Buscar

Exerccios Resolvidos de Mecnicados Solos ambiental

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 93 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 93 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 93 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Klinger S. RezendeVERSÃO 1.0
 
 
 
EXERCÍCIOS 
RESOLVIDOS DE 
MECÂNICA DOS SOLOS 
 
 
 
 
 
 
Klinger Senra Rezende 
 
 
EXERCÍCIOS 
RESOLVIDOS DE 
MECÂNICA DOS SOLOS 
 
 
 
 
 
 
 
 
 
 
 
 
VIÇOSA – MG 
2019 
 
 
LISTA DE SIGLAS 
 
𝛾 – peso específico natural do solo 
𝛾w – peso específico da água 
𝛾s – peso específico dos grãos (ou dos 
sólidos) 
𝛾SAT – peso específico saturado 
𝛾SUB – peso específico submerso 
𝛾d – peso específico aparente seco 
𝐺 – densidade relativa do solo 
𝐺s – densidade relativa dos sólidos 
𝑤 – teor de umidade 
𝑒 – índice de vazios 
𝑛 – porosidade 
𝑆r – grau de saturação 
𝑃s – peso dos grãos 
𝑃w – peso da água 
𝑃 – peso total 
𝑉s – volume dos grãos 
𝑉w – volume de água 
𝑉v – volume de vazios 
𝑉 – volume total 
𝑀h – massa úmida do solo 
𝑀𝑠 – massa seca do solo (ou massa dos 
grãos) 
𝑀𝑤 – massa de água 
𝑀𝑤 (𝐿𝑃)- massa de água no limite de 
plasticidade 
𝑀𝑤 (𝐿𝐿)- massa de água no limite de 
liquidez 
𝑀𝐵𝑈 – massa bruta úmida 
𝑀𝐵𝑆 – massa bruta seca 
𝑀 – massa total 
𝑇 – tara da cápsula 
𝑉 – volume total 
𝑄 – vazão 
𝑖 – gradiente hidráulico 
𝛥ℎ – perda de carga hidráulica 
ℎ𝑎 – carga altimétrica 
ℎ𝑝 – carga piezométrica 
ℎ𝑡 – carga total 
𝐴 - área 
𝛥𝜎 – acréscimo de tensão 
𝜎0 – tensão inicial ou carregamento na 
superfície do terreno 
 
 
 
 
 
 
 
 
 
 ÍNDICE 
 
1 PROPRIEDADES - ÍNDICES .......................................................................................... 7 
2 CLASSIFICAÇÃO DE SOLOS ...................................................................................... 28 
3 TENSÕES GEOSTÁTICAS ............................................................................................ 40 
4 COMPACTAÇÃO DOS SOLOS ................................................................................... 52 
5 PERMEABILIDADE DOS SOLOS ................................................................................ 56 
6 ACRÉSCIMOS DE TENSÃO NOS SOLOS ................................................................... 68 
REFERÊNCIAS BIBLIOGRÁFICAS ..................................................................................... 93 
Cap. 1 - Propriedades-índices 
 
7 
 
1 PROPRIEDADES - ÍNDICES 
 
1.1 Uma amostra cilíndrica de solo úmido foi moldada com 10 cm de diâmetro e 15 cm de 
altura. Ao ser levada em balança, registrou-se um peso igual a 2297g. Calcule o peso 
específico natural deste solo, em kN/m³. 
 
Solução 
Passo 1: Desenhar o esquema de fases do solo. 
 
 
 
Passo 2: Identificar os dados fornecidos. 
 Amostra cilíndrica com 10 cm de diâmetro e 15 cm de altura; 
 Peso (𝑃) = 2297g. 
Passo 3: Identificar os índices físicos envolvidos na questão. 
𝛾 =
𝑃
𝑉
 
Passo 4: Calcular o índice físico. 
Sabendo que o volume da amostra cilíndrica é dado por: 
(𝑉) = 
𝜋𝑑2
4
ℎ 
Onde: 
𝑑 – diâmetro da amostra; 
ℎ – altura da amostra. 
Sólidos
Água
Ar PAR
Pw
Ps
P
Vv
Vs
V
Exercícios Resolvidos de Mecânica dos Solos 
8 
 
 
Temos que: 
𝑉 =
𝜋𝑑2
4
ℎ = 
𝜋. (10𝑐𝑚)2
4
 15 𝑐𝑚 = 1178,1 𝑐𝑚3 
 
Desta forma, o peso específico deste solo será: 
𝛾 = 
𝑃
𝑉
=
2297𝑔
1178,1 𝑐𝑚3
= 1,95
𝑔
𝑐𝑚3
 
 
Passo 5: Fornecer a unidade solicitada. 
Para apresentar esta resposta em kN/m3, basta multiplicarmos este resultado por 10. Veja 
o porquê: 
Sabendo que 
 1kN = 100 kgf; 
1kgf = 1000 gf; 
1m³ = 106 cm³, tem-se: 
 
𝛾 = 
1,95 𝑔𝑓
𝑐𝑚3
𝑥 
1 𝑘𝑔𝑓
1000 𝑔𝑓
 𝑥 
1 𝑘𝑁
100 𝑘𝑔𝑓
 𝑥 
106𝑐𝑚3
1𝑚3
= 1,95 .10
𝑘𝑁
𝑚3
= 19,5 𝑘𝑁/𝑚³ 
 
1.2 Uma amostra de um solo argiloso foi colocada em uma cápsula de alumínio, sendo 
este conjunto pesado e obtendo-se uma massa bruta úmida igual a 132,51g. Após ser levado 
em estufa por 24h, o conjunto apresentou massa igual a 111,12g. Sabendo que a tara da cápsula 
é igual a 33,07g, calcular o teor de umidade deste solo. 
 
Solução 
 
Passo 1: Desenhar o esquema de fases do solo. Ver Passo 1 do exercício 1.1. 
Passo 2: Identificar os dados fornecidos. 
Cap. 1 - Propriedades-índices 
 
9 
 
Inicialmente, tínhamos a massa bruta úmida (MBU) igual a 132,51g. Após 24h em 
estufa, a água presente nos vazios da amostra se evaporou, passando o conjunto a possuir a 
chamada massa bruta seca (MBS), no valor de 111,12g. Vale destacar que o termo “massa 
bruta” se refere à presença da cápsula nestas determinações (tara no valor de 33,07g). 
 
Passo 3: Identificar os índices físicos envolvidos na questão. 
w = 
𝑀𝑤
𝑀𝑠
 
*Nota: Como o enunciado se refere a massas, apresentamos o teor de umidade como uma relação entre 
massas de água e de sólidos, lembrando que a diferença entre 𝑀 e 𝑃 estará na unidade grama (g) ou 
newton (N), respectivamente. 
 
Passo 4: Calcular o índice físico. 
Como mencionado, após estufa, a água evaporada será nossa 𝑀𝑤. Logo: 
𝑤 =
𝑀𝑤
𝑀𝑠
= 
𝑀𝐵𝑈 −𝑀𝐵𝑆
𝑀𝐵𝑆 − 𝑇
 𝑥 100% 
Ao lecionar índices físicos, percebemos que, ao ver a fórmula acima, vários estudantes 
ficam em dúvida no porquê de se subtrair o valor da tara apenas do denominador. O que 
acontece é que, como no numerador está-se fazendo uma subtração de massas brutas, a tara 
está implicitamente sendo subtraída. Veja: 
𝑤 = 
𝑀𝐵𝑈 −𝑀𝐵𝑆
𝑀𝐵𝑆 − 𝑇
= 
(𝑀ℎ + 𝑇) − (𝑀𝑠 + 𝑇)
(𝑀𝑠 + 𝑇) − 𝑇
= 
𝑀ℎ −𝑀𝑠
𝑀𝑠
= 
𝑀𝑤
𝑀𝑠
 
 
Onde: 𝑀ℎ é a massa úmida da amostra. 
Portanto, 
𝑤 = 
132,51 − 111,12
111,12 − 33,07
 𝑥 100% = 27,41% 
 
1.3 Sabendo que o valor do índice de vazios de um solo é igual a 0,8, determine o valor de 
sua porosidade. 
 
Solução 
Exercícios Resolvidos de Mecânica dos Solos 
10 
 
 
Passo 1: Desenhar o esquema de fases do solo. Ver Passo 1 do exercício 1.1. 
Passo 2: Identificar os dados fornecidos. 
 Índice de vazios (𝑒) = 0,8. 
 
Passo 3: Identificar os índices físicos envolvidos na questão. 
𝑛 = 
𝑉𝑣
𝑉
 ; 𝑒 =
𝑉𝑣
𝑉𝑠
 
 
Passo 4: Calcular o índice físico. 
Observando o esquema de fases do solo, tem-se que: 
 𝑉 = 𝑉𝑣 + 𝑉𝑠 
Assim, 
𝑛 =
𝑉𝑣
𝑉
 = 
𝑉𝑣
𝑉𝑠 + 𝑉𝑣
 ( I ) 
 
Para se trabalhar com substituição nas fórmulas destes índices físicos, podemos tomar 
que, se 
𝑒 = 
𝑉𝑣
𝑉𝑠
→ 𝑉𝑣 = 𝑒. 𝑉𝑠 ( II ) 
 
Logo, ( II ) em ( I ): 
𝑛 = 
𝑒. 𝑉𝑠
𝑉𝑠 + 𝑒. 𝑉𝑠 
→ 𝑛 =
𝑒. 𝑉𝑠
𝑉𝑠 (1 + 𝑒)
→
𝑒. 𝑉𝑠
𝑉𝑠 (1 + 𝑒)
→ 
𝑒
1 + 𝑒
→ 
0,8
1 + 0,8
 ≅ 0,444 ≅ 44,4% 
 
*Nota: para facilitar os cálculos, é comum adotarmos 𝑉𝑠 = 1 e compatibilizarmos as unidades nos dois 
lados da equação. O motivo desta consideração é justificado pelo desenvolvimento acima, ou seja, 𝑉𝑠 
será carregado ao longo do desenvolvimento da questão e será “cortado” em numerador e 
denominador. 
 
1.4 Sabendo que o índice de vazios de um solo arenoso é 0,63, o peso específico dos grãos 
é 27 kN/m³ e o teor de umidade igual a 22%, calcular o peso específico natural deste solo. 
 
Cap. 1 - Propriedades-índices 
 
11 
 
Solução 
 
Passo 1: Desenhar o esquema de fases do solo. Ver Passo 1 do exercício 1.1. 
Passo 2: Identificar os dados fornecidos. 
 Índice de vazios (𝑒) = 0,63; 
 Peso específico dos grãos (𝛾𝑠) = 27 kN/m³; 
 Teor de umidade (𝑤) = 22%. 
Passo 3: Identificar os índices físicos envolvidos na questão. 
𝛾 =
𝑃
𝑉
 ; 𝑒 =
𝑉𝑣
𝑉𝑠
 ; 𝛾𝑠 = 
𝑃𝑠
𝑉𝑠
 ; 𝑤 =
𝑃𝑤
𝑃𝑠
 
 
Passo 4: Calcular o índice físico. 
O segredo de exercícios de índices físicos é se começar a trabalhar com as relações 
básicas e se procurar obter aquelas que possuam os dados fornecidos no problema. Vários 
estudantes em Mecânica dos Solos não se familiarizam com todas aquelas fórmulas de 
correlação entre índices físicos. Porém, quando começamos pelas fórmulas básicas, 
percebemos que o “decoreba” das relações mais complexas se torna desnecessária. 
Para se resolver o problema, basta utilizarmos: 
𝛾 = 
𝛾𝑠 (1 + 𝑤)
1 + 𝑒
 
Mas deonde vem esta relação? O esquema do exercício 1.1 será novamente bem vindo. 
Veja que: 
𝑃 = 𝑃𝑠 + 𝑃𝑤 
𝑉 = 𝑉𝑠 + 𝑉𝑣
 
 
Qual é a relação básica que envolve P e V e também é solicitada no enunciado? Ela: 
𝛾 =
𝑃
𝑉
 
Portanto, já sabemos que 
Exercícios Resolvidos de Mecânica dos Solos 
12 
 
𝛾 =
𝑃
𝑉
= 
𝑃𝑠 + 𝑃𝑤
𝑉𝑠 + 𝑉𝑣
 (𝐼) 
 
Mas não temos os valores de 𝑃𝑠, 𝑃𝑤, 𝑉𝑠 ou 𝑉𝑣... Mais uma vez, o segredo é relacionar 
estas incógnitas com informações fornecidas no enunciado e também apresentadas no Passo 
2. Desta forma, vamos trabalhar apenas com as relações do Passo 3: 
𝛾 = 
𝑃
𝑉
 (1) 𝑒 =
𝑉𝑣
𝑉𝑠
 (2) 𝛾𝑠 = 
𝑃𝑠
𝑉𝑠
 (3) 𝑤 =
𝑃𝑤
𝑃𝑠
 (4) 
 
Para tal, lembre-se da dica: 𝑉𝑠 = 1 e compatibilizar as unidades! Portanto, vamos tentar 
substituir cada incógnita de valor não conhecido por aquelas conhecidas. Vamos lá! 
 𝑃𝑠 → presente na relação (3). Logo, 𝑃𝑠 = 𝛾𝑠 . 𝑉𝑠 
 𝑃𝑤 → presente na relação (4). Logo, 𝑃 𝑤= 𝑤. 𝑃𝑠, ou seja, 𝑃 𝑤= 𝑤. 𝛾𝑠 . 𝑉𝑠 
 𝑉𝑠 → adotar 1. 
 𝑉𝑣 → presente na equação (2). Logo, 𝑉𝑣 = 𝑒. 𝑉𝑠 
Utilizando estas substituições em ( I ), teremos: 
𝛾 = 
𝛾𝑠 . 𝑉𝑠 + 𝑤. 𝛾𝑠 . 𝑉𝑠
1 + 𝑒. 𝑉𝑠
→ 𝛾 =
𝛾𝑠 + 𝑤. 𝛾𝑠
1 + 𝑒
→ 𝛾 =
𝛾𝑠(1 + 𝑤)
1 + 𝑒
 
Resolvido o problema das fórmulas, basta substituir valores: 
𝛾 =
27. (1 + 0,22)
1 + 0,63
→ 𝛾 = 20,21 𝑘𝑁/𝑚3 
 
1.5 Para um solo que apresentou 𝛾 = 18,5 kN/m³, 𝑤 = 20% e 𝛾𝑠 = 26,5 kN/m³. Determinar: 
a) o índice de vazios; b) a porosidade; c) o grau de saturação; d) o peso específico aparente 
seco. 
 
