Buscar

Aula_03-09-2020_Solidos Equilibrio

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 88 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 88 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 88 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Unip – Icet – Sorocaba - Dinâmica dos Sólidos – Introdução
http://www.claudio.sartori.nom.br
Prof. Dr. Cláudio Sérgio Sartori
Bibliografia Básica:
RESNICK, R; HALLIDAY D; WALKER, J. Fundamentos da Física, V 1 - Mecânica. LTC, 2009.
TIPLER, Pl A; MOSCA, G. Física para Cientistas e Engenheiros. V 1. LTC, 2009.
TIPLER, Pl A; MOSCA, G. Física para Cientistas e Engenheiros. V 2. LTC, 2009.
Ferdinand P. Beer, E. Russell Johnston Jr., David F. Mazurek, Phillip J. Cornwell, Brian P.
Hibbeler_R.C._Engineering_Mechanics_Dynamics 2009
Engineering Mechanics DYNAMICS - Volume 2 Fifth Edition, (2002) - J. L. Meriam and Kraige
https://produto.mercadolivre.com.br/MLB-1624970006-livro-dinmica-dos-solidos-_JM?quantity=1#position=6&type=item&tracking_id=da2c84eb-06cd-4ddd-a930-d8e45b158d46&eshop_GARCIA_LIVROS
OBJETIVOS GERAIS
Desenvolver no aluno uma visão factível da mecânica, criando no mesmo uma "intuição" correta dos fenômenos mecânicos.
OBJETIVOS ESPECÍFICOS
Estabelecer os conceitos básicos sobre Dinâmica do Sólido. Estabelecer as leis dinâmicas que regem o movimento de um sólido (movimento de translação, de
rotação em torno de eixo fixo, movimento plano e movimento geral). Preparar os alunos para entender os dispositivos mecânicos comuns à vida do Engenheiro.
Fornecer ferramentas aos estudantes para o entendimento de disciplinas específicas do curso.
➢ CONTEÚDO PROGRAMÁTICO - Dinâmica dos sólidos
Centro de Massa. Cálculo por integração e por decomposição de corpos conhecidos. Teorema do Centro de Massa – TCM; Teorema do Momento Angular – TMA, Momento de Inércia
e Teorema de Steiner ou dos eixos paralelos. Dinâmica dos sólidos em translação. Dinâmica dos sólidos em movimento de rotação. Dinâmica dos sólidos em movimento plano. Dinâmica dos
sólidos em movimento genérico. Matriz de inércia; momentos de inércia e produtos de inércia. Dinâmica dos sólidos: formulação matricial para o momento angular.
http://www.claudio.sartori.nom.br/cinematicaDinamicaSolidos.html
http://www.claudio.sartori.nom.br/
https://produto.mercadolivre.com.br/MLB-1624970006-livro-dinmica-dos-solidos-_JM?quantity=1#position=6&type=item&tracking_id=da2c84eb-06cd-4ddd-a930-d8e45b158d46&eshop_GARCIA_LIVROS
http://www.claudio.sartori.nom.br/cinematicaDinamicaSolidos.html
❑ Sólidos ou corpo rígido
Peso
G
Massa do sólido m
Ԧ𝑟𝑖: Vetor que localiza cada elemento de massa dmi
G ou CM: Centro de massa do sólido. É onde se aplica a força peso 𝑃
𝑃
Ԧ𝑟𝐶𝑀 𝑜𝑢 𝑟𝐺: Vetor que localiza o centro de massa G do sólido
Sólido: Corpo que não se deforma ao mover-se. dm: elemento de massa
G (xG , yG, zG)
Corpos Rígidos ou Sólido: Definição: é um corpo que não se deforma: a distância entre quaisquer dois pontos de um 
corpo rígido ou sólido se mantém sempre.
➢ Introdução
Há dois tipos de tratamento de um corpo, quando queremos estudar suas condições de equilíbrio ou de movimento: ponto
material ou corpo rígido. O corpo rígido é aquele que não se deforma, porém as estruturas e máquinas reais nunca são
absolutamente rígidas. Quando há riscos de rupturas são tratadas em Resistência dos materiais.
Estudaremos as forças aplicadas em corpos rígidos e como substituir um dado sistema de forças por um sistema de forças
equivalente. A hipótese fundamental sobre a qual se baseará a análise é que o efeito de uma força aplicada em um corpo rígido
não se altera se a força é deslocada ao longo de sua linha de ação (princípio da transmissibilidade).
Dois conceitos importantes associados ao efeito de uma força sobre um corpo rígido são o momento de uma força em
relação a um ponto e o momento de uma força em relação a um eixo. Outro conceito importante é o de um binário, que é a
combinação de duas forças que tem a mesma intensidade, linhas de ação paralelas e sentidos opostos.
✓ Centro de massa
Definimos como centro de massa de um sistema de n
partículas de massa mi localizadas em relação a um sistema de
coordenadas em (xi , yi, zi):
1
1
n
i i
i
cm n
i
i
m x
x
m
=
=

=


1
1
n
i i
i
cm n
i
i
m y
y
m
=
=

=


1
1
n
i i
i
cm n
i
i
m z
z
m
=
=

=


Para corpos extensos:
corpo
cm
corpo
xdm
x
dm
=


corpo
cm
corpo
ydm
y
dm
=


corpo
cm
corpo
zdm
z
dm
=


ˆˆ ˆ
cm cm cm cmr x i y j z k=  +  + 
❖ Cinemática do centro de massa:
✓ Velocidade do centro de massa:
ˆˆ ˆcm cm cm cm
cm cm
dr dx dy dz
v v i j k
dt dt dt dt
=  =  +  + 
✓ Aceleração do centro de massa:
ˆˆ ˆcm cm cmx y zcm
cm cm
dv dv dvdv
a a i j k
dt dt dt dt
=  =  +  + 
W=P Peso do corpo: aplicado no centro de massa G
𝑃
❖ Elemento de massa dm do sólido
ˆˆ ˆ
G G G Gr x i y j z k=  +  + 
ˆˆ ˆr x i y j z k=  +  + Localização:
❖ Vetor quantidade de movimento do Elemento de massa dm do sólido
ˆ ˆˆ ˆ ˆ ˆ
x y z
dr dx dy dz
v v i j k v v i v j v k
dt dt dt dt
=  =  +  +   =  +  + 
ˆ ˆˆ ˆ ˆ ˆyx z
x y z
dvdv dvdv
a a i j k a a i a j a k
dt dt dt dt
=  =  +  +   =  +  + 
ˆˆ ˆ
cm cm cm cmr x i y j z k=  +  + 
ˆ ˆˆ ˆ ˆ ˆ
x y z
G G G G
G G G G G G
dr dx dy dz
v v v i v j v k v i j k
dt dt dt dt
=  =  +  +   =  +  + 
ˆ ˆˆ ˆ ˆ ˆyx z
x y z
GG GG
G G G G G G
dvdv dvdv
a a a i a j a k a i j k
dt dt dt dt
=  =  +  +   =  +  + 
ˆˆ ˆ
x y zdp v dm dp v dm i v dm j v dm k=   =   +   +  
Unidade: 𝑘𝑔 ⋅
𝑚
𝑠
❖ Densidade de massa dm de um sólido de massa m:
Densidade de 
massa
Símbolo Definição Unidade
Linear “lâmbda”

Superficial “sigma”

Volumétrica “rô”

M
L
 =
kg
m
M
A
 =
2
kg
m
M
V
 = 3
kg
m
Para o caso unidimensional (barras, fios, arcos) , podemos definir: m dm mdm dl dm dl
L dl L
  =  =  =   = 
Para o caso bimensional (chapas, áreas, triângulos, retângulos, círculos), podemos definir:
Para o caso tridimensional (tarugo, esfera, cubo, paralelepípedo, etc), podemos definir:
m dm m
dm dA dm dA
A dA A
  =  =  =   = 
m dm m
dm dV dm dV
V dV V
  =  =  =   = 
corpo
m dm= 
❖ Centro de massa do sólido, CM:
✓ Pertence a linhas de simetria de distribuição de massa do sólido.
✓ Quando há mais de uma linha de simetria, o CM ou G é a interseção dessas linhas.
✓ Para corpos de dimensões desprezíveis, o centro de massa coincide com o centro de gravidade do corpo CG.
Definimos como centro de massa de um sistema de n partículas de massa mi localizadas em relação a um sistema de coordenadas em (xi , yi, zi):
1
1
n
i i
i
cm n
i
i
m x
x
m
=
=

