Buscar

Fisico-Quimica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 57 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 57 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 57 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

CETÉS – CENTRO EDUCACIONAL TÉCNICO SUZANENSE 
 
 
 
 
 
 
 
 
 
FÍSICO-QUÍMICA B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Professores: 
IDENÉSIO RAMALHO 
EDILENE DE SOUZA CUNHA 
 2
I N D I C E: 
 
TITULOMETRIA 
 
Análise Volumétrica................................................................................................................. 03 
Tipos de Volumetria....................................................................................................................07 
Acidimetria..................................................................................................................................07 
Alcalimetria.................................................................................................................................07 
Argentometria.............................................................................................................................08 
Halogenetometria.......................................................................................................................08 
Sulfatometria..............................................................................................................................08 
Permanganometria.....................................................................................................................08 
Iodometria...................................................................................................................................08 
Dicromatometria.........................................................................................................................08 
Gravimetria.................................................................................................................................09 
 
 
NOÇÕES DE CALORIMETRIA 
 
Calor...........................................................................................................................................16 
Caloria........................................................................................................................................16 
Capacidade Térmica...................................................................................................................16 
Calor Específico..........................................................................................................................16 
Calor Sensível.............................................................................................................................17 
Calor Latente...............................................................................................................................17 
Calor de Combustão...................................................................................................................17 
 
 
TERMOQUÍMICA 
 
Sistema, Fronteira e Vizinhança.................................................................................................19 
Transformações Exotérmicas.....................................................................................................19 
Transformações Endotérmicas...................................................................................................19 
Entalpia.......................................................................................................................................20 
Equação Termoquímica e gráfico de entalpia.............................................................................20 
Tipos de entalpia.........................................................................................................................25 
Entalpia de Formação.................................................................................................................25 
Entalpia de Decomposição.........................................................................................................27 
Entalpia de Combustão...............................................................................................................28 
Entalpia de Dissolução................................................................................................................29 
Entalpia de Neutralização...........................................................................................................30 
Energia de Ligação.....................................................................................................................30 
Lei de Hess.................................................................................................................................32 
 
CINÉTICA QUÍMICA 
 
Velocidade de uma reação.........................................................................................................38 
Teoria da Colisão........................................................................................................................44 
Formação de Complexo Ativado.................................................................................................45 
Energia de Ativação....................................................................................................................45 
Fatores que influem na velocidade da reação............................................................................46 
Lei de Guldberg-Waage..............................................................................................................51 
 3
TITULOMETRIA 
01) Conceito 
 
Titulometria é o ramo da Química que se preocupa em estabelecer a dosagem das soluções, vale dizer, 
preocupa-se em determinar a concentração de uma solução. 
Em Química, dosar uma solução significa determinar a sua concentração por intermédio de outra solução 
de concentração conhecida. 
O princípio básico para se determinar a concentração de uma solução consiste em estabelecer uma reação 
química entre essa solução e outra solução de concentração conhecida. 
Assim sendo, é comum a utilização dos termos solução padrão e solução problema. 
 
 
Solução padrão: é a solução de que precisamos dispor e de concentração conhecida. Esta solução 
também recebe a denominação de solução titulada. 
 
 
Solução problema: é a solução de concentração desconhecida e que se quer descobrir. 
 
Veja bem que as duas soluções (padrão e problema) devem reagir entre si, dando um resultado que servirá 
de base para você concluir qual a dosagem da solução problema. Em outras palavras, analisando o 
resultado da reação entre a solução padrão e a solução problema, você determinará a concentração 
desconhecida. 
 
Para isso, podem ser utilizados dois métodos: 
 
 
 
 DOSAGEM POR VOLUMETRIA 
 (Análise volumétrica) 
 
 
Esta análise baseia-se na medida dos volumes das 
soluções reagentes. 
 
 DOSAGEM POR GRAVIMETRIA 
 (Análise gravimétrica) 
 
 
Esta análise baseia-se na pesagem de um dos 
produtos da reação. 
 
 
Em termos de comparação, a análise gravimétrica oferece resultados mais exatos, porém a volumétrica leva 
a vantagem de ser mais rápida. 
 
 
02) Análise Volumétrica 
 
Nesta análise deve-se fazer reagir um volume conhecido da solução problema com uma solução padrão 
conveniente. 
Em seguida, determina-se com o maior rigor possível o volume da solução padrão, o qual deve ser 
exatamente necessário para reagir com o volume conhecido da solução problema. 
 
Então: 
 
 Solução problema V1 = Volume escolhido (e portanto, conhecido) para reagir com a solução padrão. 
 N1 = Concentração desconhecida. 
 
 Solução padrão V2 = Volume gasto na reação com o volume escolhido da solução problema. 
 N2 = Concentração conhecida. 
 
 4
Como se trata de uma reação completa, vale o princípio da equivalência, ou seja: 
 
 e1 = e2 
como e = V . N 
 V1 . N1 = V2 . N2Como você vê, determina-se a concentração normal (N1) da solução problema e, a seguir, a partir dessa 
concentração, pode-se calcular qualquer outro tipo de concentração. 
 
 
03) Como proceder na prática 
 
Em laboratório, para se determinar o volume da solução problema e o volume gasto da solução padrão, 
utilizam-se frascos especiais. 
 