Solução 
 
Passo 1: Desenhar o esquema de fases do solo. Ver Passo 1 do exercício 1.1. 
Passo 2: Identificar os dados fornecidos. 
Cap. 1 - Propriedades-índices 
 
13 
 
 Peso específico do solo (𝛾) = 18,5 kN/m³; 
 Teor de umidade (𝑤) = 20%; 
 Peso específico dos grãos (𝛾𝑠) = 26,5 kN/m³. 
Passo 3: Identificar os índices físicos envolvidos na questão. 
𝛾 =
𝑃
𝑉
 ; 𝑤 =
𝑃𝑤
𝑃𝑠
 ; 𝛾𝑠 = 
𝑃𝑠
𝑉𝑠
 ; 𝑒 =
𝑉𝑣
𝑉𝑠
 ; 𝑛 = 
𝑉𝑣
𝑉
 ; 𝑆𝑟 = 
𝑉𝑤
𝑉𝑣
 ; 𝛾𝑑 = 
𝑃𝑠
𝑉
 
 
Também vale a pena apresentar 𝛾𝑤, pois se trata de um índice físico que conhecemos o 
valor e pode ser útil. 
𝛾𝑤 =
𝑃𝑤
𝑉𝑤
= 9,81 𝑘𝑁/𝑚3 
 
Para fins didáticos, costuma-se adotar 𝛾𝑤 igual a 10 kN/m³. 
 
Passo 4: Calcular os índices físicos. 
a) Índice de vazios (𝒆): não será realizada dedução das relações envolvendo o índice de 
vazios pois a mesma se encontra no exercício 1.4, sendo: 
𝛾 =
𝛾𝑠(1 + 𝑤)
1 + 𝑒
 
Note que 𝛾, 𝛾𝑠e 𝑤 são dados do problema. Portanto, isolando-se 𝑒, temos: 
𝑒 =
𝛾𝑠(1 + 𝑤) − 𝛾
𝛾
→ 𝑒 = 
26,5 (1 + 0,20) − 18,5
18,5
= 0,72 
 
b) Porosidade (𝒏): também apresentado no exercício 1.3, temos que: 
 
𝑛 =
𝑒
1 + 𝑒
. 100 → 𝑛 = 
0,72
1 + 0,72
. 100 = 41,86% 
 
c) Grau de saturação (𝑺𝒓): aqui, vale-se de uma nova dedução: sabemos que 
𝑆𝑟 =
𝑉𝑤
𝑉𝑣
 
Exercícios Resolvidos de Mecânica dos Solos 
14 
 
 
Substituindo 𝑉𝑤 e 𝑉𝑣 pelos índices de valores já conhecidos e usando o artifício 𝑉𝑠 =1: 
𝑆𝑟 =
𝑉𝑤
𝑒. 𝑉𝑠1
→ 𝑆𝑟 =
𝑉𝑤
𝑒
 (unidades não compatibilizadas) 
 
Das incógnitas apresentadas, 𝑉𝑤 está presente em 
𝛾𝑤 =
𝑃𝑤
𝑉𝑤
 e então… 𝑉𝑤 =
𝑃𝑤
𝛾𝑤
 
 
Mas e 𝑃𝑤?? Ele está presente em 
𝑤 =
𝑃𝑤
𝑃𝑠
 , ou seja , 𝑃𝑤 = 𝑤𝑃𝑠 
 
Utilizando 𝑉𝑠 =1 para a equação de 𝛾𝑠: 
𝛾𝑠 = 
𝑃𝑠
𝑉𝑠1
 → 𝛾𝑠 = 𝑃𝑠 , para fins de dedução. 
 
Desta forma: 
𝑉𝑤 =
𝑃𝑤
𝛾𝑤
=
 𝑤𝑃𝑠 
𝛾𝑤
=
𝑤𝛾𝑠
𝛾𝑤
 (todos os índices conhecidos!) 
 
Finalmente, 
𝑆𝑟 = 
𝑉𝑤
𝑒
=
𝑤𝛾𝑠
𝛾𝑤
.
1
𝑒
→ 𝑆𝑟 = 
𝑤𝛾𝑠
𝛾𝑤𝑒
= 
0,20 . 26,5
10 . 0,72
= 0,736 = 73,61% 
 
d) Peso específico aparente seco (𝜸𝒅): 
𝛾𝑑 =
𝑃𝑠
𝑉
 
 
À medida que vamos resolvendo exercícios de índices físicos, fica fácil perceber que, 
na maioria das vezes, Ps estará vinculado a 𝛾𝑠 e V estará vinculado a 𝑒, na forma de 𝑉 = 1+ 𝑒, 
como deduzimos acima, pois 𝑉𝑠 = 1. Logo, 
Cap. 1 - Propriedades-índices 
 
15 
 
𝛾𝑑 =
𝛾𝑠
1 + 𝑒 
 (unidades compatibilizadas!) 
 
Então, 
𝛾𝑑 =
26,5
1 + 0,72
= 15,41 𝑘𝑁/𝑚3 
 
1.6 Um determinado solo, em um ensaio de caracterização física, apresentou um limite de 
liquidez de 28% e um limite de plasticidade de 14%. Para uma massa de solo de 900 kg, 
calcular a quantidade de água necessária que este solo precisa para passar do limite semi-
sólido/plástico para o limite plástico/líquido. 
 
Solução: 
Passo 1: Desenhar o esquema de limites de consistência. 
 
O limite de plasticidade (LP) nada mais é que um determinado teor de umidade na 
transição entre os estados semi-sólido e plástico. Por sua vez, o limite de liquidez (LL) é o 
teor de umidade na transição entre os estados plástico e líquido. 
 
Passo 2: Calcular a massa de grãos. 
Para se determinar a quantidade de água necessária para se alterar o estado do solo, será 
necessário determinar a massa de grãos primeiramente, pois esta independe do teor de 
umidade e é, portanto, constante para uma mesma amostra. 
Logo, temos: 
𝑀 = 𝑀𝑠 +𝑀𝑤 
 
Se quisermos deixar esta equação em função do teor de umidade, é possível, pois 
 
Semi-sólido Plástico Líquido 
LP LL w (%) 
Exercícios Resolvidos de Mecânica dos Solos 
16 
 
𝑤 =
𝑀𝑤
𝑀𝑠
 → 𝑀𝑤 = 𝑤.𝑀𝑠 
 
Logo, 
𝑀 = 𝑀𝑠 + 𝑤.𝑀𝑠 Daí… 𝑀 = 𝑀𝑠(1 + 𝑤) → 𝑀𝑠 =
𝑀
1 + 𝑤
 
 
De acordo com o enunciado, inicialmente, o solo possui 900 kg e se encontra com 
umidade igual a 14% (LP - limite semi-sólido/plástico). Logo, é possível determinar o peso 
dos grãos: 
𝑀𝑠 =
900
1 + 0,14
= 789,47𝑘𝑔 
 
Passo 3: Calcular as massas de água nos dois limites de consistência. 
Sendo 𝑀𝑠 = 789,47 kg, a massa de água no LP será: 
𝑀𝑤 = 𝑀 −𝑀𝑠 = 900 − 789,47 𝑘𝑔 → 𝑀𝑤 (𝐿𝑃) = 110,53 𝑘𝑔 
De forma análoga, a massa de água no LL será: 
𝑀𝑤 (𝐿𝐿) = 𝑤.𝑀𝑠 = 0,28 . 789,47 = 221,05 𝑘𝑔 
 
Passo 4: Determinar a massa de água a ser adicionada. 
Fazendo a diferença entre as massas de água nos dois limites de consistência, teremos: 
∆𝑀𝑤 = 𝑀𝑤 (𝐿𝐿) − 𝑀𝑤 (𝐿𝑃) = 221,05 − 110,53 = 𝟏𝟏𝟎, 𝟓𝟐 𝒌𝒈 
 
1.7 Um ensaio de limite de plasticidade foi realizado com um determinado solo de Viçosa-
MG, segundo metodologia proposta pela ABNT NBR 7180 (2016) – Solo – Determinação do 
Limite de Plasticidade, no qual obtiveram-se cinco valores de teor de umidade após 
romperem-se os cilindros de solos e levá-los à estufa: 34,2%, 36,8%, 32,9%, 34,7% e 34,1%. 
Determinar o limite de plasticidade deste solo. 
 
Solução: 
Passo 1: Identificação do problema. 
Cap. 1 - Propriedades-índices 
 
17 
 
De acordo com a ABNT NBR 7180 (2016), deve-se considerar satisfatórios os valores de 
umidade obtidos quando, de pelo menos três, nenhum deles diferir da respectiva média de 
mais que 5% desta média. 
Passo 2: Determinação da média e verificação. 
Determinemos a primeira média dos valores de umidade obtidos. 
𝑋1̅̅ ̅ =
34,2 + 36,8 + 32,9 + 34,7 + 34,1
5
= 34,54 % 
 
A verificação consiste em se analisar se todas os valores individuais de teor de umidade 
encontram-se dentro de um intervalo de ± 5% em relação à média, ou seja, devem estar 
contidos entre 0,95.𝑋1̅̅ ̅ (equivalente a 5% abaixo da média) e 1,05.𝑋1̅̅ ̅ (equivalente a 5% acima 
da média): 
0,95 . 𝑋1̅̅ ̅ = 32,81 % 
1,05 . 𝑋1̅̅ ̅ = 36,27 % 
Analisando os valores individuais, identificamos que apenas o teor de umidade igual a 
36,8% encontra-se fora do intervalo acima, devendo ser excluído para determinação de uma 
nova média. 
Passo 3: Determinação da nova média e verificação. 
Excluindo-se o valor de 36,8%, tem-se a nova média dada por: 
𝑋2̅̅ ̅ =
34,2 + 32,9 + 34,7 + 34,1
4
= 33,98 % 
 
Verificação da segunda média: 
0,95 . 𝑋2̅̅ ̅ = 32,28 % 
1,05 . 𝑋2̅̅ ̅ = 35,67 % 
Ao analisar os quatro valores individuais restantes, verificamos que todos se encontram 
dentrodo novo intervalo. Logo, esta nova média equivale ao limite de plasticidade deste solo, 
ou seja, LP = 33,98 % . 
Exercícios Resolvidos de Mecânica dos Solos 
18 
 
1.8 Um ensaio de limite de liquidez foi realizado com um determinado solo, seguindo as 
recomendações da ABNT NBR 6459 (2017) – Solo – Determinação do Limite de Liquidez. 
Durante o ensaio, foram feitas cinco determinações, as quais apresentaram os seguintes 
resultados: 
 
Tabela 1. 1 - Resultado de ensaio de limite de liquidez 
Determinação Número de golpes Teor de umidade (%) 
1ª 30 45,3 
2ª 28 46,0 
3ª 24 47,4 
4ª 20 49,6 
5ª 18 50,0 
 
Sabendo que o limite de plasticidade deste solo é igual a 22 %, determinar seu índice de 
plasticidade. 
 
Solução: 
Passo 1: Identificação do problema. 
De acordo com a ABNT NBR 6459 (2017), este ensaio consiste, em síntese, em 
proporcionar golpes a uma amostra moldada em uma concha do aparelho de Casagrande, 
utilizado na execução do ensaio, de modo que uma ranhura feita no meio da amostra moldada 
se feche mediante os golpes fornecidos em aproximadamente 13 mm ao longo de seu 
comprimento. O limite de liquidez de um solo pode ser determinado como o teor de umidade 
correspondente a 25 golpes, sendo este teor de umidade obtido de uma reta traçada com os 
pares de pontos (umidade x n° de golpes) em um gráfico semilogarítmico, como mostra a 
Figura 1. 1. 
Cap. 1 - Propriedades-índices 
 
19 
 
 
Figura 1. 1 - Gráfico de Limite de Liquidez. 
 
Passo 2: Desenvolvimento. 
No gráfico, o eixo das ordenadas deve ser enumerado de acordo com o intervalo das 
umidades do ensaio, de forma que todos os valores sejam identificados. A partir desta 
enumeração, deve-se prosseguir ao lançamento dos pares de valores (umidade x n° de golpes), 
a fim de se traçar a melhor reta, ou seja, mais equidistante de todos os pontos lançados. A 
Figura 1. 2 apresenta este traçado. 
 
Figura 1. 2 - Traçado da reta para determinação de Limite de Liquidez. 
Exercícios Resolvidos de Mecânica dos Solos 
20 
 
A partir deste traçado, deve-se identificar, portanto, a umidade correspondente a 25 
golpes, sendo este valor o limite de liquidez, conforme a referida norma técnica (Figura) 
 
Figura 1. 3 - Determinação do Limite de Liquidez do solo. 
 
Logo, o LL deste solo é aproximadamente 47,1%. 
Sabendo que o LP é igual a 22%, o Índice de Plasticidade (IP) será igual a: 
𝐼𝑃 = 𝐿𝐿 − 𝐿𝑃 = 47,1 − 22 = 𝟐𝟓, 𝟏% 
 
1.9 Na caracterização física de um solo localizado ao sul da Zona da Mata Mineira, 
obtiveram-se os seguintes resultados de limites de consistência: 
 
Ensaio de Limite de Liquidez (Figura 1. 4): 
Cap. 1 - Propriedades-índices 
 
21 
 
 
Figura 1. 4 - Resultado do ensaio de Limite de Liquidez. 
 
Ensaio de Limite de Plasticidade: 
Cinco testes realizados; as amostras apresentaram os seguintes teores de umidade na ruptura 
dos cilindros de solo: 
Tabela 1. 2 - Resultados do ensaio de Limite de Plasticidade 
Amostra 1 2 3 4 5 
Umidade (%) 30,8 31,4 28,1 29,8 30,6 
 
Determinar o Índice de Plasticidade deste solo. 
Solução: 
Passo 1: Identificação do problema. 
Para a determinação do IP deste solo, basta identificarmos os valores de LL e LP de 
acordo com as respectivas normas técnicas, ABNT NBR 6459 (2017) e ABNT NBR 7180 
(2016) e realizarmos a subtração: 
𝐼𝑃 = 𝐿𝐿 − 𝐿𝑃 
Passo 2: Desenvolvimento. 
Para determinarmos o LL deste solo, basta identificarmos o teor de umidade 
correspondente a 25 golpes na reta da Figura 1. 4: 
Exercícios Resolvidos de Mecânica dos Solos 
22 
 
 
Figura 1. 5 - Determinação do Limite de Liquidez do solo. 
 
 
Logo, o Limite de Liquidez será, aproximadamente, 54,3%. 
 