=


1
1
n
i i
i
cm n
i
i
m y
y
m
=
=

 = 


1
1
n
i i
i
cm n
i
i
m z
z
m
=
=

=


Para corpos extensos: corpo
cm
corpo
xdm
x
dm
= 


corpo
cm
corpo
ydm
y
dm
= 


corpo
cm
corpo
zdm
z
dm
=


Definindo o ponto de origem do sistema inercial de O = I e P a posição da massa dm de um corpo sólido, definimos como vetor de 
posição:
r P I= −
( )0,0,0I O= =
( ) ˆˆ ˆ, ,P x y z r x i y j z k =  +  + 
𝐺 = 𝐶𝑀 = 𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺
𝐺 = 𝐶𝑀 = 𝑥𝐶𝑀, 𝑦𝐶𝑀, 𝑧𝐶𝑀
(corpo que não se podem ser dividos em outros corpos conhecidos)
=
-
ˆˆ ˆ
G G G Gr x i y j z k=  +  + 
❖ Centro de massa fr figuras planas:
❑ Centróide de figuras planas
Dependendo de como a massa está distribuída, podemos
definir as densidades de massa:
❑ Densidades de massa:
Para o caso unidimensional, podemos definir:
dm
dm dl
dl
 =  = 
❑ Exemplo 1. Encontre o centróide ou centro de massa CM = G de um
aro semicircular circular de raio r e massa M.
M dm
r ds


= =
ds r d= 
M M
dm ds dm r d
r r

 
=   =  
 
0
1corpo
cm cm
ydm
M
y y r sen d
M M

 

=  = 


0
cm
M r
y sen d
M

 


=
 
 
0
0
coscm cm
r r
y sen d y

 

  
 
=
=
 =  = −
( ) ( ) ( )
1 1 2
2
cos cos 0 1 1cm cm cm
r r r
y y y
  
+ =
  
  = − − −  = − − − −  = 
 
 
ds
M dm M
dm ds
r ds r

 
= =  =

M
dm d

= 
cosx r = 
siny r = 
2
0.64cm cm
r
y y r


=   
0.64cmyr 
dm
https://www.wolframalpha.com/input/?i=Integral%5BSin%5B%CE%B8%5D%2C%7B%CE%B8%2C0%2C%CF%80%7D
%5D
0 0
1
0 cos coscm cm cm
M r
x x r d x d
M
 
   
 
=  =   =  
https://www.wolframalpha.com/input/?i=Integral%5BCos%5B%CE%B8%5D%2C%
7B%CE%B8%2C0%2C%CF%80%7D%5D
2
0,
r
G

 
 
 
https://www.wolframalpha.com/input/?i=Integral%5BSin%5B%CE%B8%5D%2C%7B%CE%B8%2C0%2C%CF%80%7D%5D
https://www.wolframalpha.com/input/?i=Integral%5BCos%5B%CE%B8%5D%2C%7B%CE%B8%2C0%2C%CF%80%7D%5D
• 1. Duas esferas de massas m1 = 0.010 kg e m2 = 0,03 kg estão localizadas nas extremidades de uma haste de peso desprezível,
com comprimento L = 0.10 m. Determinar o centro de massa do conjunto.
1 1 2 2
1 2
CM
m x m x
x
m m
 + 
=
+
0.01 0 0.03 0.1
0.01 0.03
CMx
 + 
=
+
0.003
0.075
0.04
CM CMx x m=  =
y
x
❑ Exemplos de cálculo de centro de massa:
0
1
1
n
i i
i
cm n
i
i
m x
x
m
=
=