1º. Passo: Colocamos a solução problema num balão volumétrico aferido, isto é, este balão apresenta um 
traço no gargalo, o qual indica o volume para uma determinada temperatura. 
Os balões mais comuns são de 250, 500 e 1000 mL. 
Uma vez colocada a solução problema no balão, adicionamos água destilada até que o volume atinja o traço 
 
2º. Passo: Retiramos do balão um volume bem definido (V1) da solução problema. Esta operação é 
efetuada por meio de uma pipeta, ou seja, um tubo de vidro que apresenta a parte central alargada e as 
duas extremidades afiladas. 
Enchemos a pipeta com a solução problema por meio de sucção, até que a solução ultrapasse o traço de 
referência. 
Tapamos a extremidade superior com o dedo indicador e, levantando levemente o dedo, permitimos a 
entrada lenta de ar, até que a parte inferior da superfície curva do líquido (menisco inferior) coincida com o 
traço de referência. 
 
Finalmente, escoamos a solução da pipeta em um frasco coletor (erlenmeyer): 
 
3º. Passo: Colocamos a solução padrão numa bureta: 
 
Bureta é um tubo de vidro graduado em cm3 (ou mL) e provido de uma torneira na parte inferior: 
 
 5
Operação final: 
 
 
 
Com a mão esquerda abrimos a torneira, deixando a solução padrão gotejar no erlenmeyer que contém a 
solução problema e, com a mão direita, ficamos agitando o erlenmeyer. 
 
 
Uma vez terminada a reação entre as soluções, fechamos a torneira e lemos na bureta o volume (V2) gasto 
na solução padrão. 
 
Exemplo: Calcule a normalidade da solução problema, conforme os dados: 
 
Solução problema V1 = 25 mL (este é o volume medido pela pipeta) 
 N1 = ? 
 
Solução padrão V2 = 30 mL (volume gasto na reação e lido na bureta) 
 N2 = 0,1 N (previamente estabelecido) 
 
Resolução: 
 
 e1 = e2 
como e = V . N 
 V1 . N1 = V2 . N2 
 
 25 . N1 = 30 . 0,1 
 
 N1 = 30 . 0,1 N1 = 0,12 N 
 25 
 
 6
Como saber quando a reação terminou? 
 
A exatidão do processo está na dependência da interrupção do contato entre as soluções, no exato 
momento em que a reação termina. Para isso, usamos substâncias chamadas indicadores. 
 
Os indicadores são classificados em dois grupos: 
a) Auto-indicadores 
b) Indicadores de contato 
 
Imagine que uma dos soluções seja formada por uma substância colorida. Pois bem, à medida que ela vai 
reagindo com a outra solução, essa cor vai se alterando. 
Então, quando a cor se alterar totalmente, isto significa que a reação terminou. Certo? 
Portanto, uma substância, nestas condições, é auto-indicador, pois ela constitui uma solução e, 
concomitantemente, funciona como indicador no término da reação. 
 
Um exemplo típico de auto-indicador é o permanganato de potássio (KMnO4) em solução, reagindo com 
uma solução redutora. Isto porque o KMnO4 em solução apresenta cor violeta característica e, uma vez 
reduzindo, a coloração violeta desaparece, ficando a solução incolor. 
Os indicadores de contato são os mais empregados. Usam-se em pequena quantidade e geralmente são 
adicionados na solução problema. 
Tais indicadores são substâncias que, colocadas na solução problema, apresentam uma coloração e 
quando a reação termina, essa coloração acha-se alterada. 
Esta mudança de cor é conhecida por viragem. 
 
A viragem é causada por: 
 
a) Influência do pH no meio. 
b) Formação de um composto colorido resultante da reação entre o indicador e um dos reage 
 
 
 Tabela de indicadores e suas faixas de viragem 
 
 
 Indicador 
 
 Viragem do 
 Indicador 
(intervalo de pH) 
 Cor abaixo do 
 intervalo de pH 
 de viragem 
 Cor acima do 
 intervalo de pH 
 de viragem 
Azul de Timol 1,2-2,8 Vermelha Amarela 
Azul de Bromofenol 3,0-4,6 Amarela Violeta-Avermelhada 
Vermelho Congo 3,0-5,2 Violeta-Azulada Alaranjado-Avermelhada 
Alaranjado de Metila 3,1-4,4 Vermelha Alaranjado-Amarelada 
Verde de Bromocresol 3,8-5,4 Amarela Azul 
Vermelho de Metila 4,4-6,2 Vermelha Alaranjado-Amarelada 
Vermelho de Tornassol 5,0-8,0 Vermelha Azul 
Vermelho de Bromofenol 5,2-6,8 Amarelo-Alaranjada Púrpura 
Azul de Bromotimol 6,0-7,6 Amarela Azul 
Vermelho de Fenol 6,8-8,2 Amarela Vermelha 
Vermelho Neutro 6,8-8,0 Vermelho-Azulada Alaranjado-Amarelada 
Vermelho de Cresol 7,0-8,8 Amarela Púrpura 
Azul de Timol 8,0-9,3 Amarela Azul 
Fenolftaleína 8,2-9,8 Incolor Violeta-Avermelhada 
Timolftaleína 9,3-10,5 Incolor Azul 
Amarelo de Alizarina 10,0-12,1 Amarelo-Clara Amarelo-Acastanhada 
Azul de Epsilon 11,6-13,0 Alaranjada Violeta 
 
 
 
 
 7
04) Tipos de Volumetria 
 
Conforme a natureza da reação que se desenvolve entre a solução problema e a solução padrão, 
distinguem-se três tipos importantes de volumetria: 
 
 
1º.Tipo: Volumetria por Neutralização 
 
São casos de volumetria em que ocorrem reações de neutralização entre um ácido e uma base. São dois os 
casos de volumetria por neutralização: Acidimetria e alcalimetria. 
 
