A maior rede de estudos do Brasil

Grátis
8 pág.
Física II

Pré-visualização | Página 1 de 2

CADERNO DE PERGUNTAS 
Avaliação de Exame 
DISCIPLINA 
Física II 
APLICAÇÃO 
24/04/2020 
CÓDIGO 
DA PROVA P008 
INSTRUÇÕES AO ALUNO 
1. É obrigatória a devolução deste caderno de questões ao término da prova. 
2. Está autorizada a entrada de alunos até 1 hora depois do início marcado da prova (início da prova: 18h). 
3. Você só poderá sair depois de transcorridas 1 hora e 15 minutos do início marcado da prova. 
4. As respostas às questões dissertativas devem demonstrar a linha de raciocínio ou o processo de resolução, e não 
apenas o resultado final. 
MATERIAL EXTRA: É permitido o uso de calculadora não alfanumérica. 
 
QUESTÕES OBJETIVAS 
1 de 8 
Leia o seguinte texto para responder às questões 1 e 2 
 
“A história da navegação é cheia de contos de ondas gigantescas do tamanho de monstros marítimos – 
paredes de água altas e imponentes que surgem do nada e pegam de surpresa, como um grande dilúvio, 
embarcações e seus tripulantes. Os vagalhões (como são chamadas essas ondas) podem medir até 8 vezes 
mais que as ondas usuais e aparecem até mesmo em águas calmas, sem nenhum aviso. 
 
Agora, uma ferramenta de previsão desenvolvida pelos engenheiros do Instituto Tecnológico de Massachusetts 
(MIT) consegue avisar os navegantes em até 3 minutos antes do surgimento de um vagalhão, o que já é um 
tempo mais que suficiente para interromper as operações em um navio ou em uma plataforma de petróleo.” 
 
Disponível em <http://news.mit.edu/2016/prediction-tool-rogue-waves-0225>, acesso em 31/03/2020, 
modificado. 
 
Considere, hipoteticamente, que você está em uma plataforma de petróleo, em alto-mar, e recebe um 
aviso de uma ferramenta de previsão avisando sobre o surgimento de um vagalhão. Como resultado, a 
ferramenta mostra a equação do movimento harmônico simples linear (MHS) da altura da onda na 
plataforma, em metros, em relação ao nível do mar, e a um tempo t, em segundos. Suponha que a 
equação mostrada é a seguinte: 
 
ℎ(𝑡) = 7𝑐𝑜𝑠(0,8𝑡 + 1,05) 
 
Questão 1 (1,5 pontos) 
Em relação às seguintes afirmações: 
I. O vagalhão identificado atinge a altura máxima de 7 metros em relação ao nível do mar. 
II. O tempo entre uma onda e outra, ou seja, o período do vagalhão, é menor que 8 segundos. 
III. A altura da onda, no instante 𝑡 = 5, na plataforma, está abaixo do nível do mar. 
Está correto o que se afirma em: 
a) I, apenas. 
b) I e II, apenas. 
c) II e III, apenas. 
d) I, II e III. 
http://news.mit.edu/2016/prediction-tool-rogue-waves-0225
DISCIPLINA 
Física II 
APLICAÇÃO 
17/03/2020 
CÓDIGO 
DA PROVA P008 
 
2 de 8 
Questão 2 (1,5 pontos) 
Assinale a alternativa que contém, corretamente, a velocidade e a aceleração aproximadas do vagalhão, 
no instante 𝑡 = 10. 
a) 𝑣(10) = −2,05 𝑚 𝑠⁄ e 𝑎(10) = 4,17 𝑚 𝑠2⁄ 
b) 𝑣(10) = 2,05 𝑚 𝑠⁄ e 𝑎(10) = −4,17 𝑚 𝑠2⁄ 
c) 𝑣(10) = −2,05 𝑚 𝑠⁄ e 𝑎(10) = −4,17 𝑚 𝑠2⁄ 
d) 𝑣(10) = 2,05 𝑚 𝑠⁄ e 𝑎(10) = 4,17 𝑚 𝑠2⁄ 
 