=


0.075Gx m=
❖ TCM: Teorema do centro de massa.
“ (2ª Lei de Newton): A resultante das forças aplicadas ao sólido, e que são de origem externa ao mesmo, é igual ao produto
da massa do sólido pela aceleração do centro de massa”.
ext cmR m a= 
Ԧ𝑟 = 𝑥 ⋅ Ƹ𝑖 + 𝑦 ⋅ Ƹ𝑗 + 𝑧 ⋅ ෠𝑘
Ԧ𝐹 = 𝐹𝑥 ⋅ Ƹ𝑖 + 𝐹𝑦 ⋅ Ƹ𝑗 + 𝐹𝑧 ⋅ ෠𝑘
ext GR m a= 
Caso o corpo estiver em equilíbrio: 0 0ext GR a=  =
Ƹ𝑖 = 1,0,0
Ƹ𝑗 = 0,1,0
෠𝑘 = 0,0,1
Versores do espaço R3
• Momento ou torque de uma força em relação a um ponto O:
Definição: Definimos o momento de uma força em relação a O como sendo o produto vetorial de F e r:
Ԧ𝑟 = 𝐴 − 𝑂 = 𝑥 ⋅ Ƹ𝑖 + 𝑦 ⋅ Ƹ𝑗 + 𝑧 ⋅ ෠𝑘
Ԧ𝐹 = 𝐹𝑥 ⋅ Ƹ𝑖 + 𝐹𝑦 ⋅ Ƹ𝑗 + 𝐹𝑧 ⋅ ෠𝑘
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹 =
Ƹ𝑖 Ƹ𝑗 ෠𝑘
𝑥 𝑦 𝑧
𝐹𝑥 𝐹𝑦 𝐹𝑧
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
𝑀𝑂 = 𝑦 ⋅ 𝐹𝑧 − 𝑧 ⋅ 𝐹𝑦 ⋅ Ƹ𝑖 + 𝑧 ⋅ 𝐹𝑥 − 𝑥 ⋅ 𝐹𝑧 ⋅ Ƹ𝑗 + 𝑥 ⋅ 𝐹𝑦 − 𝑦 ⋅ 𝐹𝑧 ⋅ ෠𝑘
𝑀𝑂 = 𝑑 ⋅ 𝐹 = 𝑟 ⋅ sin 𝜃 ⋅ 𝐹
O: Ponto ao qual queremos calcular o torque ou o momento
A: Ponto do sólido onde está aplicada a força Ԧ𝐹
▪ Unidade: N.m
❖ Equilíbrio de um sólido ou corpo rígido:
❖ TCM: Teorema do centro de massa:
1
0
n
ext cm i
i
R m a F
=
=  = =
❖ TMA: Teorema do Momento angular:
1
0
n
O
i
M
=
=
Ƹ𝑖 × Ƹ𝑗 = ෠𝑘
Ƹ𝑗 × ෠𝑘 = Ƹ𝑖
෠𝑘 × Ƹ𝑖 = Ƹ𝑗
Ƹ𝑗 × Ƹ𝑖 = −෠𝑘
෠𝑘 × Ƹ𝑗 = − Ƹ𝑖
Ƹ𝑖 × ෠𝑘 = − Ƹ𝑗
Ƹ𝑖 × Ƹ𝑖 = ෠0
Ƹ𝑗 × Ƹ𝑗 = ෠0
෠𝑘 × ෠𝑘 = ෠0
Ƹ𝑖 = 1,0,0
Ƹ𝑗 = 0,1,0
෠𝑘 = 0,0,1
Ƹ𝑖 × Ƹ𝑗 = ෠𝑘
❑ Produtos vetoriais Básicos
𝑃 × 𝑄 =
ˆˆ ˆ ˆ ˆ
ˆˆ ˆ 1 0 0 1 0
0 1 0 0 1
i j k i j
i j k = =
https://www.wolframalpha.com/input/?i=Cross%5B%7B%7B1%2C0%2C0%7D%2C+%7B0%2C1%2C+0%7D%7D%5D
Versores em R3
Ƹ𝑖 × Ƹ𝑗 = ෠𝑘 = 1,0,0 × 0,1,0 = 0,0,1
https://www.wolframalpha.com/input/?i=Cross%5B%7B%7B1%2C0%2C0%7D%2C+%7B0%2C1%2C+0%7D%7D%5D
• Momento ou torque de uma força em relação a um ponto O:
Definição: Definimos o momento de uma força em relação a O como sendo o produto vetorial de F e r:
Ԧ𝑟 = 𝐴 − 𝑂 = 𝑥 ⋅ Ƹ𝑖 + 𝑦 ⋅ Ƹ𝑗 + 𝑧 ⋅ ෠𝑘
Ԧ𝐹 = 𝐹𝑥 ⋅ Ƹ𝑖 + 𝐹𝑦 ⋅ Ƹ𝑗 + 𝐹𝑧 ⋅ ෠𝑘
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹 =
Ƹ𝑖 Ƹ𝑗 ෠𝑘
𝑥 𝑦 𝑧
𝐹𝑥 𝐹𝑦 𝐹𝑧
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
𝑀𝑂 = 𝑦 ⋅ 𝐹𝑧 − 𝑧 ⋅ 𝐹𝑦 ⋅ Ƹ𝑖 + 𝑧 ⋅ 𝐹𝑥 − 𝑥 ⋅ 𝐹𝑧 ⋅ Ƹ𝑗 + 𝑥 ⋅ 𝐹𝑦 − 𝑦 ⋅ 𝐹𝑧 ⋅ ෠𝑘
𝑀𝑂 = 𝑑 ⋅ 𝐹 = 𝑟 ⋅ sin 𝜃 ⋅ 𝐹
O: Ponto ao qual queremos calcular o torque ou o momento
A: Ponto do sólido onde está aplicada a força Ԧ𝐹
▪ Unidade: N.m
Ԧ𝑟 = 𝑂𝐴 = 𝐴 − 𝑂
Linha de ação da força Ԧ𝐹
Linha de ação da força Ԧ𝐹
d: distância do ponto O (braço)
ao qual deseja-se calcular o
momento ou torque da força Ԧ𝐹 à
linha de ação da força Ԧ𝐹.
O momento será positivo caso a
tendência de giro for no sentido
anti-horário; o momento da força
será negativo caso a tendência de
giro for no sentido horário.
(regra do parafuso)
❑ Cálculo do torque ou momento da força
90°
90°
𝑀𝑂 = +𝐹 ⋅ 𝑑 ⋅ ෠𝑘
𝑀𝑂 = −𝐹 ⋅ 𝑑 ⋅ ෠𝑘
⭯
⭮
Linha de ação da força Ԧ𝐹
O: ponto ao qual queremos calcular o 
torque ou o momento da força Ԧ𝐹
A: de aplicação da força Ԧ𝐹
Ԧ𝑟 = 𝑂𝐴 = 𝐴 − 𝑂𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
❑ Regras práticas para o torque ou momento de uma força: do parafuso, da mão direita.
❑ Regras práticas para o torque ou momento de uma força: do parafuso, da mão direita.
❑ Exemplos práticos:
❖ Equilíbrio de um sólido ou corpo rígido:
❖ TCM: Teorema do centro de massa:
1
0
n
ext cm i
i
R m a F
=
=  = =
❖ TMA: Teorema do Momento angular:
1
0
n
O
i
M
=
=
Ƹ𝑖 × Ƹ𝑗 = ෠𝑘
Ƹ𝑗 × ෠𝑘 = Ƹ𝑖
෠𝑘 × Ƹ𝑖 = Ƹ𝑗
Ƹ𝑗 × Ƹ𝑖 = −෠𝑘
෠𝑘 × Ƹ𝑗 = − Ƹ𝑖
Ƹ𝑖 × ෠𝑘 = − Ƹ𝑗
Ƹ𝑖 × Ƹ𝑖 = ෠0
Ƹ𝑗 × Ƹ𝑗 = ෠0
෠𝑘 × ෠𝑘 = ෠0
Ƹ𝑖 = 1,0,0
Ƹ𝑗 = 0,1,0
෠𝑘 = 0,0,1
Ƹ𝑖 × Ƹ𝑗 = ෠𝑘
❑ Produtos vetoriais Básicos
𝑃 × 𝑄 =
ˆˆ ˆ ˆ ˆ
ˆˆ ˆ 1 0 0 1 0
0 1 0 0 1
i j k i j
i j k = =
https://www.wolframalpha.com/input/?i=Cross%5B%7B%7B1%2C0%2C0%7D%2C+%7B0%2C1%2C+0%7D%7D%5D
Versores em R3
https://www.wolframalpha.com/input/?i=Cross%5B%7B%7B1%2C0%2C0%7D%2C+%7B0%2C1%2C+0%7D%7D%5D
❑ Exemplo 1 – Uma força vertical de 100 lb é aplicada na extremidade de uma manivela fixada a um eixo em O. Determinar:
(a) O momento da força de 100 lb em relação a O
(b) a intensidade da força horizontal aplicada em A que produz o mesmo momento em relação a O.
(c) a menor força aplicada em A que produz o mesmo momento em relação a O.
(d) a distância a que uma força vertical de 240 lb deverá estar do eixo para gerar o mesmo momento em relação a O.
(e) se alguma das forças obtidas nos itens anteriores é equivalente a força original.
➢ Solução:
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
O
A
Ԧ𝑟
60°
y
xƸ𝑖
Ƹ𝑗
Ԧ𝑟 = 𝑟 ⋅ cos 60° ⋅ Ƹ𝑖 + 𝑟 ⋅ sin 60° ⋅ Ƹ𝑗
Ԧ𝑟 = 24 ⋅ cos 60° ⋅ Ƹ𝑖 + 24 ⋅ sin 60° ⋅ Ƹ𝑗
Ԧ𝑟 = 12 ⋅ Ƹ𝑖 + 20.784 ⋅ Ƹ𝑗
Ԧ𝐹
Ԧ𝐹 = −100 ⋅ Ƹ𝑗
Ԧ𝑟 = 𝑂𝐴 = 𝐴 − 𝑂
𝑟 ⋅ cos 60°
𝑟 ⋅ sin 60°
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