 
Acidimetria: Quando a solução problema é acida e a titulação é feita com uma solução padrão básica, ou 
seja, é dosagem de um ácido por intermédio de uma solução titulada de uma base. 
 
 
Alcalimetria: Quando a solução problema é básica e a sua titulação é realizada com uma solução padrão 
ácida, ou seja, é a dosagem de uma base por intermédio de uma solução titulada de um ácido. 
 
 
Exemplo: 30 mL de uma solução de ácido sulfúrico (H2SO4) exigiram na sua titulação 27 mL de uma 
solução 0,1 N de hidróxido de sódio (NaOH). Pergunta-se: 
 
a) Qual o tipo de volumetria? 
b) Qual a normalidade da solução problema? 
c) Qual a concentração em g/L da solução problema? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 e1 = e2 
como e = V . N 
 V1 . N1 = V2 . N2 
 27 . 0,1 = 30 . N2 N2 = 27 . 0,1 N2 = 0,09 N (ou eq-g/L) 
 30 
 
O cálculo da concentração da solução ácida, em g/L pode ser feito com a seguinte fórmula ( E do H2SO4 é 
49 g/eq) 
 C = N . E 
 C = 0,09 . 49 
 C = 4,41 g/L 
 
 
2º. Tipo: Volumetria por Precipitação 
 
São casos em que ocorre formação de precipitado (substância insolúvel). Os principais casos de volumetria 
são: argentometria, halogenetometria e sulfatometria. 
 
 8
Argentometria: É a dosagem de uma solução de um halogeneto por intermédio de uma solução titulada de 
um sal de prata (geralmente AgNO3): 
 
Solução problema: Cl-, Br- ou I- 
Solução padrão: Ag+ 
 
Halogenetometria: É a dosagem de uma solução aquosa de um sal de prata por intermédio de uma 
solução titulada de um halogeneto: 
 
Solução problema: Ag+ 
Solução padrão: Cl-, Br- ou I- 
 
Nestes dois casos ocorre precipitação de um halogeneto de prata insolúvel (AgCl, AgBr ou AgI): 
 
 Ag+ + Cl- ------------------ AgCl 
 
 Ag+ + Br- ------------------ AgBr 
 
 Ag+ + I- ------------------ AgI 
 
Sulfatometria: É a dosagem de uma solução de um sulfato por intermédio de uma solução tituladade um 
sal de bário 
 
Solução problema: SO42- 
Solução padrão: Ba2+ 
 
Neste caso, ocorre precipitação de sulfato de bário (BaSO4): 
 
 Ba2+ + SO42- ------------------ BaSO4 
 
 
3º. Tipo: Volumetria por oxi-redução 
 
São casos em que ocorrem reações de oxi-redução. Os principais casos de volumetria por oxi-redução são 
Permanganometria, iodometria e dicromatometria. 
 
Permanganometria: É a dosagem de uma solução redutora por intermédio de uma solução tiltulada de 
permanganato de potássio (KMnO4), geralmente em meio ácido. 
 
Solução problema: peróxido de hidrogênio, ácido clorídrico, ácido acético, ácido fórmico, sulfito alcalino, 
nitrito, etc. 
Solução padrão: KMnO4/H+ 
 
Neste caso o KMnO4 funciona como auto-indicador. 
 
Iodometria: É a dosagem de uma solução redutora, por intermédio de uma solução titulada de iodo. 
 
Solução problema: solução aquosa de tiossulfato de sódio (Na2S2O3). 
Solução padrão: I2/I- 
 
Dicromatometria: É a dosagem de uma solução redutora, por intermédio de uma solução titulada de 
dicromato de potássio (K2Cr2O7), geralmente em meio ácido. 
 
Solução problema: solução aquosa de oxalato de sódio (Na2C2O4). 
Solução padrão: K2Cr2O7/H+ 
 
 
 9
Exercícios: 
 
01) Na titulação de 10 mL de uma solução de NaOH, gastaram-se 8 mL de uma solução 1 N de HCl para a 
completa neutralização. Responda: 
 
a) Qual o tipo de volumetria? 
b) Qual a normalidade da solução de NaOH? 
c) Qual a concentração em g/L da solução de NaOH? 
 
02) Na titulação de 24,25 mL de uma solução de NaOH foram gastos 19,40 mL de uma solução 0,5 N de 
H2SO4. Responda: 
 
a) Qual o tipo de volumetria? 
b) Qual a normalidade da solução de NaOH? 
c) Qual a concentração em g/L da solução de NaOH? 
 
03) 25,0 mL de uma solução de H2SO4 exigiram na titulação 22,5 mL de uma solução 0,1 N de NaOH. 
Responda: 
a) Qual o tipo de volumetria? 
b) Qual a concentração normal da solução de H2SO4? 
c) Qual a concentração em g/L da solução de H2SO4? 
 
04) 25,0 mL de uma solução de KI exigiram na titulação 15,0 mL de solução de KMnO4 0,2 N. Responda: 
 
a) Qual o tipo de volumetria? 
b) Qual a normalidade da solução de KI? 
c) Qual a concentração em g/L da solução de KI? 
 