Em relação ao LP, determinemos a primeira média de valores de umidade, e 
verifiquemos os intervalos de ± 5% em relação à média: 
𝑋1̅̅ ̅ =
30,8 + 31,4 + 28,1 + 29,8 + 30,6
5
= 30,14 % 
 
Primeira verificação: 
0,95 . 𝑋1̅̅ ̅ = 28,63 % 
1,05 . 𝑋1̅̅ ̅ = 31,65 % 
Analisando os valores individuais, identificamos que apenas o teor de umidade igual a 
28,1% encontra-se fora do intervalo acima, devendo ser excluído para determinação de uma 
nova média. 
Nova média: 
𝑋2̅̅ ̅ =
30,8 + 31,4 + 29,8 + 30,6
4
= 30,65 % 
Cap. 1 - Propriedades-índices 
 
23 
 
 
Verificação da segunda média: 
0,95 . 𝑋2̅̅ ̅ = 29,11 % 
1,05 . 𝑋2̅̅ ̅ = 32,18 % 
Ao analisar os quatro valores individuais restantes, verificamos que todos se encontram 
dentro do novo intervalo. Logo, esta nova média equivale ao limite de plasticidade deste solo, 
ou seja, LP = 30,65 % . 
Portanto, o Índice de Plasticidade do solo será: 
𝐼𝑃 = 𝐿𝐿 − 𝐿𝑃 = 54,3 − 30,65 = 𝟐𝟑, 𝟔𝟓% 
 
1.10 Determinar o índice de atividade de um solo argiloso que apresentou IP igual a 42% e 
porcentagem de argila (fração menor que 0,002 mm) igual a 54%. 
 
Solução: 
Passo 1: Identificação do problema. 
De acordo com Barnes (2016), o teor de umidade de um solo argiloso é afetado não só 
pela sua granulometria e composição mineralógica, mas também pela quantidade de argila 
presente. Partículas de silte e de areia estarão presentes em um solo argiloso natural quando 
se realizam os ensaios de limite de Atterberg e afetarão o valor do teor de umidade, mas podem 
ter pouco efeito nas propriedades de plasticidade do solo, pois há predominância de partículas 
de argila. O termo atividade, ou índice de atividade, foi definido por Skempton (1953) como: 
𝐴𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 =
𝐼𝑃
𝑡𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 (%)
 
 
Portanto, uma argila ou solo argiloso podem ser classificados desde inativos a altamente 
ativos, conforme a Tabela 1. 3, que também apresenta valores típicos de atividade de diferentes 
solos. 
 
 
Exercícios Resolvidos de Mecânica dos Solos 
24 
 
Tabela 1. 3 - Atividade das argilas. Adaptado de Barnes (2016) 
Grupos Valores típicos 
Descrição Atividade Solo/mineral Atividade 
inativo < 0,75 
Caulinita 0,4 
Argilas glaciais 0,5 - 0,7 
normal 0,75 - 1,25 
Ilita 0,9 
Argila de Oxford, Londres 0,8 - 1,0 
ativo 1,25 - 2,0 
Montmorilonita de cálcio 1,5 
Argila aluvial orgânica 1,2 - 1,7 
altamente ativo > 2 Montmorilonita de sódio (bentonita) 7 
 
 Passo 2: Desenvolvimento. 
O índice de atividade do solo será, portanto: 
𝐴𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 =
𝐼𝑃
𝑡𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 (%)
=
42 %
54 %
= 𝟎, 𝟕𝟖 
 
De acordo com a Tabela 1. 3, este solo argiloso pode ser classificado como de atividade 
normal. 
 
1.11 Dois solos retirados de jazidas diferentes foram caracterizados em laboratório, 
apresentando os seguintes resultados (Tabela 1. 4): 
 
Tabela 1. 4 - Resultados de caracterização física dos solos 
Dados Solo A Solo B 
Massa específica dos sólidos (kN/m³) 27,1 26,2 
Umidade natural (%) 18 22 
Limite de Liquidez (%) 20 40 
Limite de Plasticidade (%) 10 18 
Teor de argila (%) 25 22 
 
Baseando-se nestes resultados, responder: 
a) Qual solo tem maior índice de consistência? 
b) Qual solo tem maior índice de vazios no Limite de Liquidez (𝑆𝑟 = 100%)? 
c) Qual solo tem maior atividade de argila? 
Cap. 1 - Propriedades-índices 
 
25 
 
Solução: 
a) 
Passo 1: Identificação do problema. 
A comparação do teor de umidade natural, 𝑤, de um dado solo argiloso com os limites 
de Atterberg fornece uma indicação aproximada da consistência do solo. Para tanto, é comum 
usar o chamado índice de consistência, 𝐼𝐶, de equação (FERNANDES, 2016): 
𝐼𝐶 =
𝐿𝐿 − 𝑤
𝐿𝐿 − 𝐿𝑃
=
𝐿𝐿 − 𝑤
𝐼𝑃
 
 
A Tabela 1. 5 apresenta uma classificação dos solos argilosos quanto à consistência. 
Tabela 1. 5 - Classificação dos solos argilosos quanto à consistência (FERNANDES, 2016) 
Argila IC 
Muito mole 0,0 - 0,25 
Mole 0,25 - 0,50 
Média 0,50 - 0,75 
Rija 0,75 - 1,00 
Dura > 1,00 
 
Passo 2: Desenvolvimento. 
A partir dos resultados fornecidos, é possível calcular o IC dos dois solos: 
𝐼𝐶𝑆𝑂𝐿𝑂 𝐴 =
𝐿𝐿 − 𝑤
𝐿𝐿 − 𝐿𝑃
=
20 − 18
20 − 10
= 0,2 
 
𝐼𝐶𝑆𝑂𝐿𝑂 𝐵 =
𝐿𝐿 − 𝑤
𝐿𝐿 − 𝐿𝑃
=
40 − 2240 − 18
= 0,82 
 
A partir da Tabela 1. 5, podemos classificar o solo A como uma argila muito mole e o 
solo B como uma argila rija. Por fim, nota-se que o solo B tem maior IC dentre os dois solos. 
 
b) 
Exercícios Resolvidos de Mecânica dos Solos 
26 
 
Passo 1: Identificação do problema. 
Para se determinar o índice de vazios a partir de índices fornecidos acima, podemos 
utilizar a equação já trabalhada anteriormente: 
 
𝑆𝑟 = 
𝑤 𝛾𝑠
𝛾𝑤 𝑒
 ⟼ 𝑒 = 
𝑤 𝛾𝑠
𝛾𝑤 𝑆𝑟
 
 
Contudo, deve-se ressaltar que pergunta-se qual o índice de vazios NO LIMITE DE 
LIQUIDEZ, ou seja, deve-se trabalhar com o teor de umidade correspondente ao LL, haja 
vista que os limites de Atterberg nada mais são que teores de umidade. 
Passo 2: Desenvolvimento. 
A partir desta discussão, calculemos os índices de vazios dos solos: 
𝑒𝑆𝑂𝐿𝑂 𝐴 = 
𝑤𝐿𝐿 𝛾𝑠
𝛾𝑤 𝑆𝑟
= 
0,20 . 27,1
10 . 1,0
= 0,542 
 
𝑒𝑆𝑂𝐿𝑂 𝐵 = 
𝑤𝐿𝐿 𝛾𝑠
𝛾𝑤 𝑆𝑟
= 
0,40 . 26,2
10 . 1,0
= 1,048 
 
Portanto, o solo B apresenta maior índice de vazios no Limite de Liquidez. 
 
c) 
Passo 1: Identificação do problema. 
Como trabalhado no exercício anterior, sabemos que a atividade de uma argila é dada 
pela relação entre seu Índice de Plasticidade e sua porcentagem de fração argila, ou seja, fração 
menor que 0,002 mm. 
Passo 2: Desenvolvimento. 
Calculando-se a atividade destes solos, temos que: 
𝐴𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 =
𝐼𝑃
𝑡𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 (%)
=
𝐿𝐿 − 𝐿𝑃 %
𝑡𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 (%)
 
Cap. 1 - Propriedades-índices 
 
27 
 
Portanto, 
𝐴𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑆𝑂𝐿𝑂 𝐴 =
𝐿𝐿 − 𝐿𝑃 %
𝑡𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 (%)
=
20 − 10
25
= 0,4 
 
𝐴𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑆𝑂𝐿𝑂 𝐵 =
𝐿𝐿 − 𝐿𝑃 %
𝑡𝑒𝑜𝑟 𝑑𝑒 𝑎𝑟𝑔𝑖𝑙𝑎 (%)
=
40 − 18
22
= 1,0 
 
Logo, o solo B também possui atividade maior que o solo A. 
 
Exercícios Resolvidos de Mecânica dos Solos 
28 
 
2 CLASSIFICAÇÃO DE SOLOS 
 
2.1. Classifique os seguintes solos pelo Sistema Unificado de Classificação de Solos 
(SUCS). 
A) Porcentagem de solo passante na peneira de malha nº 200 (% P #200) = 94% 
LL = 58% 
IP = 30% 
 
Solução 
Passo 1: Identificação do problema. 
Segundo Pinto (2006), este sistema de classificação foi elaborado originalmente pelo 
renomado engenheiro geotécnico e estudioso da Mecânica dos Solos, professor Arthur 
Casagrande, para obras de aeroportos, e seu emprego foi generalizado. Atualmente, é utilizado 
principalmente na Engenharia de Barragens. 
Esta classificação separa os solos, basicamente, em solos granulares e solos de 
graduação fina, como siltes e argilas. A Tabela 2. 1 é utilizada pelo SUCS. Caso, o solo em 
análise seja de graduação fina, é necessário se fazer uso da Carta de Plasticidade, apresentada 
na Figura 2. 1. 
A terminologia deste sistema unificado é a seguinte: 
 
G Pedregulho 
S Areia 
M Silte 
C Argila 
O Solo orgânico 
W Solo bem graduado 
P Solo mal graduado 
H Solo de alta compressibilidade 
L Solo de baixa compressibilidade 
Pt Turfas 
 
Cap. 2 – Classificação de Solos 
29 
 
 
Tabela 2. 1 - Esquema para a classificação pelo Sistema Unificado. Adaptado de Pinto (2006) 
 
 
 
Figura 2. 1 - Carta de plasticidade de Casagrande. 
 
GW CNU > 4 e 1 < CC < 3
GP CNU < 4 ou 1 > CC > 3
GC
GM
5 < #200 < 12
SW CNU > 6 e 1 < CC < 3
SP CNU < 6 ou 1 > CC > 3
SC
SM
5 < #200 < 12
CL
CH
ML
MK
OL
OH
C
M
O
% P #200 < 50
% P #200 > 50
% P #200 < 5
% P #200 > 12
SW-SC, SP-SC, etc.
G > S : G
S > G : S
% P #200 < 5
% P #200 > 12
GW-GC, GP-GM, etc.
GC 
GM
SC 
SM
IP
4
7
58
20 50 100
LL
CL
CH
OL
ML
MH
OH
Exercícios Resolvidos de Mecânica dos Solos 
30 
 
Passo 2: Desenvolvimento. 
Para o exercício em questão, tem-se um solo com 94% em massa passando na #200. 
Portanto, como 94% > 50%, e de acordo com a Tabela 2. 1, trata-se de um solo C, M ou O 
(argila, silte ou solo orgânico, respectivamente). 
Como se trata de um solo fino, devemos analisar a Carta de Plasticidade, entrando com 
os respectivos valores de LL = 58% e IP = 30%, como apresentado na Figura 2. 2. Desta 
forma, o solo será classificado como CH – argila de alta compressibilidade. 
Conclusões finais 
 Observe-se que solos finos com LL > 50% serão classificados como de alta 
compressibilidade e, aqueles com LL < 50%, baixa compressibilidade. 
 Casagrande também apresentou uma equação para a Linha A da Carta de 
Plasticidade, sendo ela: 
𝐼𝑃 = 0,73. (𝐿𝐿 − 20) , 
 
sendo, de acordo com Pinto (2006), substituída no seu trecho inicial por uma faixa horizontal 
correspondente a IP de 4 a 7. Desta forma, para solos que se localizem próximo à Linha A, é 
necessário se comparar o IP destes solos com o IP da Linha A, verificando se estes se 
encontram abaixo ou acima da mesma. 
 
Figura 2. 2 - Determinação da classificação do solo a partir da Carta de Plasticidade. 
Cap. 2 – Classificação de Solos 
31 
 
 
B) % P #200 = 40% 
Solo possui 5% de pedregulho e 55% de areia; 
LL = 30% 
IP = 20% 
 
Solução 
Passo 1: Identificação do problema. 
Mais uma vez, será necessário utilizar a Tabela 2. 1 para a classificação unificada e, se 
necessário, a Carta de Plasticidade. 
Passo 2: Desenvolvimento. 
Como % P #200 = 40% < 50%, este solo será um pedregulho (G) ou uma areia (S). Com 
a informação de que o solo possui 5% de pedregulho e 55% de areia, conclui-se que S > G, 
ou seja, a areia está em maior porcentagem que o pedregulho, sendo o solo classificado como 
uma areia: S. 
Após esta constatação e caminhando pela Tabela 2. 1, precisamos analisar a 
porcentagem passante na #200 mais uma vez (terceira coluna da tabela). Como esta 
porcentagem passante e igual a 40% é superior ao limite de 12%, será necessário analisar a 
Carta de Plasticidade e a Linha A desta carta. Note que, caso o solo se localize acima da Linha 
A, será classificado como SC – areia argilosa; caso se localize abaixo, como SM – areia siltosa. 
O IP da Linha A será: 
𝐼𝑃 = 073. (𝐿𝐿 − 20) = 073. (30 − 20) = 7,3 
Como o IP do solo é igual a 20% e, portanto, superior a 7,3, este solo se encontra acima 
da Linha A, sendo classificado como SC. 
 
C) LL = 10% 
IP = NP (solo não plástico) 
Curva granulométrica do solo: 
 
Exercícios Resolvidos de Mecânica dos Solos 
32 
 
 
Figura 2. 3 - Curva granulométrica do solo - exercício C. 
 