Ԧ𝑟 = 12 ⋅ Ƹ𝑖 + 20.784 ⋅ Ƹ𝑗
Ԧ𝐹 = −100 ⋅ Ƹ𝑗
ˆˆ ˆ ˆ ˆ
12 20.784 0 12 20.784
0 100 0 0 100
O
i j k i j
M r F=  =
− −
0 ⋅ Ƹ𝑖 0 ⋅ Ƹ𝑗 −1200 ⋅ ෠𝑘
0 ⋅ ෠𝑘 0 ⋅ Ƹ𝑖 0 ⋅ Ƹ𝑗
𝑀𝑂 = −1200 ⋅ ෠𝑘 (lb.in)
https://www.wolframalpha.com/input/?i=%7B12%2C+20.784%2C+0%7Dx%7B0%2C+-100%2C0%7D
https://www.wolframalpha.com/input/?i=%7B12%2C+20.784%2C+0%7Dx%7B0%2C+-100%2C0%7D
❑ Exemplo 2 – Uma força de 800N é aplicada como ilustrado. Determine o momento da força em relação a B.
➢ Solução:
𝑀𝐵 = Ԧ𝑟 × Ԧ𝐹 Ԧ𝑟 = −0.2 ⋅ Ƹ𝑖 + 0.16 ⋅ Ƹ𝑗
Ԧ𝐹 = 400 ⋅ Ƹ𝑖 + 693 ⋅ Ƹ𝑗ˆˆ ˆ ˆ ˆ
0.2 0.16 0 0.2 0.16
400 693 0 400 693
B
i j k i j
M r F=  = − −
https://www.wolframalpha.com/input/?i=%7B-0.2%2C+0.16%2C+0%7Dx%7B400%2C+693%2C0%7D
𝑀𝐵 = −202.6 ⋅ ෠𝑘 (N.m)
𝑀𝐵 = −0.2 ⋅ 693 ⋅ ෠𝑘 − 400 ⋅0.16 ⋅ ෠𝑘
𝑀𝐵 = −138.6 ⋅ ෠𝑘 − 64 ⋅ ෠𝑘
60°
𝐹𝑥 = 𝐹 ⋅ cos 60°
𝐹 𝑦
=
𝐹
⋅s
en
6
0
°
Ԧ𝑟 = 𝐵𝐴 = 𝐴 − 𝐵
Ԧ𝑟 = −0.2,0.16 -(0,0)
Ԧ𝐹 = 𝐹 ⋅ cos 60° ⋅ Ƹ𝑖 + 𝐹 ⋅ sin 60° ⋅ Ƹ𝑗
Ƹ𝑖
Ƹ𝑗
−0.2,0.16
Ԧ𝐹 = 800 ⋅ cos 60° ⋅ Ƹ𝑖 + 800 ⋅ sin 60° ⋅ Ƹ𝑗
Ԧ𝑟 = −0.2,0.16
https://www.wolframalpha.com/input/?i=%7B-0.2%2C+0.16%2C+0%7Dx%7B400%2C+693%2C0%7D
F
F
10. Calcule o torque (módulo, direção e sentido) em torno de um ponto O de uma força
em cada uma das situações esquematizadas na Figura. Em cada caso, a força
e a barra estão no plano da página, o comprimento da barra é igual a 4.00 m e a força possui módulo de valor F = 10.0 N.
Ƹ𝑗
Ƹ𝑖
d = 4
𝑀𝑂 = +𝐹 ⋅ 𝑑 ⋅ ෠𝑘
෠𝑘
𝑀𝑂 = +10 ⋅ 4 ⋅ ෠𝑘
𝑀𝑂 = 40 ⋅ ෠𝑘(𝑁 ⋅m) ⭯
Linha de ação da força
⭯
⭯
Fazer (b), (c), (d)
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
Ԧ𝑟 = 4 ⋅ Ƹ𝑖
Ԧ𝐹 = 10 ⋅ Ƹ𝑗
𝑀𝑂 = 4 ⋅ Ƹ𝑖 × 10 ⋅ Ƹ𝑗
𝑀𝑂 = 4 ⋅ 10 ⋅ Ƹ𝑖 × Ƹ𝑗
𝑀𝑂 = 40 ⋅ ෠𝑘(𝑁 ⋅ m)
Ƹ𝑗
Ƹ𝑖
෠𝑘
𝑀𝑂 = +𝐹 ⋅ sen 60° ⋅ 𝑑 ⋅ ෠𝑘 ⭯
𝑀𝑂 = +10 ⋅ sen 60° ⋅ 4 ⋅ ෠𝑘
𝑀𝑂 = 34.64 ⋅ ෠𝑘(𝑁 ⋅m) ⭯
d
60°
𝐹
𝐹 ⋅ cos 60°
𝐹 ⋅ sen 60°
Linha de ação da força
⭯
Ƹ𝑗
Ƹ𝑖
෠𝑘
𝑀𝑂 = +𝐹 ⋅ sen 30° ⋅ 𝑑 ⋅ ෠𝑘 ⭯
𝑀𝑂 = +10 ⋅ sen 30° ⋅ 4 ⋅ ෠𝑘
𝑀𝑂 = 20 ⋅ ෠𝑘(𝑁 ⋅m) ⭯
30°
𝐹 𝐹 ⋅ sen 30°
𝐹 ⋅ cos 30°
d
Linha de ação da força
Ƹ𝑗
Ƹ𝑖
෠𝑘
𝑀𝑂 = −𝐹 ⋅ sen60° ⋅ 𝑑 ⋅ ෠𝑘
𝑀𝑂 = −10 ⋅ sen60° ⋅ 2 ⋅ ෠𝑘
𝑀𝑂 = −17.32 ⋅ ෠𝑘(𝑁 ⋅m)
60°
𝐹
𝐹 ⋅ sen 60°
𝐹 ⋅ cos 60°
d
⭮
A
d: distância do ponto de aplicação da força Ԧ𝐹 ponto 𝐴
ao ponto que queremos calcular o momento (ponto 𝑂)
𝑑 = 𝑂𝐴 = 4 − 2 = 2
4
⭮
Linha de açãoda força
⭮
60°
60°
𝐹 ⋅ sen 60°
𝐹 ⋅ cos 60°
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹❑ Observação:
O
A
Ԧ𝐹
Ԧ𝑟
Ԧ𝐹 = 𝐹∥ + 𝐹⊥
𝑀𝑂 = Ԧ𝑟 × 𝐹∥ + 𝐹⊥
𝑀𝑂 = Ԧ𝑟 × 𝐹∥ + Ԧ𝑟 × 𝐹⊥
𝑀𝑂 = 0 + Ԧ𝑟 × 𝐹⊥
𝑀𝑂 = Ԧ𝑟 × 𝐹⊥
𝐹∥ : Componente do vetor Ԧ𝐹paralela ao vetor Ԧ𝑟
𝐹⊥ : Componente do vetor Ԧ𝐹perpendicular ao vetor Ԧ𝑟
𝐹⊥
𝐹∥
O: ponto ao qual queremos calcular o 
torque ou o momento da força Ԧ𝐹
A: de aplicação da força Ԧ𝐹
Ԧ𝑟 = 𝑂𝐴 = 𝐴 − 𝑂
A: de aplicação da força Ԧ𝐹coincide com o 
ponto O: A = O, portanto. Logo:
Ԧ𝑟 = 𝑂𝐴 = 𝐴 − 𝑂 = 𝑂 − 𝑂 = (0, 0, 0)
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
𝑀𝑂 = 0
Portanto, a força Ԧ𝐹 não produz torque ou 
momento sobre o ponto O.
A linha de ação da força Ԧ𝐹 passa pelo 
ponto O. Logo: d = 0. 
𝑀𝑂 = +𝐹 ⋅ 𝑑 ⋅ ෠𝑘 𝑀𝑂 = 0
Portanto, a força Ԧ𝐹 não produz torque ou 
momento sobre o ponto O.
2. Calcule o torque resultante em torno de um ponto O para as duas forças aplicadas mostradas 
Ƹ𝑗
Ƹ𝑖
෠𝑘
𝑀𝑂 = 𝑀𝑂, Ԧ𝐹1 +𝑀𝑂, Ԧ𝐹2
𝑀𝑂 = −8 ⋅ 5 ⋅ ෠𝑘 + 12 ⋅ sen 30° ⋅ 2 ⋅ ෠𝑘
𝑀𝑂 = −40 ⋅ ෠𝑘 + 12 ⋅ ෠𝑘
𝑀𝑂 = −28 ⋅ ෠𝑘(𝑁 ⋅m) ⭮
https://www.utorrent.com/?client=utorrent355W
Ƹ𝑖 × Ƹ𝑗 = ෠𝑘
Ƹ𝑗 × ෠𝑘 = Ƹ𝑖
෠𝑘 × Ƹ𝑖 = Ƹ𝑗
Ƹ𝑗 × Ƹ𝑖 = −෠𝑘
෠𝑘 × Ƹ𝑗 = − Ƹ𝑖
Ƹ𝑖 × ෠𝑘 = − Ƹ𝑗
Ƹ𝑖 × Ƹ𝑖 = ෠0
Ƹ𝑗 × Ƹ𝑗 = ෠0
෠𝑘 × ෠𝑘 = ෠0
Versores em R3
Ƹ𝑖 = 1,0,0
Ƹ𝑗 = 0,1,0
෠𝑘 = 0,0,1
https://www.utorrent.com/?client=utorrent355W
4. Uma força de 30 lb atua na extremidade de uma alavanca de 3 ft, como ilustrado. 
Determinar o momento da força em relação a O.
4. Uma força de 30 lb atua na extremidade de uma alavanca de 3 ft, como ilustrado. 
Determinar o momento da força em relação a O.
𝑀𝑂 = −𝐹 ⋅ 𝑑 ⋅ ෠𝑘• Solução 1:
• Solução 2: 𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
𝑀𝑂 = −30 ⋅ 1.026 ⋅ ෠𝑘
d
90°
20°
𝑑 = 3 ⋅ sin 20° 𝑑 = 1.026
⭮
𝑀𝑂 = −30 ⋅ 78 ⋅ ෠𝑘(𝑙𝑏. 𝑓𝑡)
30°
Ԧ𝑟 = 𝑂𝐴 ⋅ cos 50° ⋅ Ƹ𝑖 + 𝑂𝐴 ⋅ sen 50° ⋅ Ƹ𝑗
Ԧ𝑟 = 3 ⋅ cos 50° ⋅ Ƹ𝑖 + 3 ⋅ sen 50° ⋅ Ƹ𝑗
Ԧ𝑟 = 1.9283 ⋅ Ƹ𝑖 + 2.2981 ⋅ Ƹ𝑗
Ԧ𝐹 = 𝐹 ⋅ cos 30° ⋅ Ƹ𝑖 + 𝐹 ⋅ sen 30° ⋅ Ƹ𝑗
Ƹ𝑗
Ƹ𝑖
෠𝑘
Ԧ𝐹 = 30 ⋅ cos 30° ⋅ Ƹ𝑖 + 30 ⋅ sen 30° ⋅ Ƹ𝑗
Ԧ𝐹 = 25.981 ⋅ Ƹ𝑖 + 15 ⋅ Ƹ𝑗
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹 =
Ƹ𝑖 Ƹ𝑗 ෠𝑘
1.9283 2.2981 0
25.981 15 0
Ƹ𝑖 Ƹ𝑗
1.9283 2.2981
25.981 15
𝑀𝑂 = 1.9283 ⋅ 15 ⋅ ෠𝑘 − 25.981 ⋅ 2.2981 ⋅ ෠𝑘
𝑀𝑂 = 28.9245 ⋅ ෠𝑘 − 59.707 ⋅ ෠𝑘
𝑀𝑂 = −30.78 ⋅ ෠𝑘(𝑙𝑏. 𝑓𝑡)
https://www.wolframalpha.com/input/?i=Cross%7B1.9283%2C2.2981%2C0%7D%2C+%7B25.981%2C+15%2C+0%7D
▪ Uso de Calculadoras e softwares para efetuar o produto vetorial.