05) 50,0 mL de uma solução de NaCl foram titulados com uma solução de AgNO3 0,1 N. Sabendo-se que a 
titulação exigiu 30 mL da solução de AgNO3, responda: 
 
a) Qual o tipo de volumetria? 
b) Qual a normalidade da solução de NaCl? 
c) Qual a concentração em g/L da solução de NaCl? 
 
05) Análise Gravimétrica 
 
Neste método, o constituinte a ser determinado deve ser isolado e “pesado”. Uma vez conhecida a massa 
do composto isolado, fazemos os cálculos. 
Observe: 
Suponha que você tenha uma amostra de sulfato de sódio (Na2SO4) impuro e queira descobrir o seu grau 
de pureza, ou seja, queira calcular a quantidade de Na2SO4 puro existente na amostra. 
 
1º. Passo: Pese certa quantidade de amostra de Na2SO4 impuro; suponhamos 0,300 g. Dissolva esta 
massa em quantidade suficiente de água, preparando-se assim uma solução de Na2SO4. 
 
2º. Passo: Prepare uma solução aquosa de cloreto de bário (BaCl2). Esta solução deve ser adicionada gota 
a gota à solução de Na2SO4. Após adicionado excesso de BaCl2 haverá formação de um precipitado branco 
de sulfato de bário (BaSO4), segundo reação: 
 
 BaCl2 + Na2SO4 --------------------- BaSO4 + 2 NaCl 
 
 
 
 
 10
A seguir deve-se fazer a filtração, ficando assim o precipitado de BaSO4 retido no papel filtro. Este 
precipitado deve ser lavado, seco e pesado. 
 
 
 
 
 precipitado de BaSO4 
 
 
Supondo que a massa de BaSO4 encontrada seja de 0,466 g podemos então fazer os cálculos para 
descobrir o grau de pureza: 
 
 BaCl2 + Na2SO4 --------------------- BaSO4 + 2 NaCl 
 
 142 g --------------------- 233 g 
 
 m -------------------- 0,466 g 
 
 
 142 = 233_ m = 0,284 g 
 m 0,466 
 
Cálculo do grau de pureza: 
 
 0,300 g -------------------- 100% 
 0,284 g -------------------- x % x = 94,6 % 
 
Disto conclui-se que a amostra analisada contém um teor ou grau de pureza de 94,6 % de Na2SO4. 
 
 
Exercícios: 
 
01) Determine a normalidade de uma solução de H2SO4 sabendo-se que 30 mL desta solução tratados por 
uma solução de BaCl2 origina um precipitado branco que lavado, seco e pesado acusa 0,501 g. 
 
02) A análise de 4,875 g de uma amostra comercial impura de NaCl, através da precipitação com AgNO3 
produziu 11,48 g de AgCl. Determine o grau de pureza do NaCl nessa amostra. 
 
03) Temos uma amostra comercial impura de ácido sulfúrico. Submetendo-se 2,45 g dessa amostra à ação 
de uma solução de BaCl2 obtiveram-se 4,66 g de um precipitado branco de BaSO4. Descubra o teor de 
H2SO4 nesse ácido sulfúrico. 
 
 
Exercícios complementares: 
 
Exercícios sobre diluição e concentração 
 
01) A uma amostra de 100 mL de NaOH de concentração 20 g/L foi adicionada água suficiente para 
completar 500 mL. Qual o volume de água adicionado? Qual a nova concentração, em g/L? Que tipo de 
diluição foi efetuada? 
 
02) Se adicionarmos 80 mL de água a 20 mL de uma solução 0,1 molar de hidróxido de potássio (KOH), 
qual a nova concentração? Qual o volume de solução obtida? Que tipo de diluição foi efetuada? Qual será a 
normalidade da solução obtida? 
 
 11
03) Pipetou-se 20 mL de uma solução de ácido sulfúrico 2 M e transferiu-se para um balão volumétrico de 
500 mL. Completou-se o volume do balão com água destilada. Após homogeneizar, qual a concentração 
molar da solução obtida? E a concentração normal? Que tipo de diluição foi efetuada? 
 
 04) Para preparar 1,2 L de solução 0,4 M de HCl, a partir do ácido concentrado (16 M), qual o volume de 
água destilada que deve ser adicionado? 
 
05) 400 mL de solução que contém 0,01 mol/L de sulfato cúprico (CuSO4) são cuidadosamente aquecidos 
até que o volume da solução fique reduzido a 100 mL..Qual o volume de água que foi evaporado. Qual a 
concentração da solução final? Que tipo de concentração foi efetuada? 
 
06) 20 mL de uma solução de cloreto de bário (BaCl2) 2 N sofreram diluição de 1 : 10. Qual a nova 
concentração? Qual o volume de solução obtida? Qual o volume de solvente adicionado? Qual a 
concentração normal da solução obtida? E a concentração molar? 
 
07) Quer-se obter uma solução de sulfato de alumínio, Al2(SO4)3 a 5% em massa, a partir de 800 g de uma 
solução a 1% em massa desse soluto. Que massa de água deverá ser evaporada? Qual a massa final de 
solução para obter tal concentração? Que tipo de concentração foi efetuada? Qual a concentração normal 
da solução resultante? E a concentração molar? 
 
08) A 50 g de uma solução de H2SO4 a 63% em massa são adicionados 400 g de água. Qual a % em massa 
da solução obtida? 
 