 
Solução 
Passo 1: Identificação do problema. 
 Agora, não possuímos as informações explícitas sobre % P #200, porcentagem de 
areia, de pedregulho ou outra informação referente à granulometria do solo a não ser a própria 
curva granulométrica. Daí, é necessário aprendermos a interpretá-la e extrair dela aquilo que 
nos será importante para realizar a classificação unificada deste solo. 
A ABNT NBR 6502 (1995) – Rochas e solos, define a diferença entre as várias frações 
de solo (argila, silte, areia, pedregulho, etc) em função do diâmetro de seus grãos: 
 Argila: solo de granulação fina constituído por partículas com dimensões 
menores que 0,002 mm, apresentando coesão e plasticidade; 
 Silte: solo que apresenta baixa ou nenhuma plasticidade, e que exibe baixa 
resistência quando seco ao ar. É formado por partículas com diâmetros 
compreendidos entre 0,002 mm e 0,06 mm; 
 Areia: solo não coesivo e não plástico formado por minerais ou partículas de 
rochas com diâmetros compreendidos entre 0,06 mm e 2,0 mm; 
Cap. 2 – Classificação de Solos 
33 
 
 Pedregulho: solos formados por minerais ou partículas de rocha, com diâmetro 
compreendido entre 2,0 mm e 60 mm. 
Passo 2: Desenvolvimento. 
A partir dos intervalos determinados por esta norma, basta localizarmos estes intervalos 
na curva granulométrica e determinarmos a porcentagem equivalente a cada fração (Figura 2. 
4): 
 
Figura 2. 4 - Identificação das frações do solo. 
 
Pela posição da curva granulométrica (entre 0,1 mm e 10 mm), nota-se tratar de um solo 
grosso. Ao identificar os limites das frações, constata-seque o solo é constituído por 
aproximadamente 95% de areia e 5% de pedregulho. 
Note-se ainda que não há fração fina neste solo (argila e silte). Desta forma, a 
informação % P #200 = 0 será importante aqui. 
Analisando a Tabela 2. 1, depreende-se que S > G: S e, como a porcentagem passante 
na peneira n° 200 é inferior a 5% (% P #200 = 0 < 5%), este solo será uma areia bem graduada 
(SW) ou mal graduada (SP). Esta diferenciação ficará restrita a dois coeficientes: o coeficiente 
Exercícios Resolvidos de Mecânica dos Solos 
34 
 
de não uniformidade (CNU) e o coeficiente de curvatura (CC), que dependem dos diâmetros 
D10, D30 e D60 do solo: 
𝐶𝑁𝑈 = 
𝐷60
𝐷10
 𝐶𝐶 = 
𝐷30 
2
𝐷10. 𝐷60 
 
 
onde: 
D10, D30 e D60 são, respectivamente, os diâmetros abaixo dos quais se situam 10%, 30% e 60% 
em peso das partículas do solo, ou podem ser entendidos como os diâmetros correspondentes 
às respectivas porcentagens passantes de 10%, 30% e 60% pelo conjunto de peneiras. 
Portanto, estes diâmetros serão definidos diretamente na curva granulométrica (Figura 
2. 5): 
 
Figura 2. 5 - Determinação de D10, D30 e D60. 
 
Tem-se, então, que: 
 D10 = 0,27 mm 
 D30 = 0,59 mm e; 
 D60 = 0,9 mm. 
Cap. 2 – Classificação de Solos 
35 
 
Pode-se, agora, determinar o valor de CNU e CC: 
𝐶𝑁𝑈 = 
𝐷60
𝐷10
= 
0,9
0,27
= 3,33 
 
𝐶𝐶 = 
𝐷30 
2
𝐷10. 𝐷60 
= 
0,59 2
0,27. 0,9 
= 1,43 
 
Por fim, da Tabela 2. 1 e de posse dos valores de CNU e CC, classificaremos este solo 
como: 
 SW se CNU > 6 e 1 < CC < 3 e; 
 SP se CNU < 6 ou 1 > CC > 3. 
*Nota: perceba que para ser SW, deve-se satisfazer às duas condições referentes a CNU e CC. Para 
ser SP, basta satisfazer a apenas uma. 
 
Portanto, como CNU = 3,33 < 6, este solo será uma areia mal graduada (SP). 
 
2.2. Classifique os solos a seguir utilizando o Sistema de Classificação Rodoviária 
(HRB). 
 
A) % P #10 = 82% 
% P #40 = 58% 
% P #200 = 20% 
LL = 32% 
IP = 18% 
 
Solução 
Passo 1: Identificação do problema. 
Este sistema de classificação foi proposto inicialmente nos Estados Unidos, pelo Bureau 
of Public Roads e evoluído para a classificação rodoviária do Highway Research Board – 
Exercícios Resolvidos de Mecânica dos Solos 
36 
 
HRB, a fim de classificar o comportamento dos solos americanos para utilização como 
subleito de rodovias. 
A classificação de solos do HRB baseia-se também em ensaios normais de 
caracterização de solos, ou seja, o Limite de Liquidez, o Índice de Plasticidade e o ensaio de 
granulometria. Neste último, têm interesse as porcentagens que passam nas peneiras n°10, 40 
e 200 (SENÇO, 2007). 
Diferentemente da classificação unificada, este sistema utiliza a porcentagem de 35% 
para separar solos granulares e solos finos (siltosos e argilosos), enquanto o SUCS utiliza a 
porcentagem de 50%. Esta classificação rodoviária também utiliza o chamado índice de grupo 
(IG) para classificar o comportamento do solo como material de subleito. Utilizando a 
porcentagem passante na #200, o Limite de Liquidez e o Índice de Plasticidade, determina-se 
o IG que, é baixo para solos granulares e alto para solos siltosos ou argilosos: 
𝐼𝐺 = (𝑃#200 − 35). [0,2 + 0,005. (𝐿𝐿 − 40)] + 0,01. (𝑃#200 − 15). (𝐼𝑃 − 10) 
 
Se, por ventura, encontrar-se um valor de IG negativo, adota-se o valor zero (0). 
Ressalta-se ainda que IG deve ser apresentado como número inteiro. A Tabela 2. 2 é utilizada 
para esta classificação. 
Tabela 2. 2 – Tabela para classificação rodoviária sugerida pelo Highway Research Board - HRB e 
adotada pela American Association of State Highway and Transportation Officials - AASHTO 
 
*Nota: Solos do grupo A-7: se IP ≤ LL – 30, o solo será A-7-5. Se IP > LL – 30, o solo será A-7-6. 
A-7*
A-7-5
A-7-6
% que passa
# 10 50 máx.
# 40 30 máx. 50 máx. 51 mín.
# 200 15 máx. 25 máx. 10 máx. 35 máx. 35 máx. 35 máx. 35 máx. 36 mín. 36 mín. 36 mín. 36 mín.
Limite de 
Liquidez (%)
- 40 máx. 41 mín. 40 máx. 41 mín. 40 máx. 41 mín. 40 máx. 41 mín.
Índice de 
Plasticidade (%)
NP 10 máx. 10 máx. 11 mín. 11 mín. 10 máx. 10 máx. 11 mín. 11 mín.
Índice de Grupo 0 8 máx. 12 máx. 16 máx. 20 máx.
Materiais que 
predominam
Areia 
fina
Comportamento 
geral como 
subleito
Solos siltosos Solos argilosos
Grupo
6 máx.
0
Pedra britada, 
pedregulho e 
areia
0 4 máx.
Areia e areia siltosa ou argilosa
A-2-7
A-4 A-5 A-6
-
A-1-a A-1-b
A-3
A-2-4 A-2-5 A-2-6
Materiais Granulares Materiais Siltosos ou Argilosos
Classificação 
Geral (35% ou menos passando na #200)
(mais de 35% passando na 
#200)
Excelente a bom Fraco a pobre
A-1 A-2
Cap. 2 – Classificação de Solos 
37 
 
 
Passo 2: Desenvolvimento. 
A análise da Tabela 2. 2 deve ser realizada de cima para baixo e da esquerda para direita; 
analisa-se a granulometria do solo através das peneiras #10, #40 e #200, e em seguida, o LL 
e IP, terminando-se pela determinação do IG. 
No exercício em questão, tem-se 82% passante na #10, ou seja, não poderá ser 
classificado como A-1-a, pois o máximo permitido nesta peneira é de 50%. Note que, de A-
1-b em diante, não há exigências para esta peneira. Analisando-se a #40, tem-se 58% de solo 
passante. Descartando-se também a classificação A-1-b, que limita a porcentagem em 50%. 
Desta forma, até agora, este solo poderá ser A-3, A-2, A-4, A-5, A-6 ou A-7. 
Como a porcentagem passante na #200 é igual a 20%, descarta-se a classificação A-3, 
em que o limite máximo é de 10%, bem como as classificações A-4 a A-7, em que o mínimo 
passante na #200 é de 36%. Como 20% < 35%, este solo será um A-2. Resta-nos agora 
verificar os limites de consistência e índice de grupo. 
O LL do solo é igual a 32%, descartando-se as classificações A-2-5 e A-2-7, em que o 
mínimo para LL é 41%. Portanto, será A-2-4 ou A-2-6. Como o IP do solo é igual a 18%, será 
um solo A-2-6, pois a porcentagem mínima para IP é de 11%. 
Para apresentar esta classificação de forma mais completa, convenciona-se fornecer o 
IG entre parênteses na classificação, ou seja, A-2-6 (IG). Passemos, portanto, ao cálculo de 
IG: 
𝐼𝐺 = (𝑃#200 − 35). [0,2 + 0,005. (𝐿𝐿 − 40)] + 0,01. (𝑃#200 − 15). (𝐼𝑃 − 10) = 
 
𝐼𝐺 = (20 − 35). [0,2 + 0,005. (32 − 40)] + 0,01. (20 − 15). (18 − 10) = 
 
−2,8 ⟼ 0 
 
Logo, este solo terá classificação A-2-6 (0). 
 
 
Exercícios Resolvidos de Mecânica dos Solos 
38 
 
B) % P #10 = 100% 
% P #40 = 87% 
% P #200 = 65% 
LL = 60% 
LP = 32% 
 
Solução 
Passo 1: Identificação do problema. 
Análogo ao exercício anterior, porém, em vez de ser informado o valor de IP, informou-
se o valor do Limite de Plasticidade (LP). Assim, é necessário se calcular o IP deste solo: 
 
𝐼𝑃 = 𝐿𝐿 − 𝐿𝑃 = 60 − 32 = 28% 
 
Passo 2: Desenvolvimento. 
Vamos lá agora! Como a % P#10 = 100%, descarta-se a classificação A-1-a. Como a % 
P#40 = 87%, também descarta-se a classificação A-1-b, podendo ser A-3 em diante. 
Como % P#200 = 65%, não poderá ser A-3 nem A-2, pois de limitam às porcentagens 
de 10% e 35%, respectivamente. Logo, será A-4, A-5, A-6 ou A-7. 
Como LL = 60%, será um solo A-5 ou A-7. Ao analisarmos o IP do solo (IP = 28%), 
constatamos que se trata de um solo A-7, pois IP = 28% > 11%. Contudo o asterisco que 
acompanha a nomenclatura A-7 na Tabela 2. 2 nos leva a analisar a nota de rodapé desta 
tabela, que sugere: 
Se IP ≤ LL - 30 ⟼ A-7-5 
Se IP > LL - 30 ⟼ A-7-6 
 
Como IP = 28% e LL = 60%, tem-se que: 
 
𝐿𝐿 − 30 = 60 − 30 = 30% > 𝐼𝑃 = 28% 
 
Logo, este solo será um A-7-5. Calculando-se o IG do solo: 
𝐼𝐺 = (𝑃#200 − 35). [0,2 + 0,005. (𝐿𝐿 − 40)] + 0,01. (𝑃#200 − 15). (𝐼𝑃 − 10) = 
Cap. 2 – Classificação de Solos 
39 
 
 
𝐼𝐺 = (65 − 35). [0,2 + 0,005. (60 − 40)] + 0,01. (65 − 15). (28 − 10) = 
 
𝐼𝐺 = 18 
 
Assim, este solo terá classificação A-7-5 (18). 
 
C) % P #10 = 40% 
% P #40 = 23% 
% P #200 = 15% 
LL = 10% 
IP = 4% 
 
Solução 
Passo 1: Identificação do problema. 
Análogo aoexercício anterior. 
Passo 2: Desenvolvimento. 
Como a % P#10 = 40%, inferior a 50%, este solo poderá ser um A-1-a. Analisando-se a 
porcentagem passante na #40, tem-se 23%, menor que o limite máximo de 30%, mantendo-se 
como A-1-a. A %P #200 =15%, igual ao limite máximo permitido para ser classificado como 
A-1-a. Note que, da Tabela 2. 2, não há exigências para LL, restando-nos analisar o IP do solo. 
Como IP = 4%, inferior ao limite máximo de 6%, este solo será, de fato, um A-1-a. 
Calculando-se o IG para verificação: 
𝐼𝐺 = (𝑃#200 − 35). [0,2 + 0,005. (𝐿𝐿 − 40)] + 0,01. (𝑃#200 − 15). (𝐼𝑃 − 10) = 
 
𝐼𝐺 = (15 − 35). [0,2 + 0,005. (10 − 40)] + 0,01. (15 − 15). (4 − 10) = 
 
𝐼𝐺 = −1 ⟼ 0 
 
Portanto, classifica-se este solo como A-1-a (0), ou simplesmente, A-1-a, pois IG = 0 é 
o único valor que esta classificação assume. 
 
Exercícios Resolvidos de Mecânica dos Solos 
40 
 
3 TENSÕES GEOSTÁTICAS 
 
3.1. Traçar os diagramas de tensão total, tensão efetiva e poropressão para o esquema da 
Figura 3. 1. 
 
Figura 3. 1 - Perfil de solo. 
 
Solução 
Inicialmente, para traçarmos os diagramas, precisaremos calcular as tensões solicitadas, 
de forma que: 
Passo 1: Calcular a tensão total. 
𝜎 = 𝛾ℎ = 19,2 𝑥 5 = 96,0 𝑘𝑁/𝑚² = 96,0 𝑘𝑃𝑎 
 
Passo 2: Calcular a poropressão: como não foi apresentado N.A. na Figura 3. 1, subentende-
se não haver poropressão, ou podemos dizer que a altura h do lençol freático na camada de 
solo é igual a zero. 
𝑢 = 𝛾𝑤ℎ = 10 𝑥 0 = 0 𝑘𝑃𝑎 
 
Passo 3: Calcular a tensão efetiva: uma vez que 𝜎′ = 𝜎 − 𝑢 e a poropressão é nula, temos que 
a tensão efetiva será igual à total. Logo, 
σ′ = σ = 96,0 kPa 
 
Passo 4: Traçar os diagramas: calculadas as tensões geostáticas, podemos traçar seus 
diagramas, como apresentado a seguir. 
5,0 m 
Solo arenoso 
 = 19,2 kN/m³ 
Cap. 3 – Tensões Geostáticas 
41 
 
 
 
3.2. Traçar os diagramas de tensões (𝜎, 𝜎′e u) para as camadas da Figura 3. 2. 
 
Figura 3. 2 - Perfil de solo contendo duas camadas. 
 