https://www.wolframalpha.com/input/?i=Cross%7B1.9283%2C2.2981%2C0%7D%2C+%7B25.981%2C+15%2C+0%7D
3. Uma placa metálica quadrada de lado igual a 0.180 m possui o eixo pivotado perpendicularmente ao plano da página passando
pelo seu centro O (Figura 6). Calcule o torque resultante em torno desse eixo produzido pelas três forças mostradas na figura,
sabendo que F1 = 18.0 N, F2 = 26.0 N e F3 = 14.0 N. O plano da placa e de todas as forças é o plano da página.
Vão tentando até a turma chegar...
3. Uma placa metálica quadrada de lado igual a 0.180 m possui o eixo pivotado perpendicularmente ao plano da página passando
pelo seu centro O (Figura 6). Calcule o torque resultante em torno desse eixo produzido pelas três forças mostradas na figura,
sabendo que F1 = 18.0 N, F2 = 26.0 N e F3 = 14.0 N. O plano da placa e de todas as forças é o plano da página.
𝑀𝑂 = 𝑀𝑂, Ԧ𝐹1 +𝑀𝑂, Ԧ𝐹2 +𝑀𝑂, Ԧ𝐹3
45°
𝑑1 = 0.09 𝑚𝑑2 = 0.09 𝑚
𝑙
𝑙
𝑑3 =
𝑙 ⋅ 2
2
⟺ 𝑑3 =
0.18 ⋅ 2
2
⟺ 𝑑3 = 0.09 ⋅ 2
𝑀𝑂 = −𝐹1 ⋅ 𝑑1 ⋅ ෠𝑘 + 𝐹2 ⋅ 𝑑2 ⋅ ෠𝑘 + 𝐹3 ⋅ 𝑑3 ⋅ ෠𝑘
𝑀𝑂 = −18 ⋅ 0.09 ⋅ ෠𝑘 + 26 ⋅ 0.09 ⋅ ෠𝑘 + 14 ⋅ 0.09 ⋅ 2 ⋅ ෠𝑘
𝑀𝑂 = −1.62 ⋅ ෠𝑘 + 2.34 ⋅ ෠𝑘+ 1.782 ⋅ ෠𝑘
𝑀𝑂 = 2.5019 ⋅ ෠𝑘(𝑁.𝑚)
⭮
⭯
⭯
⭯
45°
𝑑3 =
𝑙 ⋅ 2
2
=
0.18 ⋅ 2
2
= 0.09 ⋅ 2
𝑑 = 𝑙2 + 𝑙2
𝑑 = 2𝑙2 = 𝑙 ⋅ 2
𝑑3 =
𝑑
2
=
𝑙 ⋅ 2
2
𝛼
𝛾𝛽
𝑎
𝑏
𝑐
𝑎
sin 𝛼
=
𝑏
sin 𝛽
=
𝑐
sin 𝛾
4. Uma força de 20 lb é aplicada à haste de controle AB, conforme mostrado. 
Sabendo que o comprimento da haste é 9 in. e que α = 25 °, determine o momento da força sobre o Ponto B resolvendo a força em 
componentes ao longo de AB e em uma direção perpendicular a AB.
𝑑
90°
𝛽
𝛼 + 𝛽 = 65° ⇔ 𝛽 = 65° − 𝛼 = 65° − 25° = 40°
sin 𝛽 =
𝑑
9
⇔ 𝑑 = 9 ⋅ sin 40° ⇔ 𝑑 = 5.785
A força de 20 lb é aplicada à haste de controle AB, conforme mostrado. Sabendo que o comprimento da haste é 9 in. E que o 
momento da força em torno de B é 120 lb · in, no sentido horário, determine o valor de α.
4. Uma força de 20 lb é aplicada à haste de controle AB, conforme mostrado. 
Sabendo que o comprimento da haste é 9 in. E que α = 25 °, determine o momento da força sobre o Ponto B resolvendo a força em 
componentes ao longo de AB e em uma direção perpendicular a AB.
90°
65°-  = 65° - 25° = 40°
𝐵𝐴 = 9 𝑖𝑛
C
𝑑 = 𝐵𝐶 = 𝐵𝐴 ⋅ sin 40° ⇔ 𝑑 = 9 ⋅ sin 40°
𝑑 = 5.785 𝑖𝑛
• Solução 2:
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
𝑀𝑂 = −𝐹 ⋅ 𝑑 ⋅ ෠𝑘
𝑀𝑂 = −115.7 ⋅ ෠𝑘(𝑙𝑏. 𝑖𝑛)
• Solução 1:
⭮
𝑀𝑂 = −20 ⋅ 5.785 ⋅ ෠𝑘
Ԧ𝑟 = 𝐵𝐴 = −𝐵𝐴 ⋅ cos 65° ⋅ Ƹ𝑖 + 𝐵𝐴 ⋅ sen 65° ⋅ Ƹ𝑖
Ƹ𝑗
Ƹ𝑖
෠𝑘
Ԧ𝑟 = −9 ⋅ cos 65° ⋅ Ƹ𝑖 + 9 ⋅ sen 65° ⋅ Ƹ𝑗
Ԧ𝑟 = −3.8035 ⋅ Ƹ𝑖 + 8.1568 ⋅ Ƹ𝑗
Ԧ𝐹 = 𝐹 ⋅ cos 𝛼 ⋅ Ƹ𝑖 − 𝐹 ⋅ sen 𝛼 ⋅ Ƹ𝑗
Ԧ𝐹 = 18.1262 ⋅ Ƹ𝑖 − 8.4524 ⋅ Ƹ𝑗
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹 =
Ƹ𝑖 Ƹ𝑗 ෠𝑘
−3.8035 8.1568 0
18.1262 −8.4524 0
Ƹ𝑖 Ƹ𝑗
−3.8035 8.1568
18.1262 −8.4524
𝑀𝑂 = −115.7 ⋅ ෠𝑘(𝑙𝑏. 𝑖𝑛)
Ԧ𝐹 = 20 ⋅ cos 25° ⋅ Ƹ𝑖 − 20 ⋅ sen 25° ⋅ Ƹ𝑗
−147.8518 ⋅ ෠𝑘
32.1487 ⋅ ෠𝑘
𝑀𝑂 = 32.1487 ⋅ ෠𝑘 − 147.8518 ⋅ ෠𝑘
⭮
https://www.wolframalpha.com/input/?i=%7B%E2%88%923.8035%2C+8.1568%2C+0%7Dx%7B18.1262%2C+%E2%88%928.4524%2C0%7D
https://www.wolframalpha.com/input/?i=%7B%E2%88%923.8035%2C+8.1568%2C+0%7Dx%7B18.1262%2C+%E2%88%928.4524%2C0%7D
5. Uma placa metálica de peso P = 80 lb (aplicado no centro de massa G da figura) está em
equilíbrio. Determine as reações nos apoios A e B.
Ay
Ax
B
P
G
10 in
Ԧ𝐴 = −40 ⋅ Ƹ𝑖 + 60 ⋅ Ƹ𝑗
↖ 𝜃 = 56.31°
❑ TCM: Teorema do Centro de Massa
❑ TMA: Teorema do Momento angular
Ƹ𝑗
Ƹ𝑖
෠𝑘
6. Na figura, temos uma placa homogênea de peso desprezível. Calcular as reações nos apoios.
𝐵 = −40 ⋅ Ƹ𝑖 + 30 ⋅ Ƹ𝑗
❑ TCM: Teorema do Centro de Massa
❑ TMA: Teorema do Momento angular
𝐵𝑦
𝐵𝑥
𝐴
Ƹ𝑗
Ƹ𝑖
෠𝑘
෍
𝑖=1
𝑛
𝐹𝑖𝑥 = 0
෍
𝑖=1
𝑛
𝐹𝑖𝑦 = 0
⇔ 𝐵𝑥 + 40 = 0 ⟺ 𝐵𝑥 = −40
⇔ 𝐵𝑦 + 𝐴𝑦 − 50 = 0 ⟺ 𝐵𝑦 + 𝐴𝑦 = 50
෍
𝑖=1
𝑛
𝑀𝐹𝑖,𝐵 = 0
−𝐴𝑦 ⋅ 20 − 40 ⋅ 10 + 50 ⋅ 20 − 4 = 0
−𝐴𝑦 ⋅ 20 − 400 + 800 = 0 ⟺ −20 ⋅ 𝐴𝑦 = −400
𝐴𝑦 = 20 𝑙𝑏
𝐵𝑦 = 50 − 𝐴𝑦 = 50 − 20 ⟺ 𝐵𝑦 = 30 𝑙𝑏
Ԧ𝐴 = 20 ⋅ Ƹ𝑗
𝐵 = 𝐵𝑥
2 + 𝐵𝑦
2 ⟺ 𝐵 = 302 + 402 ⟺ 𝐵 = 50 lb
𝐵𝑥
𝐵𝑦
𝜃 𝜃 = tan−1
30
40
⇔ 𝜃 = 36.87°
7. Uma barra prismática AB bi-apoiada, encontra-se em equilíbrio conforme ilustrado.
Se o peso da barra for 200N, encontre as reações de apoio em A e B.
8. Na figura: 50 200ABP kgf Q kgf=  = Determine as reações no apoio A e a tensão no fio.
9. A barra de 450 kg suporta o barril na posição indicada. Determine as forças nos apoios indicados.
7. (Unip 2.01 pag. 22) – Um dico de massa m = 5 kg, raior R = 0.15 m, apóia-se em uma superfície horizontal rugosa, com
coeficiente de atrito  = 0.4. Uma força F, aplicada à altura h, faz com que o disco translade apoiado na superfície horizontal, com
aceleração a = 2 m/s². Pedem-se: (a) a intensidade da força F; (b) a altura h.
▪ Solução:
❖ Diagrama de corpo livre:
0
atF F m a
N P
− = 