09) Deseja-se diluir 1 L da solução de ácido sulfúrico a 80% e densidade 1,47 g/cm3 até o volume de 5 L. 
Quais as concentrações molares antes e depois da diluição? Qual o volume de água que deve ser 
adicionado? E as concentrações normais antes e depois da diluição? Que tipo de diluição foi efetuada? 
 
10) Calcule a massa de NaCl e a massa de água que devem ser adicionados a 100 g de solução aquosa de 
NaCl a 5% em peso, de modo a torná-la de concentração de 20%. Qual massa de solução obtida? 
 
 
Exercícios sobre mistura sem reação química 
 
 
01) 4,0 L de soluçãoaquosa de hidróxido de sódio 2 molar foram adicionados a 12,0 L de solução aquosa 
0,5 molar do mesmo soluto. Qual é a molaridade da solução final? E a normalidade? 
 
02) Determine a normalidade de uma solução aquosa de H2SO4 resultante da mistura de 500 mL de uma 
solução aquosa de H2SO4 2 M com 1500 mL de uma solução aquosa do mesmo ácido e de concentração 
9,8 g/L. 
 
03) Qual é o volume de uma solução de hidróxido de sódio 1,5 M que deve ser misturado a 300 mL de uma 
solução 2 M da mesma base, a fim de torná-la solução 1,8 M ? 
 
04) 250 mL de uma solução 0,20 M de ácido sulfúrico foram misturados com 500 mL de uma outra solução 
de ácido sulfúrico, resultando uma solução 0,40 N. Qual era a concentração molar da solução de 500 mL? E 
a concentração normal? E a concentração comum ( em g/L)? 
 
05) 600 mL de uma solução de carbonato de sódio (Na2CO3) 5,3 g/L foram misturados com 1400 mL de 
uma outra solução de carbonato de sódio 15,9 g/L. Qual a concentração comum (em g/L) da solução 
resultante? E a concentração molar (em mol/L)? E a concentração normal (em Eq-g/L)? 
 
06) Mistura-se 25 mL de uma solução de 0,5 M de KOH com 35 mL de uma solução 0,3 M do mesmo soluto 
e ainda 10 mL de uma solução 0,25 M desta base. Qual o volume da solução resultante? Qual a 
concentração molar da solução resultante?. 
 
 12
07) 200 mL de solução de ácido fosfórico 0,4 N foram misturados com 1,8 L de uma outra solução do 
mesmo ácido. Sabendo-se que a concentração molar da solução resultante é de 0,8 mol/L pergunta-se: qual 
as concentrações molar e normal da solução de 1,8 L? 
 
08) Mistura-se 100 mL de uma solução de cloreto de bário 0,8 N com 300 mL de uma outra solução de 
mesmo soluto a 0, 2 N. Em seguida pipetou-se, da solução obtida 50 mL, transferiu-se para balão 
volumétrico de 250 mL e completou-se o volume do balão com água destilada e homogeneizou-se. Qual a 
concentração obtida após a diluição? 
 
09) Para preparar uma solução de NH3(aq) 6,0 mol/L podem-se medir 120 mL de NH3(aq) 15 mol/L e: 
 
a) acrescentar 100 mL de água d) diluir a 200 mL com água 
b) acrescentar 250 mL de água e) diluir a 300 mL com água 
c) acrescentar 450 mL de água 
 
10) 240 mL de uma solução de NaCl 11,7 g/L foram cuidadosamente aquecidos até o volume de 60 mL. 
Este volume foi misturado com 140 mL solução 0,5 mol/L de mesmo soluto e após pipetou-se desta solução 
50 mL e transferiu-se para balão volumétrico de 250 mL, completando-se o volume do balão com água 
destilada e homogeneizando-se. Qual a concentração normal (em Eq-g/L) da solução obtida no balão? 
 
 
Exercícios sobre misturas com reação química, titulometria e gravimetria 
 
 
01) Uma solução de NaOH de densidade 1,32 g/ mL contém 28,8% de NaOH em massa. Qual o volume de 
solução 1 N de H2SO4 necessário para neutralizar 1 L de solução? Qual a massa de reagentes que se 
combinam? Qual a equação química da reação envolvida? 
 
02) 20 mL de uma solução de ácido sulfúrico exigiram na titulação 18 mL de uma solução 0,1 N de hidróxido 
de sódio. Determine: 
 
a) A normalidade da solução de ácido sulfúrico. 
b) A concentração em g/L da solução de hidróxido de sódio. 
c) Quais as massas de reagentes que se combinaram na titulação? 
d) Qual a equação química da reação envolvida? 
 
03) Calcule o volume de ácido fosfórico 1 M necessário para neutralizar 30 mL de solução de hidróxido de 
potássio 0,5 N. Quais as massas de reagentes que se combinaram na titulação? Qual a equação química da 
reação envolvida? 
 
04) Misturam-se 50 mL de solução de NaOH 0,2 N e 40 mL de solução KOH 0,8 N. Calcule o volume de 
solução 2 N de HNO3 necessário para neutralizar a mistura. Qual a massa de substâncias que reagiram na 
neutralização? Qual a equação química da reação envolvida? 
 
 05) 20 mL de uma solução 1,5 N de Na2CO3 foram pipetados para balão volumétrico de 100 mL. Avolumou-
se com água destilada, homogeneizou-se e uma alíquota de 50 mL foi retirada e transferida para um 
erlenmeyer. Titulou-se com solução de HCl 0,8 N. 
 
a) Esquematizar a seqüência de procedimentos. 
b) Qual o volume gasto de HCl ? 
c) Quais a massas de substâncias que reagiram? 
d) Qual a equação química da reação envolvida? 
 