Solução 
Passo 1: Determinar as tensões totais. 
𝜎1 = 𝛾1ℎ1 = 17 𝑥 6 = 102,0 𝑘𝑃𝑎 
𝜎2 = 𝜎1 + 𝛾2ℎ2 = 102,0 + 19 𝑥 5 = 197,0 𝑘𝑃𝑎 
 
Passo 2: Determinar as poropressões. 
𝑢1 = 0, pois o N.A. está abaixo da camada de areia. 
𝑢2 = 𝛾𝑤ℎ2 = 10 𝑥 5 = 50,0 𝑘𝑃𝑎 
 
Passo 3: Determinar as tensões efetivas. 
σ′1 = σ1 − 𝑢1 = 102,0 − 0 = 102,0 𝑘𝑃𝑎 
σ′2 = σ2 − 𝑢2 = 197 − 50 = 147,0 𝑘𝑃𝑎 
5,0 m
u '
0 96,0
6,0 m
1
2
5,0 m
Areia
 = 17 kN/m³
Argila
SAT = 19 kN/m³

Exercícios Resolvidos de Mecânica dos Solos 
42 
 
 
Passo 4: Traçar os diagramas. 
 
 
3.3. Determinar as tensões (𝜎, 𝜎′e u) atuantes no ponto A apresentado na Figura 3. 3. 
 
Figura 3. 3 - Perfil de solo com duas camadas e nível d'água. 
 
Solução 
Em relação ao nível do terreno, o ponto A está a 3,5 m de profundidade Assim, 
seguiremos o esquema de cálculo: 
Passo 1: Determinar a tensão total em A. 
𝜎1 = 𝛾1ℎ1 = 17,8 𝑥 2 = 35,6 𝑘𝑃𝑎 
𝜎𝐴 = 𝜎1 + 𝛾2ℎ𝐴 = 35,6 + 16,2 𝑥 1,5 = 59,9 𝑘𝑃𝑎 
 
Passo 2: Determinar a poropressão em A. 
6,0 m
5,0 m
u
0
50,0

102
197
'
102
147
2,0 m
1
2
4,0 m
Argila siltosa
 = 17,8 kN/m³
Areia fofa
 = 16,2 kN/m³ 
1,0 m

1,5 m
Cap. 3 – Tensões Geostáticas 
43 
 
Como o N.A. está abaixo de A: 𝑢𝐴 = 0 
 
Passo 3: Determinar a tensão efetiva em A. 
Sendo 𝑢𝐴 = 0, 𝜎′𝐴 = 𝜎𝐴 = 59,9 𝑘𝑃𝑎. 
 
3.4. Calcular as tensões geostáticas para a Figura 3.4 e traçar seus respectivos diagramas. 
 
Figura 3.4 - Perfil de solo com três camadas e N.A. 
 
Solução 
Passo 1: Determinar as tensões totais. 
𝜎1 = 𝛾1ℎ1 = 20 𝑥 4 = 80,0 𝑘𝑃𝑎 
𝜎2 = 𝜎1 + 𝛾2ℎ2 = 80,0 + 17,9 𝑥 5 = 169,5 𝑘𝑃𝑎 
𝜎3 = 𝜎2 + 𝛾3ℎ3 = 169,5 + 15,2 𝑥 2 = 199,9 𝑘𝑃𝑎 
 
Passo 3: Determinar as poropressões. 
𝑢1 = 0 (N.A. está abaixo) 
𝑢2 = 𝑢1 + 𝛾𝑤ℎ2 = 0 + 10 𝑥 5 = 50,0 𝑘𝑃𝑎 
𝑢3 = 𝑢2 + 𝛾𝑤ℎ3 = 50,0 + 10 𝑥 2 = 70,0 𝑘𝑃𝑎 
 
 
Passo 4: Determinar as tensões efetivas. 
𝜎′1 = 𝜎1 − 𝑢1 = 80,0 − 0 = 80,0 𝑘𝑃𝑎 
𝜎′2 = 𝜎2 − 𝑢2 = 169,5 − 50,0 = 119,5 𝑘𝑃𝑎 
4,0 m
1
2
5,0 m
Areia compacta
 = 20,0 kN/m³
Argila siltosa dura
SAT = 17,9 kN/m³

2,0 m Argila mole
SAT = 15,2 kN/m³
3
Exercícios Resolvidos de Mecânica dos Solos 
44 
 
𝜎′3 = 𝜎3 − 𝑢2 = 199,9 − 70 = 129,9 𝑘𝑃𝑎 
 
Passo 5: Traçar os diagramas. 
 
 
3.5. Traçar os diagramas de tensões geostáticas para o perfil de solo apresentado na Figura 
3. 5. 
 
Figura 3. 5 - Perfil de solo de duas camadas. 
 
Solução 
Passo 1: Determinar os pesos específicos das camadas (revisar Capítulo 1). 
𝛾1 = 
𝑃
𝑉
=
𝛾𝑠(1 + 𝑤)
1 + 𝑒
=
26,2 (1 + 0,20)
1 + 0,60
= 19,65 𝑘𝑁/𝑚³ 
7,0 m
1
2
8,0 m
Areia medianamente compacta
s = 26,2 kN/m³ w = 20,0% e = 0,6
Argila média
d = 11,8 kN/m³ w = 50,0%
4,0 m 
5,0 m 
2,0 m 
50,0 
 ' 
70,0 
0 80 80 
169,5 
199,9 129,9 
119,5 
Cap. 3 – Tensões Geostáticas 
45 
 
 
𝛾2 = 
𝑃
𝑉
= 𝛾𝑑(1 + 𝑤) = 11,8(1 + 0,50) = 17,70 𝑘𝑁/𝑚³ 
 
Passo 2: Determinar as tensões totais. 
𝜎1 = 𝛾1ℎ1 = 19,65 𝑥 7 = 137,55 𝑘𝑃𝑎 
𝜎2 = 𝜎1 + 𝛾2ℎ2 = 137,55 + 17,70 𝑥 8 = 279,15 𝑘𝑃𝑎 
 
Passo 3: Determinar as poropressões. 
𝑢1 = 0 (Sem presença de N.A.) 
𝑢2 = 0 
 
Passo 4: Determinar as tensões efetivas. 
𝜎′1 = 𝜎1 − 𝑢1 = 137,55 − 0 = 137,55 𝑘𝑃𝑎 
𝜎′2 = 𝜎2 − 𝑢2 = 279,15 − 0 = 279,15 𝑘𝑃𝑎 
 
Passo 5: Traçar os diagramas. 
 
 
7,0 m
8,0 m
u '
0
0
137,55
279,15
Exercícios Resolvidos de Mecânica dos Solos 
46 
 
3.6. Determinar as tensões geostáticas para a Figura 3. 6. 
 
Figura 3. 6 - Perfil de solo com duas camadas e N.A. na superfície do terreno. 
 
Solução 
Passo 1: Determinar os pesos específicos das camadas. 
Sabendo que Sr = 100%, pois o N.A. encontra-se acima das camadas, tem-se: 
𝑒1 = 
𝑤 𝛾𝑠
𝑆𝑟𝛾𝑤
= 
0,40 𝑥 26,0
1,0 𝑥 10,0
= 1,04 
 
𝛾1 = 
𝛾𝑠(1 + 𝑤)
1 + 𝑒1
=
26,0(1 + 0,40)
1 + 1,04
= 17,84 𝑘𝑁/𝑚³ 
 
𝛾2 = 
𝛾𝑠(1 + 𝑤)
1 + 𝑒2
=
27,0(1 + 0,70)
1 + 1,89
= 15,88 𝑘𝑁/𝑚³ 
 
Passo 2: Determinar as tensões totais. 
𝜎1 = 𝛾1ℎ1 = 17,84 𝑥 4 = 71,36 𝑘𝑃𝑎 
𝜎2 = 𝜎1 + 𝛾2ℎ2 = 71,36 + 15,88 𝑥 8 = 198,40 𝑘𝑃𝑎 
 
Passo 3: Determinar as poropressões. 
𝑢1 = 𝛾𝑤ℎ1 = 10 𝑥 4 = 40 𝑘𝑃𝑎 
𝑢2 = 𝑢1 + 𝛾𝑤ℎ2 = 40 + 10 𝑥 8 = 120 𝑘𝑃𝑎 
4,0 m
1
2
8,0 m
Argila
s = 26,0 kN/m³ w = 40,0%
Areia
s = 27,0 kN/m³ w = 70,0% e = 1,89
Cap. 3 – Tensões Geostáticas 
47 
 
 
Passo 4: Determinar as tensões efetivas. 
𝜎′1 = 𝜎1 − 𝑢1 = 71,36 − 40 = 31,36 𝑘𝑃𝑎 
𝜎′2 = 𝜎2 − 𝑢2 = 198,40 − 120 = 78,40 𝑘𝑃𝑎 
 
3.7. Determinar as tensões geostáticas para a Figura 3. 7. Em seguida, traçar seus 
diagramas. 
 
Figura 3. 7 - Perfil de solo com duas camadas e N.A. 
 
Solução 
Passo 1: Determinar os pesos específicos das camadas. 
𝛾1 = 𝛾𝑑(1 + 𝑤) = 15,2(1 + 0,30) = 19,76 𝑘𝑁/𝑚³ 
 
Sabendo que Sr = 100% abaixo do N.A., tem-se que: 
𝑒2 = 
𝑤 𝛾𝑠
𝑆𝑟𝛾𝑤
= 
0,50 𝑥 27,3
1,0 𝑥 10,0
= 1,365 
 
𝛾2 (𝑠𝑎𝑡) = 
𝛾𝑠(1 + 𝑤)
1 + 𝑒2
=
27,3(1 + 0,50)
1 + 1,365
= 17,32 𝑘𝑁/𝑚³ 
 
Passo 2: Determinar as tensões totais. 
𝜎1 = 𝛾1ℎ1 = 19,76 𝑥 10 = 197,6 𝑘𝑃𝑎 
𝜎2 = 𝜎1 + 𝛾2ℎ2 = 197,6 + 17,32 𝑥 12 = 405,44 𝑘𝑃𝑎 
10,0 m
1
2
12,0 m
Argila arenosa
d = 15,2 kN/m³ w = 30,0%
Silte argiloso
s = 27,3 kN/m³ w = 50,0%

Exercícios Resolvidos de Mecânica dos Solos 
48 
 
 
Passo 3: Determinar as poropressões. 
𝑢1 = 0 
𝑢2 = 𝛾𝑤ℎ2 = 10 𝑥 12 = 120,0 𝑘𝑃𝑎 
 
Passo 4: Determinar as tensões efetivas. 
𝜎′1 = 𝜎1 − 𝑢1 = 197,6 − 0 = 197,6 𝑘𝑃𝑎 
𝜎′2 = 𝜎2 − 𝑢2 = 405,44 − 120,0 = 285,44 𝑘𝑃𝑎 
 
Passo 5: Traçar os diagramas. 
 
 
 
3.8. Uma amostra de um determinado solo apresentou peso específico aparente seco igual 
a 15 kN/m³ e teor de umidade igual a 20% em certa condição ambiente. Determinar o valor 
da tensão efetiva no centro de uma camada deste mesmo solo, sabendo que esta camada é 
homogêneae apresenta 20 m de profundidade. Com um aparelho medidor de nível d’água, 
encontrou-se o lençol freático a 11 m de profundidade. 
 
Solução 
Passo 1: Identificação do problema. 
Este problema resume-se em calcular a tensão efetiva no centro de uma camada de solo 
homogêneo, assim como procedido em exercícios anteriores e como apresentado na Figura 3. 
8. 
10,0 m
12,0 m
u 
0
120,0
197,6
405,44
'
197,6
285,44
Cap. 3 – Tensões Geostáticas 
49 
 
 
Figura 3. 8 - Perfil de solo homogêneo com N.A. 
 
Passo 2: Determinar o peso específico da camada. 
Apesar de se considerar a camada homogênea, acima do N.A. haverá um peso específico 
diferente daquele abaixo deste nível d’água. Contudo, observe que o ponto A, ou seja, o centro 
da camada está a 1 m acima do N.A.. Logo: 
𝛾 = 𝛾𝑑(1 + 𝑤) = 15,0. (1 + 0,20) = 18 𝑘𝑁/𝑚³ 
 
Passo 3: Determinar a tensão solicitada (efetiva). 
Como mencionado, o centro da camada encontra-se acima do N.A.. Portanto, a tensão 
efetiva será igual à tensão total neste ponto, pois a poropressão será nula. Logo: 
𝜎 = 𝛾. ℎ = 18 𝑥 10 = 𝟏𝟖𝟎 𝒌𝑷𝒂 
 
3.9. A Figura 3. 9 apresenta um diagrama de tensões totais de um perfil de solo seco. 
Estando indicados os valores de tensão total nas profundidades de 5 m, 11 m e 15 m abaixo 
do nível do terreno, qual alternativa abaixo representa, respectivamente, os valores dos pesos 
específicos, em kN/m³, das camadas 1, 2 e 3, componentes deste perfil? 
A) 15; 20; 23 
B) 15; 16,9; 18 
C) 15; 18,5; 21 
D) 21; 24; 17. 
Exercícios Resolvidos de Mecânica dos Solos 
50 
 
 
Figura 3. 9 - Diagrama de tensões totais. 
 
Solução 
Passo 1: Identificação do problema. 
Para se determinar os pesos específicos de cada camada de solo, lembremos que este 
diagrama representa os valores de tensão total ao final de cada camada e que esta tensão se 
soma à medida que avançamos em profundidade, ou seja: 
 
𝜎 =∑𝛾𝑖 . ℎ𝑖 
 
Passo 2: Desenvolvimento. 
A partir disto, podemos equacionar o cálculo destas tensões da seguinte forma: 
 
𝜎1 = 𝛾1. ℎ1 = 75 𝑘𝑃𝑎 
𝜎2 = 𝜎1 + 𝛾2. ℎ2 = 186 𝑘𝑃𝑎 
𝜎3 = 𝜎2 + 𝛾3. ℎ3 = 270 𝑘𝑃𝑎 
Cap. 3 – Tensões Geostáticas 
51 
 
 
Passo 3: Cálculo dos pesos específicos das camadas. 
Camada 1: 
𝜎1 = 𝛾1. ℎ1 = 75 𝑘𝑃𝑎 ⟼ 𝛾1 =
𝜎1
ℎ1
=
75
5
= 𝟏𝟓 𝒌𝑵/𝒎³ 
 
Camada 2: 
𝜎2 = 𝜎1 + 𝛾2. ℎ2 = 186 𝑘𝑃𝑎 
𝛾2. ℎ2 = 186 − 𝜎1 = 186 − 75 ⟼ 𝛾2 =
186 − 75
11 − 5
= 𝟏𝟖, 𝟓 𝒌𝑵/𝒎³ 
 
Camada 3: 
𝜎3 = 𝜎2 + 𝛾3. ℎ3 = 270 𝑘𝑃𝑎 
𝛾3. ℎ3 = 270 − 𝜎2 = 270 − 186 ⟼ 𝛾3 =
270 − 186
15 − 11
= 𝟐𝟏 𝒌𝑵/𝒎³ 
 
Passo 4: Conclusão. 
Os pesos específicos das camadas 1, 2 e 3 são, respectivamente, 15 kN/m³, 18,5 kN/m³ 
e 21 kN/m³. 
Alternativa c. 
 