− =
F N m a
N P
−  = 

=
F m g m a−   = 
0.4 5 10 5 2F m g m a F=   +   =   + 
30F N=
0
ATCM F F
M M M= + =
30 0.15
20
0FatF R h F R
 
 − −  = 
 
1.5
4.5 30 3 0.05
30
h h h m− =  =  =
•Teorema do Centro de Massa: TCM:
▪ Teorema do Momento Angular - TMA:
8. Encontre as reações nos apoios do aro semi-circular de raio r e peso W = P = m.g, de densidade uniforme.
Diagrama de corpo livre:
1
2
0 2 0
N
A
i
r
M B r P
=

+ =    −  =
P W
B B
 
 =  = →
1
0 0
N
x x x
i
P
F A B A B
=
=  + =  = − = − x
P
A

 = − 
1
0 0
N
y y y
i
F A P A P
=
=  − =  =
yAP= 
2 2
x yA A A= +
2
2
2
1
1 1.049
P
A P A P A P
 
 
= +  = +  =  
 
72.34
y
x
A P
tg tg tg arctg
A P
      

=  =  =  =  = 
: 72.3 = 
1.049 0.318A P B P=  = 
Ԧ𝐴 = −
𝑃
𝜋
⋅ Ƹ𝑖 + 1049 ⋅ 𝑃 ⋅ Ƹ𝑗
Ԧ𝐴
𝐴𝑥
𝐴𝑦
A

Ԧ𝐴 = 𝑃 ⋅(−
1
𝜋
⋅ Ƹ𝑖 + 1049 ⋅ Ƹ𝑗) (𝑁)
▪ Solução:
10. (Beer Johnston 16.7) Um armário de 20 kg, está montado sobre rodízios que permitem que ele se mova livremente
( = 0) no chão. Se uma força de 100 N é aplicado como mostrado, determinar: (a) a aceleração do armário, (b) o intervalo de
valores de h para o qual o gabinete não vai derrubar.
▪ Solução:
✓ Diagrama do corpo livre:
✓ Equações de movimento:
xx G G
F m a F m a
+
→ =   =  2100 20 5x xG G
m
a a
s
=   =
0 200y T D D TF N N P N N
+
 = + − =  = −
0GM+ = 
( )100 0.9 0.3 0.3 0T Dh N N − −  +  =
( ) ( )100 0.9 0.3 0D Th N N − +  − =
( ) ( )100 0.9 0.3 200 0T Th N N − +  − − =
( ) ( )100 0.9 0.3 200 2 0Th N − +  −  =
( )100 0.9 0.6 60Th N − =  −
0.6 60
0.9
100
TNh
 −
− =
0.9 0.006 0.6TN h−  + =
0 0.9 0.6 1.5TN h h m=  = +  =
200 0.9 0.6 1.2 0.3TN P h h m= =  = + −  = 0.3 1.5h 
⤹
❑ Exemplos de cálculo de centro de massa:
2. Encontre o centróide ou centro de massa CM = G de um aro circular de raio R e massa M.
M dm
r ds


= =
ds r d= 
M
dm ds
r
= 

0
1corpo
cm cm
ydm
M
y y R sen Rd
M M R

 

=  =  



0
cm
R M
y Rsen d
R M

 


=
  
 
0
0
coscm cm
R R
y sen d y

 

  
 
=
=
=  = −
( )
2
cos cos0cm cm
R R
y y
 
 = − − −  = 
2. Mostre que a coordenada x do centróide do exemplo anterior é nula
3. (pag. 6 Livro Unip) A placa em forma de semi corôa na figura abaixo é plana, homogênea e possui raios R1 e R2. Pedem-se,
determinar seu centro de massa.
Tratando em coordenadas polares:
cosx r y r sen =   = 
Como a figura é uniforme, sua densidade de massa será:
M dm
A dA
 =  =
( ) ( )
2 2
2 2
2 1
2 1
2
2
M M
R RR R
 