06) Um volume de 50 mL de ácido sulfúrico foram transferidos para balão volumétrico de 250 mL e 
avolumou-se com água. Após homogeneizar pipetou-se desta nova solução 20 mL, transferiu-se para 
erlenmeyer, e titulou-se com NaOH 0,5 N, nos quais foram gastos 16 mL Qual a normalidade da solução 
inicial? 
 13
07) O volume de uma solução de ácido sulfúrico, a 24,5 % em peso e densidade 1,84 g/mL, necessário para 
se prepararem 200 mL de uma solução do mesmo ácido, suficiente para neutralizar completamente 10 g 
de hidróxido de sódio é aproximadamente: 
 
a) 27,2 mL b) 50,0 mL c) 12,25 mL d) 2,72 mL e) 5,0 mL 
 
08)Na titulação de 50 mL de uma solução de cloreto de sódio foram gastos 30 mL de uma solução 0,1 N de 
AgNO3. Qual a normalidade da solução de NaCl? E sua concentração em g/L? Quais as massas de 
substâncias que se combinaram? Qual a equação química da reação envolvida? 
 
09) 20 mL de AgNO3 são pipetados e transferidos para erlenmeyer. Essa solução exigiu na titulação, 18 mL 
de uma solução 0,12 M de cloreto de sódio. Calcule a concentração molar a a concentração em g/L da 
solução de nitrato de prata. Quais as massas de substâncias que se combinaram? 
 
10) Adicionou-se 150 mL de água destilada a 50 mL de uma solução de NaCl 10 g/L e em seguida esta 
solução uma solução a 800 mL de uma outra solução 5 g/L de mesmo soluto. Tomou-se uma alíquota de 
100 mL e titulou-se com AgNO3 0,2 N. Qual o volume gasto ? 
 
11) Qual o volume de Ba(OH)2 0,25 M necessário para precipitar os íons SO42- contidos em 100 mL de uma 
solução de H2SO4 0,5 M ? Qual a massa de substâncias que reagiram? Qual a equação química da reação 
envolvida? 
 
12) 250 mL de uma solução 3,2 M de Ba(OH)2 foi diluída em 1 : 4. Desta, pipetou-se 100 mL e titulou-se 
com nitrato de prata, onde foram gastos 40 mL. Qual a normalidade da solução de AgNO3? Qual a massa 
de substâncias que reagiram? Qual a massa de precipitado que se formou como corpo de fundo? 
 
13) Na titulação de 25 mL de uma solução de KI foram gastos 18 mL de uma solução de KMnO4 0,03 M. 
Qual a concentração normal da solução de KI? 
 
14) 1,40 g de iodo foram dissolvidos em álcool. A seguir juntou-se água até o volume de 250 mL. Desta 
solução, retirou-se 25 mL e titulou-se com Na2S2O3 0,2 M, no que foram gastos 5 mL. Qual a % de pureza 
do iodo analisado? 
 
15) 25 mL de uma água oxigenada comercial foram diluídas a 500 mL com água destilada. Tomou-se uma 
alíquota de 50 mL e adicionou-se gotas de H2SO4 e titulou-se com permanganato de potássio 0,25 M, onde 
foram gastos 30 mL. 
 
a) Qual a normalidade da água oxigenada comercial? 
b) Qual a concentração em g/L da água oxigenada comercial? 
c) Qual a concentração “em volumes de O2”? 
 d) Escrever a equação química da reação envolvida. 
 
16)12 g de uma amostra de água oxigenada comercial foram diluídas em balão volumétrico de 100 mL. 
Homogeneizou-se e pipetou-se 25 mL para um erlenmeyer. Adicionou-se gotas de H2SO4 e titulou-se com 
KMnO4 0,15 M, do qual foi gasto25 mL. Qual o teor da água oxigenada analisada? 
 
17) 15 mL de uma água oxigenada comercial foram diluídas a 250 mL com água destilada. Tomou-se uma 
alíquota de 50 mL e adicionou-se gotas de H2SO4 e titulou-se com permanganato de potássio 0,08 M, onde 
foram gastos 30 mL. 
 
a) Qual a normalidade da água oxigenada comercial? 
b) Qual a concentração em g/L da água oxigenada comercial? 
c) Qual a concentração “em volumes de O2”? 
 
18) 4,5 g de um ácido sulfúrico comercial foram diluídos em balão volumétrico de 250 mL. Tomou-se uma 
alíquota de 25 mL e titulou-se com NaOH 0,5 M, do qual foi gasto 18 mL. Qual o teor de ácido sulfúrico na 
amostra analisada? 
 14
19) 14,625 g de uma amostrade um sal de cozinha foi dissolvida e transferida para balão volumétrico de 
250 mL.Pipetou-se desta 50 mL e tratou-se com AgNO3 0,5 N, no que foram gastos 25 mL para precipitar 
todos íons Cl-. Qual o teor de NaCl na amostra analisada? 
 
20) A análise gravimétrica de 5 g de um sal de cozinha revelou a presença de 4,305 g de cloreto de prata. 
Determine o teor de NaCl neste sal. 
 