 
 
 
 
Exercícios Resolvidos de Mecânica dos Solos 
52 
 
4 COMPACTAÇÃO DOS SOLOS 
 
4.1. Determinar o teor de umidade ótimo (𝑤ó𝑡𝑖𝑚𝑜) e o peso específico seco máximo (𝛾𝑑𝑚á𝑥) 
de um solo que apresentou o seguinte resultado em um ensaio de compactação: 
 
Figura 4. 1 – Curva de compactação. 
 
Solução 
Passo 1: Identificação do problema. 
A curva apresentada acima é típica de um resultado de compactação de solos. O ramo 
ascendente da curva é chamado ramo seco e, o descente, ramo úmido. O ponto de virada ou 
pico da curva representa, segundo a ABNT NBR 7182 (2016) – Solo – Ensaio de 
compactação, o par de pontos 𝑤ó𝑡𝑖𝑚𝑜 x 𝛾𝑑𝑚á𝑥, sendo estes índices de fundamental importância 
no controle de compactação de aterros em geral, barragens, camadas de pavimentos, etc. 
Passo 2: Desenvolvimento. 
Assim, estes parâmetros de compactação serão dados por: 
 
Cap. 4 – Compactação dos Solos 
53 
 
 
Figura 4. 2 - Determinação dos parâmetros de compactação. 
 
Da Figura 4. 2, tem-se que: 
𝑤ó𝑡𝑖𝑚𝑜 = 𝟐𝟓, 𝟕% 
𝛾𝑑𝑚á𝑥 = 𝟏𝟒, 𝟒 𝒌𝑵/𝒎³ 
 
4.2. Para executar a compactação de uma barragem, realizou-se um ensaio de funil de areia, 
segundo a metodologia proposta pela ABNT NBR 7185 (2016) - Solo – Determinação da 
massa específica aparente, in situ, com emprego do frasco de areia, em uma determinada 
camada compactada, obtendo-se um peso específico aparente seco de campo (𝛾𝑑𝑐𝑎𝑚𝑝𝑜) igual 
a 13,9 kN/m³. Sabendo que o grau de compactação (GC) definido para este projeto é de 98% 
± 2%, deve-se aceitar ou rejeitar esta camada compactada? 
Solução 
Passo 1: Identificação do problema. 
O grau de compactação que, junto com a análise do desvio de umidade ótima, compõe 
o controle de compactação de uma camada a ser compactada, é dado por: 
𝐺𝐶 = 
𝛾𝑑 𝑐𝑎𝑚𝑝𝑜
𝛾𝑑 𝑚á𝑥
 𝑥 100% 
Exercícios Resolvidos de Mecânica dos Solos 
54 
 
 
Passo 2: Desenvolvimento. 
 
O GC em questão será igual a: 
𝐺𝐶 = 
𝛾𝑑 𝑐𝑎𝑚𝑝𝑜
𝛾𝑑 𝑚á𝑥
=
13,9
14,4
𝑥100% = 96,53% 
 
Como o GC estabelecido no projeto é de 98% ± 2%, ou seja, de 96% a 100%, esta 
camada deve ser aceita, no quesito grau de compactação. 
 
4.3. Um corte feito em uma encosta remove 150 000 m³ de um determinado solo que possui 
índice de vazios igual a 1,8. Desconsiderando o empolamento do solo, determinar quantos 
metros cúbicos de solo poderão ser compactados para a execução de um aterro cujo projeto 
prevê um índice de vazios final igual a 1,0. 
 
Passo 1: Identificação do problema. 
Observe que o problema em questão representa o efeito da compactação de um solo que, 
após ser compactado, apresenta redução de seu índice de vazios de 1,8 para 1,0. 
Conceitualmente, sabemos que a compactação reduz o volume do solo através da expulsão de 
ar dos poros, reduzindo assim o volume de vazios. Desta forma, conclui-se que o volume de 
grãos permanece constante após a compactação, ou seja, 𝑉𝑠 não se altera. 
Passo 2: Desenvolvimento. 
 
Sabendo que o volume do solo é dado pela soma das parcelas de grãos e vazios (𝑉 =
 𝑉𝑠 + 𝑉𝑣), é possível se calcular 𝑉𝑠 para a determinação do novo volume de solo após 
compactação, pois, sabemos que: 
𝑒 =
𝑉𝑣
𝑉𝑠
 
E portanto, o volume inicial (𝑉1) será dado por: 
Cap. 4 – Compactação dos Solos 
55 
 
𝑉1 = 𝑉𝑠 + 𝑉𝑣 = 𝑉𝑠 + 𝑒1. 𝑉𝑠 = 𝑉𝑠 . (1 + 𝑒1) 
A partir de 𝑉1 e de 𝑒1, podemos calcular o volume de grãos: 
𝑉1 = 𝑉𝑠 . (1 + 𝑒1) ⟼ 𝑉𝑠 = 
𝑉1
1 + 𝑒1
 
Portanto, 
𝑉𝑠 = 
𝑉1
1 + 𝑒1
=
150 000
1 + 1,8
= 53 571,43 𝑚³ 
 
Passo 3: Cálculo do volume após compactação. 
 
Como sabemos que 𝑉 = 𝑉𝑠 + 𝑉𝑣 e, que 𝑉𝑠 é constante, independente do volume de 
vazios, podemos calcular o volume compactado a partir do índice de vazios final: 
𝑉2 = 𝑉𝑠 . (1 + 𝑒2) = 53 571,43 . (1 + 1,0) = 𝟏𝟎𝟕 𝟏𝟒𝟐, 𝟖𝟔 𝒎³ 
Ou seja, ao se mudar o índice de vazios deste solo, de 1,8 para 1,0 a partir de 
compactação, o volume de 150 000 m³ é reduzido para pouco mais de 107 000 m³ de aterro 
compactado. 
 
 
 
 
Exercícios Resolvidos de Mecânica dos Solos 
56 
 
5 PERMEABILIDADE DOS SOLOS 
 
5.1. A existência de uma camada de areia com a área de seção transversal mostrada abaixo 
foi determinada em uma extensão de 500 m de dique. A permeabilidade da camada de areia é 
de 3m/dia. Obtenha a quantidade de água que flui para a vala, em m³/min. 
 
Figura 5. 1 - Exercício proposto de Das (2007) – Fundamentos de Engenharia Geotécnica. 
 
Solução 
Passo 1: Identificação do problema. 
Este exercício consiste, simplesmente, no cálculo da vazão que percola pela camada de 
areia, ao longo de toda a sua extensão, ou seja, ao longo dos 500 m. Para esta determinação, 
é necessário se utilizar a Lei de Darcy, válida para escoamento laminar: 
𝑄 = 𝑘. 𝑖. 𝐴 
Onde: 
𝑄 - vazão; 
𝑘 – coeficiente de permeabilidade do solo; 
𝑖 - gradiente hidráulico, representado pela perda de carga total (Δh) que ocorre em uma 
determinada extensão (L), ou seja, Δh/L; 
𝐴 - área por onde percola o fluido. 
 
Passo 2: Verificar as unidades envolvidas. 
Cap. 5 – Permeabilidade dos Solos 
57 
 
Sempre é necessário verificar as unidades mencionadas no exercício, a fim de se 
verificar quais conversõesde unidades serão necessárias. 
No caso, tem-se o coeficiente de permeabilidade em m/dia e solicitou-se a vazão em 
m³/min. Portanto, devemos atentar para esta conversão ao calcularmos a vazão. 
Passo 3: Cálculo da vazão. 
Tem-se uma lâmina d’água à montante de 160 m e, à jusante, uma lâmina de 150 m 
(vala). Isto leva à compreensão de que houve uma perda de carga de 10 m (160 -150) ao longo 
de 125 m de camada drenante de areia. Este será o gradiente hidráulico (i) em questão: 
𝑖 =
Δh
𝐿
=
160 − 150
125
= 0,08 
A área total por onde percola a água será dada pela espessura da camada drenante, 
multiplicada pela extensão do dique, ou seja: 
𝐴 = 2 𝑥 500 = 1000𝑚² 
Assim, tem-se que: 
𝑄 = 𝑘. 𝑖. 𝐴 = 
3𝑚
𝑑𝑖𝑎
 . 0,08 . 1000𝑚² = 𝟐𝟒𝟎 𝒎³/𝒅𝒊𝒂 
Como solicitou-se a vazão em m³/minuto, transformemos esta unidade: 
𝑄 = 240 
𝑚³
𝑑𝑖𝑎
 .
𝑑𝑖𝑎
24ℎ
 .
1ℎ
60 𝑚𝑖𝑛
→ 240 
𝑚³
𝑑𝑖𝑎
 .
𝑑𝑖𝑎
24ℎ
 .
1ℎ
60 𝑚𝑖𝑛
= 𝟎, 𝟏𝟔𝟕 𝒎³/𝒎𝒊𝒏 
 
5.2. (CESGRANRIO-PETROBRAS/2008) A figura abaixo mostra camadas de solo 
colocadas em um tubo com uma seção transversal quadrada com 100 mm de lado. Para se 
manter a diferença de carga constante de 300 mm, é necessário adicionar água no tubo da 
esquerda. Os coeficientes de permeabilidade na direção do escoamento estão definidos na 
tabela a seguir. Determinar qual a vazão necessária, em cm³/h, para que este sistema seja 
mantido. 
 
Exercícios Resolvidos de Mecânica dos Solos 
58 
 
 
Figura 5. 2 - Questão retirada do concurso da Petrobras (2008) para engenheiro civil. 
 
Solução 
Passo 1: Identificação do problema. 
Este problema constitui-se em um sistema de permeâmetro em série, em que as vazões 
que percolam por cada solo são iguais, e, a perda de carga total (diferença entre o N.A. à 
esquerda e à direita das amostras de solo) é igual à soma das perdas de carga de cada amostra, 
ou seja: 
{
𝑄𝐴 = 𝑄𝐵 = 𝑄𝐶 = 𝑄𝑇𝑂𝑇𝐴𝐿
 𝛥ℎ𝑇𝑂𝑇𝐴𝐿 = 𝛥ℎ𝐴 + 𝛥ℎ𝐵 + 𝛥ℎ𝐶
 (*) 
 
Neste contexto, mais uma vez será válida a Lei de Darcy: 𝑄 = 𝑘. 𝑖. 𝐴. 
Passo 2: Desenvolvimento. 
Sabendo que as vazões são iguais para todos os três solos (A, B e C) e utilizando-se a 
Lei de Darcy, podemos dizer que: 
𝑄𝐴 = 𝑄𝐵 = 𝑄𝐶 = 𝑘𝐴𝑖𝐴𝐴𝐴 = 𝑘𝐵𝑖𝐵𝐴𝐵 = 𝑘𝐶𝑖𝐶𝐴𝐶 
 
 
Cap. 5 – Permeabilidade dos Solos 
59 
 
Sabendo-se ainda que o gradiente hidráulico (i) é dado por Δh/L, podemos escrever a 
equação acima na forma: 
𝑄𝐴 = 𝑄𝐵 = 𝑄𝐶 = 𝑘𝐴
𝛥ℎ𝐴
𝐿𝐴
𝐴𝐴 = 𝑘𝐵
𝛥ℎ𝐵
𝐿𝐵
𝐴𝐵 = 𝑘𝐶
𝛥ℎ𝐶
𝐿𝐶
𝐴𝐶 
 
Contudo, note que a área pela qual percola a vazão é a mesma entre os corpos-de-prova, 
pois trata-se de um permeâmetro quadrado de 100 mm de lado. De forma análoga, o 
comprimento L também e o mesmo para os três solos e igual a 150 mm. Logo, podemos 
simplificar a equação para: 
𝑄𝐴 = 𝑄𝐵 = 𝑄𝐶 = 𝑘𝐴
𝛥ℎ𝐴
𝐿𝐴
𝐴𝐴 = 𝑘𝐵
𝛥ℎ𝐵
𝐿𝐵
𝐴𝐵 = 𝑘𝐶
𝛥ℎ𝐶
𝐿𝐶
𝐴𝐶 → 
 
→ 𝒌𝑨𝜟𝒉𝑨 = 𝒌𝑩𝜟𝒉𝑩 = 𝒌𝑪𝜟𝒉𝑪 
 
Assim, conhecidos os coeficientes de permeabilidade de cada solo, podemos deixar as 
perdas de carga em função de uma única incógnita e usá-la no sistema (*) montado acima. Por 
exemplo, deixando-se 𝛥ℎ𝐴 e 𝛥ℎ𝐶 em função de 𝛥ℎ𝐵, tem-se que: 
𝛥ℎ𝐴 =
𝑘𝐵𝛥ℎ𝐵
𝑘𝐴
=
2,5 . 10−3. 𝛥ℎ𝐵 
1 . 10−2
= 0,25𝛥ℎ𝐵 e, 
𝛥ℎ𝐶 =
𝑘𝐵𝛥ℎ𝐵
𝑘𝐶
=
2,5 . 10−3. 𝛥ℎ𝐵 
5 . 10−4
= 5𝛥ℎ𝐵 
 
Portanto, como 𝛥ℎ𝑇𝑂𝑇𝐴𝐿 = 𝛥ℎ𝐴 + 𝛥ℎ𝐵 + 𝛥ℎ𝐶, tem-se que: 
 𝛥ℎ𝑇𝑂𝑇𝐴𝐿 = 0,25𝛥ℎ𝐵 + 𝛥ℎ𝐵 + 5𝛥ℎ𝐵 = 300 𝑚𝑚 = 30 𝑐𝑚 
→ 6,25𝛥ℎ𝐵 = 30 𝑐𝑚 
→ 𝛥ℎ𝐵 = 4,8 𝑐𝑚 
E portanto, 
𝛥ℎ𝐴 = 0,25𝛥ℎ𝐵 = 1,2 cm 
Exercícios Resolvidos de Mecânica dos Solos 
60 
 
𝛥ℎ𝐶 = 5𝛥ℎ𝐵 = 24 𝑐𝑚 
 
 
Passo 3: Cálculo da vazão. 
Determinadas as perdas de cargas em cada corpo-de-prova, pode-se calcular a vazão 
para qualquer solo, como por exemplo: 
𝑄𝐴 = 𝑘𝐴𝑖𝐴𝐴𝐴 = 1 . 10
−2.
1,2
15
. (10)2 = 𝟎, 𝟎𝟖 𝒄𝒎𝟑/𝒔 
Perceba-se que 𝑄𝐵 e 𝑄𝐶 devem apresentar o mesmo valor de vazão: 
 
𝑄𝐵 = 𝑘𝐵𝑖𝐵𝐴𝐵 = 2,5 . 10
−3.
4,8
15
. (10)2 = 𝟎, 𝟎𝟖 𝒄𝒎𝟑/𝒔 
𝑄𝐶 = 𝑘𝐶𝑖𝐶𝐴𝐶 = 5 . 10
−4.
24
15
. (10)2 = 𝟎, 𝟎𝟖 𝒄𝒎𝟑/𝒔 
 
Passo 4: Verificação das unidades envolvidas. 
Obtivemos a vazão em cm³/s. Contudo, solicitou-se que a resposta fosse dada em cm³/h. 
Sabendo-se que 1h = 3600 s., tem-se que: 
𝑄 = 0,08
𝑐𝑚3
𝑠
.
3600𝑠
1ℎ
= 𝟐𝟖𝟖 𝒄𝒎𝟑/𝒉 
 
5.3. Determinar a vazão que percola pelo sistema constituído por dois solos (A e B) no 
permeâmetro de seção quadrada apresentado na Figura 5. 3. 
Dados: 𝑘𝐴= 5 . 10
-3 cm/s e 𝑘𝐵= 8 . 10
-2 cm/s. 
Cap. 5 – Permeabilidade dos Solos 
61 
 
 
Figura 5. 3 - Permeâmetro com solos dispostos em paralelo. 
 