 
=  =
 − −
dA r dr d=  
corpo
cm
xdm
x
M
= 

corpo
cm
ydm
y
M
=

( )2 22 1
2M
dm dA dm dA
R R


=   = 
 −
𝑑𝑟
𝑑𝑠 = 𝑟 ⋅ 𝑑𝜃
𝑑𝐴 = 𝑑𝑠 ⋅ 𝑑𝑟
𝑑𝐴 = 𝑟 ⋅ 𝑑𝜃 ⋅ 𝑑𝑟
𝑑𝐴 = 𝑟 ⋅ 𝑑𝑟 ⋅ 𝑑𝜃
( )2 22 1
2
cm
M
y dA
R R
y
M

 
 −
=

( )
2
1
2
2 2
2 1
2
R
cm
R
M
y r sen r drd
R R M


 

=   
 −
 
( )
2
1
2
2
2 2
2 1
2
R
cm
R
y sen d r dr
R R


 

=
 −
 
( )
2
1
3
2
2 2
2 1
2
cos
3
R
cm
R
r
y
R R




 
 = −  
  −   
( )
1 1 3 3
2 1
2 2
2 1
2
cos 2 cos
3
cm
R R
y
R R
 

−    −
= − − −      −      
( )
 
3 3
2 1
2 2
2 1
2
2
3
cm
R R
y
R R
 −
= −  
 −  
3 3
2 1
2 2
2 1
4
3
cm
R R
y
R R
 −−
=  
− 
0cmx simetria= 
4. (pag. 8 – Livro Unip) Encontre as coordenadas do centro de massa para
a peça do exemplo anterior
para raios 2 mm e 3 mm. (0; -1.6mm).
4. (Beer & Johnston) Encontre o centro e massa das figuras de densidade uniforme.
757.7
54.8
13.382
i i
i
i
i
x A
x x x mm
A

=  =  =


506.2
36.6
13.382
i i
i
i
i
y A
y y y mm
A

=  =  =


(a)
757.7
54.8
13.382
i i
i
i
i
x A
x x x mm
A

=  =  =


506.2
36.6
13.382
i i
i
i
i
y A
y y y mm
A

=  =  =


i i
i
G
i
i
x A
x
A

=


i i
i
G
i
i
y A
y
A

=

( ),G GG x x 
4. (Beer & Johnston) Encontre o centro e massa das figuras de densidade uniforme.
-
(b)
Figura
Componente: L
(c
m
)
(c
m
)
(cm)
AB 60 30 1.8.103 0 0
BC 65 30 1.95.103 12.5 0.81.103
CA 25 0 0 12.5 0.31.103
Somas 150 3.75.103 1.12.103
x
xL y yL
1
N
i
i
L
=

1
N
i i
i
x L
=
 1
N
i i
i
y L
=

1
1
N
i i
i
N
i
i
x L
x
L
=
=

=


1
1
N
i i
i
N
i
i
y L
y
L
=
=

 =


33.75 10
150
x

=
25x cm= 
31.12 10
150
y

= 
7,5y cm= 
(b)
1
1
N
i i
i
N
i
i
x L
x
L
=
=

=


1
1
N
i i
i
N
i
i
y L
y
L
=
=

 =


33.75 10
150
x

= 25x cm= 
31.12 10
150
y

=  7,5y cm= 
(c)
(1)
14148.45
11
12.3
.
3
46 57
i i
i
i
i
x A
x x x in
A

=  =  =


26897.1
23.46
1146.57
i i
i
i
i
y A
y y y in
A

=  =  =


i xi yi Ai 𝒙𝒊 ⋅ 𝑨𝒊 𝒚𝒊 ⋅ 𝑨𝒊
1 15 25 30.50
1500
22500 37500
2
30 −
4 ⋅ 𝑟
3𝜋
30 −
4⋅15
3𝜋
= 23.63
30 −
𝜋 ⋅ 𝑟2
2
-8351.55 -10602.9
1146.57 14148.45 26897.1Σ
(2)
4 ⋅ 𝑟
3𝜋
0
0
−
𝜋⋅152
2
= -353.43
( )12.33,23.46 [ ]G in
(x1, y1)
x1
y1
(d)
+
i xi yi Ai 𝒙𝒊 ⋅ 𝑨𝒊 𝒚𝒊 ⋅ 𝑨𝒊
1
5
𝑏 ⋅ ℎ
2
=
12 ⋅ 15
2
90 720 450
2
12+
1
2
21
22.5
7.5
21.15
315 7087.5 2362.5
405 7807.5 2812.5
7807.5
19.28
405
i i
i
i
i
x A
x x x in
A

=  =  =


2812.5
6.94
405
i i
i
i
i
y A
y y y in
A

=  =  =


( )19.28,6.94 [ ]G in
0 0
(1)
(2)
1
3
𝑏
12-
1
3
12 =
12 − 4 = 8
1
3
ℎ
1
3
ℎ = 
1
3
15
𝑏
𝑥1
𝑥2
Σ
ˆˆ ˆ19.28 6.94 0Gr i j k=  +  + 
( )19.28,6.94G
❑ 1 – Uma força vertical de 100 lb é aplicada na extremidade de uma manivela fixada a um eixo em O. Determinar:
(a) O momento da força de 100 lb em relação a O
(b) a intensidade da força horizontal aplicada em A que produz o mesmo momento em relação a O.
(c) a menor força aplicada em A que produz o mesmo momento em relação a O.
(d) a distância a que uma força vertical de 240 lb deverá estar do eixo para gerar o mesmo momento em relação a O.
(e) se alguma das forças obtidas nos itens anteriores é equivalente a força original.
➢ Solução:
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
Ԧ𝑟 = 𝑟 ⋅ cos 60° ⋅ Ƹ𝑖 + 𝑟 ⋅ sin 60° ⋅ Ƹ𝑗
Ԧ𝑟 = 24 ⋅ cos 60° ⋅ Ƹ𝑖 + 24 ⋅ sin 60° ⋅ Ƹ𝑗
Ԧ𝑟 = 12 ⋅ Ƹ𝑖 + 20.784 ⋅ Ƹ𝑗
Ԧ𝐹 = −100 ⋅ Ƹ𝑗
❑ Exemplos de cálculo torque ou momento de uma força:
𝑀𝑂 = Ԧ𝑟 × Ԧ𝐹
Ԧ𝑟 = 12 ⋅ Ƹ𝑖 + 20.784 ⋅ Ƹ𝑗
Ԧ𝐹 = −100 ⋅ Ƹ𝑗
ˆˆ ˆ ˆ ˆ
12 20.784 0 12 20.784
0 100 0 0 100
O
i j k i j
M r F=  =
− −
0 ⋅ Ƹ𝑖 0 ⋅ Ƹ𝑗 −1200 ⋅ ෠𝑘
0 ⋅ ෠𝑘 0 ⋅ Ƹ𝑖 0 ⋅ Ƹ𝑗
𝑀𝑂 = −1200 ⋅ ෠𝑘 (lb.in)
https://www.wolframalpha.com/input/?i=%7B12%2C+20.784%2C+0%7Dx%7B0%2C+-100%2C0%7D
https://www.wolframalpha.com/input/?i=%7B12%2C+20.784%2C+0%7Dx%7B0%2C+-100%2C0%7D
❑ 2 – Uma força de 800N é aplicada como ilustrado. Determine o momento da força em relação a B.
➢ Solução:
𝑀𝐵 = Ԧ𝑟 × Ԧ𝐹 Ԧ𝑟 = −0.2 ⋅ Ƹ𝑖 + 0.16 ⋅ Ƹ𝑗 Ԧ𝐹 = 400 ⋅ Ƹ𝑖 + 693 ⋅ Ƹ𝑗
ˆˆ ˆ ˆ ˆ
0.2 0.16 0 0.2 0.16
400 693 0 400 693
B
i j k i j
M r F=  = − −
https://www.wolframalpha.com/input/?i=%7B-0.2%2C+0.16%2C+0%7Dx%7B400%2C+693%2C0%7D
𝑀𝐵 = −202.6 ⋅ ෠𝑘 (N.m)
https://www.wolframalpha.com/input/?i=%7B-0.2%2C+0.16%2C+0%7Dx%7B400%2C+693%2C0%7D
❑ Exemplo 2. Mostre que, para a figura plana homogêna triangular, seu
centróide (centro de massa CM) é dado por: C(b/3,h/3)
dA x dy= 
Use semelhança de triângulos: ( )
x b b b
x h y x b y
h y h h h
=  = −  = −
−
0
2
h
corpo corpo
cm
ydm y dA y xdy
y
bhm A