21) 12,4 mL de uma amostra de soda cáustica comercial, de densidade 1,4 g/ mL, foram pipetados para 
balão volumétrico de 500 mL. Avolumou-se e homogeneizou-se com água destilada e retirou-se uma 
alíquota de 50 mL que foram transferidos para erlenmeyer. Titulou-se com ácido sulfúrico 0,4 M do qual foi 
gasto 20 mL. Qual o teor de NaOH na soda cáustica analisada? 
 
22) 13,5 g de amostra de um certo minério contendo Al, quando tratados gravimetricamente com H2CrO4 
(ácido crômico) produz 2,01 g de um precipitado que lavado, seco e pesado revelou ser cromato de 
alumínio. Qual a % de alumínio neste minério? 
 
Exercícios complementares: 
 
01)A massa de H2SO4 que neutraliza totalmente 0,20 g de NaOH é: 
 
a) 0,98 g b) 0,15 g c) 0,325 g d) 0,50 g e) 0,49 g f) 0,245 g 
02)A massa de Na2CO3 que neutraliza totalmente 0,146 g de HCl é: 
 
a) 0,365 g b) 0,52 g c) 0,212 g d) 0,84 g e) 0,73 g f) 0,63 g 
 
03) Misturando-se volumes iguais de um ácido H2X 0,5 M e 1,0 M obtém-se um ácido H2X : 
 
a) 0,8 M b) 1,5 N c) 1 N d) 2 M e) 1,2 N f) 1 M 
 
04) 1,17 g de NaCl precipitam totalmente qual massa de AgNO3 ? 
 
a) 2,15 g b) 3,40 g c) 1,54 g d) 2,87 g e) 3,12 g f) 5,05 g 
 
05) Adicionou-se 400 mL de água destilada a 100 mL de iodo 0,8 N. Tomou-se 50 mL dessa solução e 
titulou-se com Na2S2O3 0,25 M. O volume gasto de tiossulfato foi de : 
 
a) 20 mL b) 30 mL c) 24 mL d) 35 mL e) 32 mL f) 26 mL 
 
06) 4,5 g de um ácido sulfúrico comercial foram diluídos em balão volumétrico de 250 mL Tomou-se uma 
alíquota de 25 mL e titulou-se com NaOH 0,5 M, do qual foram gastos 18 mL. O teor de ácido é: 
 
a) 92 % b) 80 % c) 97 % d) 95 % e) 98 % f) 90 % 
 
07) 25 mL de uma água oxigenada comercial foram diluídas a 500 mL. Tomou-se uma alíquota de 50 mL, 
adicionou-se gotas de H2SO4 e titulou-se com KMnO4 0,25 M, do qual foram gastos 30 mL. 
 
A normalidade da água oxigenada comercial é : 
 
a) 10 N b) 12 N c) 14 N d) 15 N e) 18 N f) 20 N 
 
A concentração da água oxigenada comercial é: 
 
a) 150 g/L b) 255 g/L c) 170 g/L d) 204 g/L e) 238 g/L f) 340 g/L 
 
A concentração da água oxigenada comercial “em volumes” é: 
a) 68 vol b) 84 vol c) 76 vol d) 60 vol e) 100 vol f) 108 vol 
 15
08) 8 g de uma amostra de iodo comercial foram dissolvidas em álcool e transferidas para balão de 500 mL. 
Avolumou-se, retirou-se uma alíquota de 25 mL e titulou-se com tiossulfato de sódio 0,2 M, no que foram 
gastos 15 mL. O grau de pureza do iodo comercial é de: 
 
a) 75 % b) 82,45 % c) 97 % d) 80,5 % e) 95,25 % f) 72,25 % 
 
09) 8 g de uma amostra de soda cáustica comercial foram dissolvidas em 250 mL. Retirou-se uma alíquota 
de 50 mL e titulou-se com H2SO4 0,4 M, no que foram gastos 20 mL. O teor de NaOH na soda cáustica é de: 
 
a) 52,0 % b) 40,3 % c) 46,25 % d) 45,0 % e) 30,5 % f) 38,5 % 
 
 
10) 25,508 g de uma amostra de um produto de limpeza doméstico (contendo NH3), foram transferidos para 
balão volumétrico de 500 mL, avolumou-se com água e homogeneizou-se. Deste balão, retirou-se uma 
alíquota de 30 mL, adicionou-se gotas de verde de bromocresol e titulou-se com HCl 0,2 N (fator de 
correção 0,9800) do qual foi gasto 24,4 mL. Qual o teor de NH3 no produto de limpeza analisado? 
 
 
11) 9,314 g de uma amostra de um ácido sulfúrico comercial (H2SO4), foram transferidos para balão 
volumétrico de 250 mL, avolumou-se com água e homogeneizou-se. Deste balão, retirou-se uma alíquota de 
20 mL, adicionou-se gotas de fenmolftaleína e titulou-se com NaOH 0,4 N (fator de correção 1,0245) do qual 
foi gasto 30,6 mL. Qual o teor de H2SO4 no produto de limpeza analisado? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 16
NOÇÕES DE CALORIMETRIA 
 
Calor (Q) 
 
Usamos a palavra calor ou energia calorífica (ou térmica) para a indicar a forma em que a energia está 
sendo transferida diretamente de um sistema a outro ou entre um sistema e o meio ambiente. 
 
 Calor é energia em trânsito. 
 