Solução 
Passo 1: Identificação do problema. 
Este problema apresenta dois solos, dispostos um sobre o outro, constituindo, de acordo 
com a direção do fluxo, um sistema em paralelo, ou seja, a vazão total será dada pela soma da 
vazão que percola em cada solo e, a perda de carga será igual nos dois solos: 
 
{
𝑄𝑇𝑂𝑇𝐴𝐿 = 𝑄𝐴 + 𝑄𝐵
 𝛥ℎ𝑇𝑂𝑇𝐴𝐿 = 𝛥ℎ𝐴 = 𝛥ℎ𝐵
 
 
Passo 2: Desenvolvimento. 
A vazão que percola no sistema será, portanto: 
 
𝑄𝑇𝑂𝑇𝐴𝐿 = 𝑘𝐴𝑖𝐴𝐴𝐴 + 𝑘𝐵𝑖𝐵𝐴𝐵 
 
Atenção deve ser dada para o fato de as áreas destes solos, por onde há percolação, 
serem diferentes. Sendo um permeâmetro de seção quadrada, o solo A terá área de 10 cm x 
25 cm e o solo B, de 15 cm x 25 cm. 
Assim, tem-se que: 
 
𝑄𝑇𝑂𝑇𝐴𝐿 = 𝑘𝐴
𝛥ℎ𝐴
𝐿𝐴
𝐴𝐴 + 𝑘𝐵
𝛥ℎ𝐵
𝐿𝐵
𝐴𝐵 = 
Exercícios Resolvidos de Mecânica dos Solos 
62 
 
𝑄𝑇𝑂𝑇𝐴𝐿 = 5 . 10
−3.
20
40
. 10 . 25 + 8 . 10−2.
20
40
. 15 . 25 = 
 
𝑄𝑇𝑂𝑇𝐴𝐿 = 0,625 + 15,0 = 𝟏𝟓, 𝟔𝟐𝟓 𝒄𝒎
𝟑/𝒔 
 
Note que a vazão que percola no solo B é muito maior que a de A. Isto se deve à maior 
área da seção transversal de B e também a seu maior coeficiente de permeabilidade em relação 
ao solo A: 𝑘𝐵 > 𝑘𝐴. 
 
5.4. (ENADE/2008) Após a construção de uma barragem, detectou-se a presença de uma 
camada permeável de espessura uniforme igual a 20 m e que se estende ao longo de toda a 
barragem, cuja seção transversal está ilustrada a seguir. Essa camada provoca, por infiltração, 
a perda de volume de água armazenada. 
 
Figura 5. 4 - Questão retirada da prova do ENADE (2008) para os cursos de Engenheira Grupo I. 
 
Sabe-se que, sob condições de fluxo laminar, a velocidade de fluxo aparente da água através 
de um meio poroso pode ser calculada pela Lei de Darcy, que estabelece que essa velocidade 
é igual ao produto do coeficiente de permeabilidade do meio pelo gradiente hidráulico — 
perda de carga hidráulica por unidade de comprimento percorrido pelo fluido, ou seja, ∆h/L. 
A vazão de água através do meio é o produto da velocidade de fluxo pela área da seção 
atravessada pela água, normal à direção do fluxo. Suponha que o coeficiente de 
permeabilidade da camada permeável seja igual a 10−4 m/s, que ocorram perdas de carga 
hidráulica somente no trecho percorrido pela água dentro dessa camada e que a barragem e as 
Cap. 5 – Permeabilidade dos Solos 
63 
 
demais camadas presentes sejam impermeáveis. Sob essas condições, a vazão (Q) por unidade 
de comprimento ao longo da extensão da barragem, que é perdida por infiltração através da 
camada permeável, satisfaz à seguinte condição: 
(A) Q < 10−5 m3/s/m. 
(B) 10−5 m3/s/m < Q ≤ 10−4 m3/s/m. 
(C) 10−4 m3/s/m < Q ≤ 10−3 m3/s/m. 
(D) 10−3 m3/s/m < Q ≤ 10−2 m3/s/m. 
(E) Q > 10−2 m3/s/m. 
 
Solução 
Passo 1: Identificação do problema. 
O enunciado da questão é típico de provas do Exame Nacional de Desempenho dos 
Estudantes (Enade): as questões, geralmente, apresentam uma contextualização que auxiliam 
o estudante na resolução. Aqui, por exemplo, foi solicitada a vazão Q que percola pela camada 
permeável e, o enunciado explica como se calcular esta vazão, utilizando a Lei de Darcy, 
válida para fluxo laminar. 
 
Passo 2: Desenvolvimento. 
Sabemos que a vazão é dada por: 
𝑄 = 𝑘. 𝑖. 𝐴 
O coeficientede permeabilidade da camada permeável é igual a k = 10-4 m/s. O gradiente 
hidráulico i será 𝛥ℎ/𝐿. Como há uma diferença de nível d’água à montante e jusante da 
barragem, traduzida na perda de carga hidráulica, que ocorre ao longo dos 500 m de extensão 
da camada permeável, pode-se calcular este gradiente hidráulico como: 
𝑖 =
Δh
𝐿
=
1200 − 1000
500
= 0,4 
 
Por fim, deve determinar a área A por onde a água infiltra. Como esta vazão é calculada 
por metro linear de barragem (ou de camada permeável), esta área será igual à espessura da 
camada drenante vezes 1 metro linear: 
Exercícios Resolvidos de Mecânica dos Solos 
64 
 
𝐴 = 𝑒𝑠𝑝 . 1 𝑚 
Onde : 
esp – espessura da camada permeável. 
 
Logo, 
𝐴 = 20 . 1 = 20 𝑚² 
 
Assim, a vazão Q por unidade de comprimento ao longo da extensão da barragem será: 
 
𝑄 = 𝑘. 𝑖. 𝐴 = 10−4 . 0,4 . 20 = 𝟖 . 𝟏𝟎−𝟒 𝒎𝟑/𝒔/𝒎 
 
Como se trata de uma questão objetiva, atenção deve ser tomada ao enquadrar a resposta 
na alternativa correta: 
 
10−4 𝑚3/𝑠/𝑚 < 𝟖 . 𝟏𝟎−𝟒 𝒎𝟑/𝒔/𝒎 ≤ 10−3 𝑚3/𝑠/𝑚 
 
Alternativa c. 
 
5.5. Determinar as cargas hidráulicas nos pontos A, B e C dentro do permeâmetro abaixo. 
 
Figura 5. 5 - Permeâmetro com fluxo ascendente. 
 
Cap. 5 – Permeabilidade dos Solos 
65 
 
Solução 
Passo 1: Identificação do problema. 
Este é o esquema de um permeâmetro que possui um corpo-de-prova em seu interior, 
exemplificando esquemas de ensaios de permeabilidade, como por exemplo, o método B de 
ensaio apresentado na ABNT NBR 14545 (2000) - Solo – Determinação do coeficiente de 
permeabilidade de solos argilosos a carga variável. Contudo, o exercício pede apenas as cargas 
hidráulicas nos referidos pontos, ou seja, carga altimétrica, carga piezométrica e carga total. 
 
Passo 2: Desenvolvimento. 
 Carga altimétrica 
A carga altimétrica (ℎ𝑎) pode ser entendida como a carga de posição em relação a uma 
referência (nível de referência-N.R.), no caso, a base do corpo-de-prova. Portanto: 
ℎ𝑎𝐴 = 0 
ℎ𝑎𝐵 = 25 𝑐𝑚. 𝑐. 𝑎 
ℎ𝑎𝐶 = 50 𝑐𝑚. 𝑐. 𝑎 
Onde: 
𝑐𝑚. 𝑐. 𝑎 – centímetros de coluna d’água. 
 
 Carga piezométrica 
A carga piezométrica (ℎ𝑝) pode ser entendida como a poropressão em um determinado 
ponto, expressa em cm.c.a, m.c.a, etc. Assim, analisemos cada ponto: 
Ponto A: 
Como o ponto A está na borda inferior do corpo-de-prova, ainda não houve nenhuma 
perda de carga pelo solo. Como a diferença de N.A. entre a bureta e o topo do permeâmetro é 
igual a 20 cm, sabe-se que esta é a perda de carga total do sistema: 20 cm.c.a. Ou seja, no 
ponto C, toda esta carga já terá sido dissipada. Então vamos lá... 
No ponto A, há uma carga de (20 + 5 + 50) cm.c.a no solo. Uma outra forma de se 
entender esta carga piezométrica é analisando a coluna d’água existente no ponto 
Exercícios Resolvidos de Mecânica dos Solos 
66 
 
considerando mais o que ainda há para se dissipar no solo. Por exemplo, no ponto A, tem-se 
50 cm de solo saturado mais 5 cm de lâmina d’água, ou seja, 55 cm de coluna d’água acima 
deste ponto. Porém, existem 20 cm de carga que ainda não se dissiparam em A. Portanto, deve 
se somar 55 + 20 = 75 cm.c.a, sendo este valor a carga piezométrica em A. 
Ponto C: 
Passemos para o ponto C, pois é de fácil visualização. No ponto C, toda a perda de carga 
já ocorreu, restando apenas 5 cm de lâmina d’água acima. Logo, a carga piezométrica em C é 
igual a 5 cm.c.a. 
Ponto B: 
O ponto B se encontra no meio do corpo-de-prova, ou seja, metade da carga hidráulica 
(h = 20 cm) terá se dissipado, restando a outra metade. Para qualquer outro ponto, pode-se 
calcular a carga piezométrica, a partir do cálculo do gradiente hidráulico (i), que representa a 
perda de carga ocorrida a cada centímetro do permeâmetro: 
𝑖 =
Δh
𝐿
=
20
50
= 0,4 𝑐𝑚/𝑐𝑚 
 
Como o ponto B está a 25 cm da base do permeâmetro, já se dissipou uma carga igual a 
25 cm x 0,4 = 10 cm (metade da perda de carga do sistema). 
Portanto, a carga piezométrica em B será dada pela carga hidráulica existente acima de 
B somada ao que ainda não se dissipou, ou seja: 
ℎ𝑝𝐵 = 25 + 5 (𝑎𝑐𝑖𝑚𝑎 𝑑𝑒 𝐵) + 20 (𝑝𝑒𝑟𝑑𝑎 𝑑𝑒 𝑐𝑎𝑟𝑔𝑎 𝑡𝑜𝑡𝑎𝑙)
− 0,4 . 25 (𝑜 𝑞𝑢𝑒 𝑗á 𝑠𝑒 𝑑𝑖𝑠𝑠𝑖𝑝𝑜𝑢) = 
ℎ𝑝𝐵 = 30 + 20 − 10 = 40 𝑐𝑚. 𝑐. 𝑎 
 
 Carga total 
A carga total é a soma das cargas altimétrica e piezométrica, portanto: 
ℎ𝑡𝐴 = 0 + 75 = 75 𝑐𝑚. 𝑐. 𝑎 
ℎ𝑡𝐵 = 25 + 40 = 65 𝑐𝑚. 𝑐. 𝑎 
Cap. 5 – Permeabilidade dos Solos 
67 
 
ℎ𝑡𝐶 = 50 + 5 = 55 𝑐𝑚. 𝑐. 𝑎 
 
Abaixo, apresenta-se um quadro-resumo das cargas calculadas, em cm.c.a.: 
 ha hp ht 
A 
0 75 75 
B 
25 40 65 
C 
50 5 55 
 
 
Exercícios Resolvidos de Mecânica dos Solos 
68 
 
6 ACRÉSCIMOS DE TENSÃO NOS SOLOS 
 
6.1. Calcular o acréscimo de tensão resultante no ponto A, situado a 3 m da superfície, 
como apresentado na Figura 6. 1. 
 
Figura 6. 1 - Duas cargas pontuais agindo sobre o ponto A. 
 
 
Solução 
Passo 1: Identificação do problema. 
Trata-se de duas cargas concentradas, estando uma exatamente sobre a linha de ação 
vertical ao ponto A, e outra distante de 3 m na horizontal. 
Para a determinação do acréscimo de tensão devido a cargas concentradas, pode-se 
utilizar a solução de Boussinesq, dada por: 
∆𝜎 = 
3 𝑧³
2𝜋(𝑟2 + 𝑧2)
5
2
. 𝑄 
onde: 
z – profundidade do ponto em análise até a superfície de aplicação da carga; 
𝑟2- distância horizontal da respectiva carga até o ponto em análise; 
𝑄 – carga concentrada aplicada na superfície do terreno. 
Cap. 6 – Acréscimos de Tensão nos Solos 
69 
 
 
Passo 2: Determinação do acréscimo de tensão. 
Como a primeira carga (350kN) está exatamente sobre o ponto A, tem-se que: 
 {
𝑟 = 0
 𝑧 = 3𝑚
 
 
Para a segunda carga (240kN), tem-se que: 
{
𝑟 = 3𝑚
 𝑧 = 3𝑚
 
 
Portanto, o acréscimo de tensão total sobre o ponto A será igual a: 
∆𝜎 = ∆𝜎𝑅𝐸𝐹𝐸𝑅𝐸𝑁𝑇𝐸 𝐴 350𝑘𝑁 + ∆𝜎𝑅𝐸𝐹𝐸𝑅𝐸𝑁𝑇𝐸 𝐴 240𝑘𝑁 → 
∆𝜎 = 
3 . 3³
2𝜋(02 + 32)
5
2
. 350 +
3 . 3³
2𝜋(32 + 32)
5
2
. 240 = 
 ∆𝜎 = 18,57 + 2,25 = 𝟐𝟎, 𝟖𝟐 𝒌𝑷𝒂 
 
6.2. Calcular o acréscimo de tensão resultante no ponto O, situado a 1 m da superfície, 
como apresentado na Figura 6. 2. 
 