Questão 3 (1,5 pontos) 
O rendimento de uma máquina térmica de Carnot é de 25% e a fonte fria é a própria atmosfera a 300 
Kelvin. Determine a temperatura da fonte quente: 
a) 400K 
b) 127K 
c) 1.200K 
d) 300K 
 
Questão 4 (1,5 pontos) 
Leia o seguinte texto sobre frascos de aerossol: 
 
“O que é o aerossol? Por que ele fica gelado quando agitado? 
Dentro de um frasco de aerossol existe algum creme, desodorante ou tinta e uma substância chamada 
propelente, que é um gás liquefeito. Quando se aciona o spray, o conteúdo fica exposto à pressão do ambiente, 
bem menor que a da lata. Parte das moléculas do propelente se expande, passando para a forma gasosa e 
forçando a saída para fora da lata junto com o produto. Após o jato de aerossol sair, dentro do frasco sobram 
algumas moléculas do propelente em estado gasoso. Se a embalagem é agitada, parte dessas moléculas se 
dilui no conteúdo líquido do frasco e, com isso, aparece um espaço extra que algumas moléculas do propelente 
em estado líquido aproveitam para ocupar. Essas moléculas líquidas se expandem, aumentando a pressão 
interna, e se transformam em gás. Tal reação rouba calor do metal da lata, deixando-a gelada.” 
 
Disponível em <https://super.abril.com.br/mundo-estranho/o-que-e-o-aerossol-por-que-ele-fica-gelado-
quando-agitado/> acesso em 31/03/2020, modificado. 
 
Considere, neste exercício, que o gás propelente dentro do aerossol obedece à lei dos gases ideais. 
 
Um frasco, ao ser pressionado e liberar o produto desodorante, tem uma perda de volume interno de 
2%. Considere que a temperatura do interior é de 280 Kelvin e, após pressionado o frasco, passa a 300 
Kelvin – processo que faz com que a lata exterior do frasco perca temperatura para o interior. Assinale 
a alternativa que contém o aumento aproximado da pressão interna, em porcentagem: 
 
a) 7% 
b) 8% 
c) 9% 
d) 10% 
https://super.abril.com.br/mundo-estranho/o-que-e-o-aerossol-por-que-ele-fica-gelado-quando-agitado/
https://super.abril.com.br/mundo-estranho/o-que-e-o-aerossol-por-que-ele-fica-gelado-quando-agitado/
DISCIPLINA 
Física II 
APLICAÇÃO 
17/03/2020 
CÓDIGO 
DA PROVA P008 
 
3 de 8 
QUESTÕES DISSERTATIVAS 
Questão 5 (4,0 pontos) 
Um pistão de uma máquina de costura se move num movimento harmônico simples (MHS) ao longo de 
um eixo 𝑂𝑥 com uma frequência de 1𝐻𝑧. No instante inicial, ou seja, em 𝑡 = 0, os componentes da 
posição e da velocidade são, respectivamente, 𝑥(0) = 1,1𝑐𝑚 e 𝑣(𝑡) = 15 𝑐𝑚 𝑠⁄ . 
 
A. Determine a aceleração da agulha para 𝑡 = 0. 
B. Escreva as equações de posição e velocidade em função do tempo com seus respectivos valores. 
Utilize, se necessário, 𝑎𝑟𝑐𝑡𝑔(−2,17) = −1,14. 
 
