veronese. Porto Alegre: Artes Médicas, 1995. Sobre a complementaridade e integração sobre as múltiplas inteligências, assinale com V as alternativas verdadeiras e com F as alternativas falsas. ( ) Arquitetos, motoristas de táxi e marinheiros são exemplos de profissão cuja inteligência sonora ou musical são predominantes, uma vez que tais profissionais necessitam ter uma noção de espaço apurada. ( ) A inteligência cinestésico-corporal é predominante em profissionais com a capacidade de usar o corpo para expressar ideias e sentimentos, como os esportistas, as bailarinas, os mímicos e os escultores. ( ) Gênios como Mozart, Schubert, Chopin, dentre outros, além de compositores, violinistas e maestros, possuem, sem dúvida, a inteligência intrapessoal predominante dentre as demais. ( ) Por exigir um autoconhecimento aguçado, profissionais como teólogos, psicólogos e filósofos são exemplos de indivíduos cuja inteligência intrapessoal é predominante. Agora, assinale a alternativa que apresenta a sequência correta de respostas. Resposta Selecionada: F, V, F, V. Resposta Correta: F, V, F, V. Feedback da resposta: Resposta correta. Sua resposta está correta! Profissões que necessitam ter uma noção de espaço apurada, como as de taxistas e arquitetos, são desenvolvidas por sujeitos cuja inteligência espacial é predominante. Já esportistas, bailarinas e escultores apresentam grande precisão e habilidade corporal, que estão relacionados à inteligência cinestésico-corporal. A inteligência musical ou sonora é predominante em profissionais desta área, e a inteligência intrapessoal é predominante dentre as demais em profissões relacionadas a um autoconhecimento, como teologia, psicologia e filosofia. Pergunta 10 1 em 1 pontos O Referencial Nacional Curricular para a Educação Infantil ressalta que as crianças aprendem por meio da prática, ou seja, para aprenderem medidas, precisam de alguma forma medir. O ato de medir pode envolver observação, experimentação e comparação entre diferentes medidas. Assim, uma série de materiais podem ser utilizados pelos professores para o estudo das medidas, como fita métrica, balança, régua, dentre outros. Questões como “quantas vezes é maior? “qual é a altura?”, “qual é a distância?”, “qual é o peso?” podem ser exploradas pelo professor para instigar a participação dos estudantes (BRASIL, 1998. p. 227). BRASIL. Ministério da Educação e do Desporto. Secretaria de Educação Fundamental. Referencial Curricular Nacional para a Educação Infantil. Brasília: MEC, SEF, 1998. Sobre o estudo de unidades de medida no ciclo de alfabetização, considere a colocação a seguir. As crianças aprendem fazendo, logo, aprendem a medir, medindo! Uma opção para se explorar esse conhecimento matemático no ciclo de alfabetização é por meio da observação e __________ de diferentes medidas. Ao utilizar uma balança, por exemplo, é possível registrar o __________ de cada um dos estudantes em __________. Após esse registro é possível iniciar uma discussão com os estudantes a fim de determinar qual o indivíduo mais pesado. De forma semelhante, pode-se estudar a __________ das crianças utilizando-se uma fita métrica. Neste caso, diferentes __________ podem ser exploradas, como o __________ e o centímetro. Assinale a alternativa que apresenta os termos que, em ordem, completam adequadamente o excerto acima. Resposta Selecionada: comparação; peso; quilogramas; altura; unidades; metro. Resposta Correta: comparação; peso; quilogramas; altura; unidades; metro. Feedback da resposta: Resposta correta. Sua resposta está correta! A observação e comparação de diferentes medidas são estratégias úteis para o estudo de medidas com as crianças. Utilizando ferramentas como balança e fita métrica é possível estabelecer comparações, por exemplo, entre os pesos e as alturas dos estudantes. Assim, unidades como quilograma e o metro podem ser facilmente discutidas.