Figura 6. 2 - Cinco cargas pontuais agindo sobre o ponto O. 
 
Solução 
Passo 1: Identificação do problema. 
Exercícios Resolvidos de Mecânica dos Solos 
70 
 
Este é mais um caso de acréscimo de tensão devido a cargas concentradas, podendo ser 
resolvido pela solução de Boussinesq. 
Passo 2: Determinação do acréscimo de tensão. 
A primeira carga (350kN) tem a seguinte localização em relação ao ponto O: 
 {
𝑟 = 0
 𝑧 = 1𝑚
 
A segunda carga (300kN) tem a seguinte localização em relação ao ponto O: 
{
𝑟 = 2𝑚
 𝑧 = 1𝑚
 
A terceira carga (250kN) tem a seguinte localização em relação ao ponto O: 
{
𝑟 = 4𝑚
 𝑧 = 1𝑚
 
A quarta carga (300kN) tem a seguinte localização em relação ao ponto O: 
{
𝑟 = 6𝑚
 𝑧 = 1𝑚
 
A quinta carga (350kN) tem a seguinte localização em relação ao ponto O: 
{
𝑟 = 8𝑚
 𝑧 = 1𝑚
 
 
Logo, o acréscimo de tensão total sobre o ponto O será igual a: 
∆𝜎 = ∑
3 𝑧³
2𝜋(𝑟2 + 𝑧2)
5
2
. 𝑄 
∆𝜎 = 
3 . 1³
2𝜋(02 + 12)
5
2
. 350 +
3 . 1³
2𝜋(22 + 1)
5
2
. 300 +
3 . 1³
2𝜋(42 + 12)
5
2
. 250 +
3 . 1³
2𝜋(62 + 1)
5
2
. 300
+ 
3 . 1³
2𝜋(82 + 12)
5
2
. 350 = 𝟏𝟔𝟗, 𝟖𝟎 𝒌𝑷𝒂 
 
6.3. Um edifício de 10 m x 10 m distribui um carregamento uniforme de 300 kPa no nível 
de um determinado terreno. Calcular o acréscimo de tensão vertical causado por este edifício 
nos pontos A e E a 5 m de profundidade em relação ao nível do terreno. 
Cap. 6 – Acréscimos de Tensão nos Solos 
71 
 
 
Figura 6. 3 - Edificação de 10 m x 10m. 
 
Solução 
Passo 1: Identificação do problema. 
Este tipo de acréscimo, desenvolvido por um carregamento distribuído em uma área de 
geometria regular, quadrada ou retangular, na superfície pode ser calculado a partir da solução 
propostapor Newmark, consistindo em uma integração da equação de Boussinesq. A chamada 
solução de Newmark permitirá o cálculo do acréscimo de tensão (∆𝜎) da seguinte forma: 
 
∆𝜎 = 𝐼. 𝜎0 , 
 
onde I representa um coeficiente de influência ou a porcentagem do carregamento instalado 
na superfície do terreno (𝜎0) que chegará a determinada profundidade em análise. 
Este coeficiente depende de duas variáveis m e n, que nada mais são que a relação entre 
as dimensões da área (retangular ou quadrada) e a profundidade z considerada (Figura 6. 4): 
 
𝑚 =
𝑎
𝑧
 e 𝑛 =
𝑏
𝑧
 
 
Destaca-se que não há relação direta entre m e a ou n e b. A solução de Newmark apenas 
trabalha com uma dimensão relacionada a m e outra a n, sem especificação de menor ou maior 
dimensão atreladas a m ou n. 
Exercícios Resolvidos de Mecânica dos Solos 
72 
 
 
Figura 6. 4 - Dimensões para cálculo do coeficiente de influência I. 
 
O coeficiente I pode ser determinado através de ábaco ou mesmo tabela, sendo esta 
última a mais utilizada, por questões de praticidade. Ver Tabela 6. 1. 
 
Tabela 6. 1 - Valores da influência "i" em função de m e n para a equação de Newmark 
 
 
 
 
 
n ou m 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
0,1 0,005 0,009 0,013 0,017 0,020 0,022 0,240 0,026 0,027
0,2 0,009 0,018 0,026 0,033 0,039 0,043 0,047 0,050 0,053
0,3 0,013 0,026 0,037 0,047 0,056 0,063 0,069 0,073 0,077
0,4 0,017 0,033 0,047 0,060 0,071 0,080 0,087 0,093 0,098
0,5 0,020 0,039 0,056 0,071 0,084 0,095 0,103 0,110 0,116
0,6 0,022 0,043 0,063 0,080 0,095 0,107 0,117 0,125 0,131
0,7 0,024 0,047 0,069 0,087 0,103 0,117 0,128 0,137 0,144
0,8 0,026 0,050 0,073 0,093 0,110 0,125 0,137 0,146 0,154
0,9 0,027 0,053 0,077 0,098 0,116 0,131 0,144 0,154 0,162
1,0 0,028 0,055 0,079 0,101 0,120 0,136 0,149 0,160 0,168
1,2 0,029 0,057 0,083 0,106 0,126 0,143 0,157 0,168 0,178
1,5 0,030 0,059 0,086 0,110 0,131 0,149 0,164 0,176 0,186
2,0 0,031 0,061 0,089 0,113 0,135 0,153 0,169 0,181 0,192
2,5 0,031 0,062 0,090 0,115 0,137 0,155 0,170 0,183 0,194
3,0 0,032 0,062 0,090 0,115 0,137 0,156 0,171 0,184 0,195
5,0 0,032 0,062 0,090 0,115 0,137 0,156 0,172 0,185 0,196
10,0 0,032 0,062 0,090 0,115 0,137 0,156 0,172 0,185 0,196
∞ 0,032 0,062 0,090 0,115 0,137 0,156 0,172 0,185 0,196
n = a/z ou m = b/z
Cap. 6 – Acréscimos de Tensão nos Solos 
73 
 
Continuação da Tabela 6. 1 
 
 
Passo 2: Desenvolvimento. 
Uma ressalva importante é que, só se pode utilizar esta solução de Newmark para o 
cálculo de acréscimos de tensão (∆𝜎) quando a localização (ponto) em análise consiste em um 
vértice da área considerada. Por exemplo, para os pontos A, B, C e D deste exercício 6.3, a 
aplicação é direta. Porém, para se calcular ∆𝜎 no ponto E, será preciso dividir a área do 
carregamento em outras áreas, de forma que todas elas tenham este ponto E como um vértice. 
Vamos lá! 
 
Ponto A: 
O ponto A se encontra no vértice do quadrado de lado igual a 10 m. Portanto, a influência 
deste quadrado, a 5 m de profundidade, será determinada a partir da Tabela 6. 1 através de m 
e n: 
𝑚 =
𝑎
𝑧
=
10
5
= 2 
 
𝑛 =
𝑏
𝑧
=
10
5
= 2 
n ou m 1 1,2 1,5 2 2,5 3 5 10 ∞
0,1 0,028 0,029 0,030 0,031 0,031 0,032 0,032 0,032 0,032
0,2 0,055 0,057 0,059 0,061 0,062 0,062 0,062 0,062 0,062
0,3 0,079 0,083 0,086 0,089 0,090 0,090 0,090 0,090 0,090
0,4 0,101 0,106 0,110 0,113 0,115 0,115 0,115 0,115 0,115
0,5 0,120 0,126 0,131 0,135 0,137 0,137 0,137 0,137 0,137
0,6 0,136 0,143 0,149 0,153 0,155 0,156 0,156 0,156 0,156
0,7 0,149 0,157 0,164 0,169 0,170 0,171 0,172 0,172 0,172
0,8 0,160 0,168 0,176 0,181 0,183 0,184 0,185 0,185 0,185
0,9 0,168 0,178 0,186 0,192 0,194 0,195 0,196 0,196 0,196
1,0 0,175 0,185 0,193 0,200 0,202 0,203 0,204 0,205 0,205
1,2 0,185 0,196 0,205 0,212 0,215 0,216 0,217 0,218 0,218
1,5 0,193 0,205 0,215 0,223 0,226 0,228 0,229 0,230 0,230
2,0 0,200 0,212 0,223 0,232 0,236 0,238 0,239 0,240 0,240
2,5 0,202 0,215 0,226 0,236 0,240 0,242 0,244 0,244 0,244
3,0 0,203 0,216 0,228 0,238 0,242 0,244 0,246 0,247 0,247
5,0 0,204 0,217 0,229 0,239 0,244 0,246 0,249 0,249 0,249
10,0 0,205 0,218 0,230 0,240 0,244 0,247 0,249 0,250 0,250
∞ 0,205 0,218 0,230 0,240 0,244 0,247 0,249 0,250 0,250
n = a/z ou m = b/z
Exercícios Resolvidos de Mecânica dos Solos 
74 
 
Logo, I = 0,232. 
Assim, o acréscimo de tensão, no ponto A, a 5m de profundidade será igual a: 
 
∆𝜎 = 𝐼. 𝜎0 = 0,232 . 300 = 𝟔𝟗, 𝟔 𝒌𝑷𝒂 
 
Ponto E: 
Este ponto se localiza no centro da placa de 10 m x 10 m. Logo, basta dividi-la em áreas 
iguais, no caso, quatro áreas de 5 m x 5 m. Ver Figura 6. 5. 
 
Figura 6. 5 - Divisão da placa em 4 áreas iguais. 
 
Desta forma, determinemos a influência de um quadrado de 5 m x 5 m e a 
multipliquemos por 4: 
𝑚 =
𝑎
𝑧
=
5
5
= 1 
 
𝑛 =
𝑏
𝑧
=
5
5
= 1 
 
Logo, I = 0,175 e, 
 
𝐼𝑡𝑜𝑡𝑎𝑙 = 4 . 0,175 = 0,700 
 
Assim, 
∆𝜎 = 𝐼. 𝜎0 = 0,700 . 300 = 𝟐𝟏𝟎 𝒌𝑷𝒂 
 
Cap. 6 – Acréscimos de Tensão nos Solos 
75 
 
Este resultado representa que, a 5 m de profundidade, o solo é solicitado por 70% do 
carregamento da superfície do terreno. 
 
6.4. Calcular o alívio de tensões que um desaterro de 20 m x 10 m causará a 12 m da 
superfície do terreno (NT), no ponto O, sabendo que este desaterro tem profundidade de 2 m. 
 
(a) 
 
 
(b) 
Figura 6. 6 - Desaterro de 2 m em área de 20 m x 10 m. (a) Vista em corte. (b) Vista em planta. 
 
Solução 
Passo 1: Identificação do problema. 
Por se tratar de desaterro, ocorrerá um alívio de tensão em subsuperfície e, como o ponto 
O está no vértice do retângulo de 20 m x 10 m, a determinação da influência desta área a ser 
escavada será simplificada como para o ponto A do exercício anterior. 
 
Exercícios Resolvidos de Mecânica dos Solos 
76 
 
Passo 2: Desenvolvimento. 
Como pretende-se determinar a influência do desaterro, que tem área fixa de 20 m x 10 
m, é necessário se determinar qual será a carga aliviada na superfície ou tensão inicial 
aliviada. Caso a escavação fosse realizada em um semi-espaço infinito, ou seja, continuamente 
pela superfície, o alívio em profundidade seria de: 
𝜎0 = 𝛾 . ℎ = 18 . 2 = 36 𝑘𝑃𝑎 
 
Contudo, este desaterro é localizado em uma área retangular, sendo necessário se 
determinar qual a porcentagem de alívio ocorrerá em profundidade sobre o ponto O. Para isso, 
determinemos m e n: 
𝑚 =
𝑎
𝑧
=
20
10
= 2 
 
𝑛 =
𝑏
𝑧
=
10
10
= 1 
 
Note que a profundidade z é tomada como a distância vertical entre o ponto considerado 
e a base da escavação. Como o ponto O está a 12 m do nível do terreno e a escavação possui 
2 m de profundidade, o valor de z será igual a 10 m. A partir dos valores de m e n obtidos, 
pode-se determinar o valor da influência I igual a 0,200. 
Assim, o alívio de tensões devido a este desaterro, que pode ser entendido como um 
acréscimo negativo, será: 
 
∆𝜎 = 𝐼. 𝜎0 = 0,200 . 36 = 𝟕, 𝟐 𝒌𝑷𝒂 
 
6.5. Suponha que o desaterro do exercício 6.4 seja uma piscina a ser construída em um 
determinado clube recreativo. Considerando o peso específico da água igual a 9,81 kN/m³, 
calcular o acréscimo de tensão no ponto O na mesma localização anterior, agora para a piscina 
cheia. 
 
Solução 
Passo 1: Identificação do problema. 
Cap. 6 – Acréscimos de Tensão nos Solos 
77 
 
Como calculado no exercício 6.5, o alívio ocasionado pelo desaterro é igual a 36 kPa na 
superfície do terreno. Enchendo-se esta piscina, deve-se somar a pressão que a água irá 
realizar sobre esta mesma área. 
Passo 2: Desenvolvimento. 
Sendo 𝛾𝑤= 9,81 kN/m³, a pressão de água será dada por: 
 
𝜎Á𝐺𝑈𝐴 = 𝛾𝑤 . ℎ = 9,81 . 2 = 19,62 𝑘𝑃𝑎 
 
Assim, o acréscimo de tensão devido à água na piscina será igual a: 
 
∆𝜎 = 𝐼. 𝜎0 = 0,200 . 19,62 = 3,924 𝑘𝑃𝑎 
 
Por fim, percebe-se que, mesmo com a piscina cheio d’água, o ponto O, a 10 m da base 
da piscina ainda estará sob um alívio de tensão, pois: 
 
∆𝜎 = 𝐼. (−𝜎0 𝐷𝐸𝑆𝐴𝑇𝐸𝑅𝑅𝑂

Outros materiais