FORMULÁRIO 
Oscilações Harmônicas Simples (MHS) 
𝑥(𝑡) = 𝐴. 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 
𝑣(𝑡) = −𝜔. 𝐴. 𝑠𝑒𝑛(𝜔𝑡 + 𝜑) 
𝑎(𝑡) = −𝜔2. 𝐴. 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 
 
𝜔 = 2. 𝜋. 𝑓 =
2. 𝜋
𝑇
 
 
𝐸 =
𝑘. 𝐴2
2
= 𝑈 + 𝐾 =
𝑘. 𝑥2
2
+
𝑚. 𝑣2
2
 
 
Oscilações Harmônicas Amortecidas (MHA)Oscilação sub-crítica 𝑥(𝑡) = 𝐴. 𝑒
−𝛾𝑡
2 𝑠𝑒𝑛(𝜔𝑜𝑡 + 𝜙) 
 
𝛾 =
𝑏
𝑚
 𝜔𝑜 = √
𝑘
𝑚
. 𝜔 = √𝜔0
2 − (
1
2
𝛾)
2
 
 
𝐸𝑛 = 𝐸𝑜. 𝑒
−𝑛𝛾𝑇 𝐴𝑛 = 𝐴𝑜. 𝑒
−𝑛
1
2
𝛾𝑇 
 
Ondas 
𝑦(𝑥, 𝑡) = 𝐴. 𝑠𝑒𝑛(𝑘. 𝑥 − 𝜔. 𝑡 + 𝜙) 
𝜔 = 𝑘. 𝑣 = 2. 𝜋. 𝑓 =
2. 𝜋
𝑇
 
𝜆 =
2. 𝜋
𝑘
 
DISCIPLINA 
Física II 
APLICAÇÃO 
17/03/2020 
CÓDIGO 
DA PROVA P008 
 
4 de 8 
𝜇 =
𝑚
𝐿
 
Ondas estacionárias 
𝑓 =
𝑛
2𝐿
. 𝑣𝑇𝑣𝑇 = √
𝐹
𝜇
 
 
Comprimento de onda de modo normal de vibração: 𝜆 =
2𝐿
𝑛
 
 
Termodinâmica 
 
Processos 
Isobárico (pressão constante)𝛥𝑄 = 𝑛. 𝐶𝑃 . 𝛥𝑇 
Isocórico ou isométrico (volume constante) 𝛥𝑄 = 𝑛. 𝐶𝑣. 𝛥𝑇 
Isotérmico (temperatura constante) 
Adiabático (Q=0, não há troca de calor com o meio externo) 
 
GABARITO 
DISCIPLINA 
Física II 
APLICAÇÃO 
17/03/2020 
CÓDIGO 
DA PROVA P008 
 
5 de 8 
 
QUESTÕES OBJETIVAS 
Questão 1 
AlternatÍiva B. 
 
A equação geral da posição de uma onda no tempo t é dada por: 
 
𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 
Onde: 
 
𝑥(𝑡)é a posição no tempo t. 
𝐴 é a amplitude da onda. 
𝜔 é a frequência angular da onda. 
𝑡 é o tempo 
𝜑 é uma fase 
 
Assim, dada a equação do vagalhão, que retorna a altura da onda na plataforma: 
 
ℎ(𝑡) = 7𝑐𝑜𝑠(0,8𝑡 + 1,05) 
A amplitude da onda é de 7 metros. 
 
O período T é dado por: 
 
𝑇 =
2𝜋
𝜔
=
2 × 3,14
0,8
≅ 7,85𝑠 
E, no instante 5 segundos, temos: 
 
ℎ(5) = 7𝑐𝑜𝑠(0,8.5 + 1,05) ⟹ ℎ(5) = 7𝑐𝑜𝑠(5,05) = 2,32𝑚 
Portanto, a altura é acima da linha do mar, e não abaixo. 
 
Estão corretas as afirmações I e II, apenas. 
 
 
Questão 2 
Alternativa A. 
 
Dada a função de posição da onda, temos que, as funções de velocidade e aceleração são dadas por: 
 
𝑣(𝑡) = −𝜔𝐴𝑠𝑒𝑛(𝜔𝑡 + 𝜑) 
𝑎(𝑡) = −𝜔2𝐴𝑐𝑜𝑠(𝜔𝑡