 
= = = 

  
1
x b hx x
h y y h
h y h b b
 
=  − =  = − 
−  
0 0
1
2 2
b b
cm cm
x
x ydx x h dx
b
x x
bh bh
 
  − 
 
=  =
 
2
0
2
b
cm
x
x x dx
b b
 
= − 
 

2 3
0
2
2 3
b
cm
x x
x
b b
 
= − 
 
2 3 2 22 2 3 2
2 3 6 6
cm cm
b b b b
x x
b b b
   
= −  = −   
   
3
cm
b
x =
20
0
2
2
h
h
cm
b
y b y dy
h b
y b y y dy
bh b h h
 
 − 
   
= =  − 
  


2 3 2 3
0
2 2
2 3 2 3
y h
cm cm
y
y b y h b h
y b y b
b h h b h h
=
=
   
=  −  =  −   
    
22 1 1 2 3 2
2 3 1 6 3
cm cm cm
b h h h
y y y
b h
   −   
= −  =  =       
https://www.wolframalpha.com/input/?i=Integrate%5B%282%2F%28b+h%29%29%28b+y-b+y%5E2%2Fh%29%2C%7By%2C0%2Ch%7D%5D
( , ) ,
3 3
G G
b h
G x y G
 
  
 
https://www.wolframalpha.com/input/?i=Integrate%5B%282%2F%28b+h%29%29%28b+y-b+y%5E2%2Fh%29%2C%7By%2C0%2Ch%7D%5D
❑ Fazendo a integral pelo Wolfram Alpha
https://www.wolframalpha.com/input/?i=Integrate%5B%282%2Fb%29%28x-x%5E2%2Fb%29%2C%7Bx%2C0%2Cb%7D%5D( , ) ,
3 3
G G
b h
G x y G
 
  
 
https://www.wolframalpha.com/input/?i=Integrate%5B%282%2Fb%29%28x-x%5E2%2Fb%29%2C%7Bx%2C0%2Cb%7D%5D
❑ Exemplo 3. Determine, por integração direta, o centróide da
superfície da parábola:
❑ Solução:
3
2
2 2
0 0
3 3
x aa
x
b b x ab
A dA ydx x dx
a a
=
=
 
= = = = = 
 
  
2 3
2 2
0 0
a a
y
b b
Q xdA xydx x x dx x dx
a a
= = = =   
4 2
2
0
4 4
x a
y
x
b x a b
Q
a
=
=
 
= = 
 
2 2
2 4
2 4
0 0
1
2 2 2
a a
x el
y b b
Q y dA ydx x dx x dx
a a
 
= = = = 
 
   
2 5 2
4
0
2 5 10
x a
x
x
b x ab
Q
a
=
=
 
= = 
 
2
34
4
3
el y
a b
x dA Q
x x a
abA A
= = =  =

2
310
10
3
el x
a b
y dA Q
y y b
abA A
= = =  =

Exemplo 7: Calcule a posição do centro de massa da figura
plana abaixo com densidade de área uniforme.
Exemplo 8: Determine o centro de massa das peças de madeira 
de densidade superficial uniforme indicada abaixo:
❑ Exemplos: Determine o centro de massa das peças de madeira de densidade superficial uniforme indicada abaixo:
(a)
x1 = (27 + 45)/2 = 36
0
y1 = 45/2 = 22.5
A1 = b.h = (27+45).45 = 3240 mm²
0 x2 = 27/3= 9
y2 = 45/3 = 15
A2 = -b.h/2 = -27.45/2 = -607.5 mm²
𝑥𝐺 =
σ𝑖=1
2 𝑥𝑖 ⋅ 𝐴𝑖
σ𝑖=1
𝑛 𝐴𝑖
𝑦𝐺 =
σ𝑖=1
2 𝑦𝑖 ⋅ 𝐴𝑖
σ𝑖=1
𝑛 𝐴𝑖
𝑥𝐺 =
𝑥1 ⋅ 𝐴1 + 𝑥2 ⋅ 𝐴2
𝐴1 + 𝐴2
=
36 ⋅ 3240 + 9 ⋅ (−607.5)
3240 − 607.5
𝑦𝐺 =
𝑦1⋅𝐴1+𝑦2⋅𝐴2
𝐴1+𝐴2
= 
22.5⋅3240+15⋅(−607.5)
3240−607.5
(b)
0
0
(c)
0
18
6
18-6=12
-12
8
28-8=16
(d)
(e)
(f)
0
94.535 267291.1971999.741
71999.741 -71999.741
627291.5
𝑥𝐺 =
σ𝑖=1
2 𝑥𝑖 ⋅ 𝐴𝑖
σ𝑖=1
𝑛 𝐴𝑖
𝑦𝐺 =
σ𝑖=1
2 𝑦𝑖 ⋅ 𝐴𝑖
σ𝑖=1
𝑛 𝐴𝑖
𝑥𝐺 =
−72000
7200
⟺ 𝑥𝐺= -10 mm 𝑦𝐺 =
62729.5
7200
⟺ 𝑦𝐺= 87.12 mm
𝐺 𝑥𝐺 , 𝑦𝐺
𝐺 −10 𝑚𝑚, 87.12 𝑚𝑚
(g)
71999.741
4 ⋅ 𝑟
3𝜋
(h)
(i)
(j)
(k)
(l)
(m)
(n)
(o)
❑ Exemplo 4 - Uma força de 300 N é aplicada em A, como mostrado. Determinar 
(a) o momento da força 300-N em torno de D, 
(b) A magnitude e direção da força horizontal aplicada em C que cria o mesmo momento sobre D,
(c) a menor força aplicada em C que cria o mesmo momento sobre D.
❑ Solução:
Exercício: Atividade em grupo de laboratório.
❑ Exemplo 5 - que a haste de ligação AB exerce sobre a manivela BC uma força de 500 lb dirigida para baixo e para a esquerda
ao longo da linha central de AB. Determine, em cada caso, o momento da força central em AB sobre C.
(a) (b)
❑ Solução:
Exercício: Atividade em grupo de laboratório.
❑ Exemplo 6 - A tensão indicada aplicada em C vala 600 lb. Determine o momento dessa força em relação ao ponto A.
❑ Solução:
Exercício: Atividade em grupo de laboratório.
Beer Johnton 11ª ed. P. 6.153 - O movimento da caçamba do carregador frontal mostrado é controlado por dois braços e uma 
articulação conectada por pino em D. Os braços estão localizados simetricamente em relação ao plano central, vertical e 
longitudinal do carregador; um braço AFJ e seu cilindro de controle EF são mostrados. O único link GHDB e seu cilindro de 
controle
BC estão localizados no plano de simetria. Para a posição e carga mostradas, determine a força exercida 
(a) pelo cilindro BC, (b) pelo cilindro EF.
❑ Solução:
(a) caçamba (b) Braço ADHDiagrama de corpo livre:
෍
𝑖
𝑀𝐹𝑖,𝐽 = 0 4500 ⋅ 20 − 𝐹𝐺𝐻 ⋅ 22 = 0 ⇔ 𝐹𝐺𝐻 = 4091 lb
෍
𝑖
𝑀𝐹𝑖,𝐷 = 0 -4091 ⋅ 24 − 𝐹𝐵𝐶 ⋅ 20 = 0 ⇔ 𝐹𝐵𝐶 = −4909 lb
Mecanismo inteiro

Continue navegando