Caloria (cal) 
 
Denomina-se caloria (cal) a quantidade de calor necessária para elevar a temperatura de 1 grama de água 
de 14,5 ºC a 15,5 ºC, sob pressão normal (1 atm). 
No Sistema Internacional (SI) a unidade de calor é o Joule (J). 
A relação entre caloria e Joule é: 
 
 1 cal = 4,186 J 
 1 kcal = 1000 cal = 103 cal 
 
 
Capacidade Térmica (C) 
 
Representa a quantidade de calor necessário fornecer ou retirar para que a temperatura de um corpo varie 
em 1 ºC. 
 
 C = __Q__ 
 Δt 
onde: 
 
C é a capacidade térmica (cal/ºC) 
 
 
Calor específico (c) 
 
Cada substância necessita de uma quantidade de calor diferente para que 1 grama dessa substância sofra 
variação de temperatura de 1º C. Isto é uma característica de cada substância e é denominada calor 
específico (c). 
 
Tabela com alguns calores específicos: 
 
 
 Substância 
 
 
 Calor Específico 
 (cal/g .ºC) 
 mercúrio 0,033 
 alumínio 0,217 
 cobre 0,092 
 chumbo 0,030 
 prata 0,056 
 ferro 0,114 
 latão 0,094 
 gelo 0,550 
 água líquida 1,000 
 ar 0,240 
 17
 
Calor sensível (Q) 
 
É a quantidade de calor fornecida a um corpo ou retirada dele que provoca aumento ou diminuição de 
temperatura. 
 
 Q = m . c . Δt 
 
onde: 
 
 Δt = tf - ti 
 
m é a massa do corpo (g) 
c é o calor específico do corpo (cal/g.ºC) 
tf é a temperatura final (ºC) 
ti é a temperatura inicial (ºC) 
Δt é a variação de temperatura. 
 
 
Calor Latente (Q) 
 
É a quantidade de calor fornecida a um corpo ou retirada dele que provoca mudança de estado físico. 
 
 Q = m . L 
onde : 
 
m é a massa do corpo (g) 
L é o calor latente ( cal/g) 
 
 
Calor de combustão (Q) 
 
É a quantidade de calor liberada na combustão (queima) de 1,0 g de uma substância, medido em cal/g. 
Os combustíveis, assim como os alimentos, contêm energia, que pode ser liberada e utilizada por outros 
mecanismos. Essa energia pode ser obtida através da queima (ou combustão). 
 
Tabela com alguns calores de combustão: 
 
 
 Alimento 
 
 
Calor de combustã
 (cal/g) 
 
 Combustível 
 
Calor de Combustão
 (cal/g) 
 Batata frita 2.740 Gás hidrogênio 29.000 
 Pão 2.690 Gás natural 11.900 
 Arroz cozido1.670 Gasolina 11.100 
 Carne magra 1.460 Óleo Diesel 10.900 
 Feijão cozido 670 Álcool Etílico 6.400 
 Leite cru 630 Lenha 2.800 a 4.400 
 
 
 
Exercícios: 
 
01) Um bloco de cobre com 200 g sofre um aquecimento de 25ºC a 70ºC. Determine a quantidade de calor 
recebido pelo bloco e sua capacidade térmica. 
 18
02) Determine quantas calorias perderá 1 kg de água para que sua temperatura varie de 60ºC até 10ºC. 
 
03) Aquece-se 200 g de água a –10ºC e transforma-se essa água em vapor a 120º (sob pressão normal). 
 
a) Calcular a quantidade de calor envolvido nesse processo? 
b) Construir um gráfico Q x t. 
c) Qual o calor latente de fusão em kcal/mol e kJ/mol ? 
d) Qual o calor latente de vaporização em kcal/mol e kj/mol ? 
 
Dados: cliq = 1 cal/g . ºC (água líquida) 
 Lf = 80 cal/g 
 Lv = 540 cal/g 
 cgelo = 0,55 cal/g . ºC 
 cvapor = 0,48 cal/g . ºC 
 
04) 5 mols de vapor de água são resfriados de 110ºC até se transformar em gelo a –20ºC (sob pressão 
normal). 
 
a) Calcular o calor envolvido nessa transformação (em kcal e kJ). 
b) Construir o gráfico Q x t 
c) Qual o calor latente de condensação em kcal/mol e kJ/mol ? 
d) Qual o calor latente de solidificação em kcal/mol e kJ/mol ? 
 
Dados: cliq = 1 cal/g . ºC (água líquida) 
 Ls = -80 cal/g 
 Lc = -540 cal/g 
 cgelo = 0,55 cal/g . ºC 
 cvapor = 0,48 cal/g . ºC 
 
05) Qual é a massa de álcool etílico que libera a mesma quantidade de calor que 100 g de gasolina? 
 
06) O que é mais energético: 200 g de leite cru ou 50 g de batatas fritas? 
 
07) Um bloco de ferro com massa 600 g está a uma temperatura de 20ºC. 
 
a) Qual a quantidade de calor que o bloco deve receber para que sua temperatura passe para 50ºC? 
b) Qual capacidade térmica do bloco? 
 
08) Converter: 
 
a) 10,45 J = ________________________cal b) 50 kcal = ________________________kJ 
c) 2,09 . 106 cal = ____________________kJ d) 18810 kJ = _______________________kcal 
e) 1672 J = _________________________kcal f) 1,045 . 105 kJ = ___________________ cal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19
TERMOQUÍMICA 
 
01) Sistema, fronteira e vizinhança 
 
FRONTEIRA 
 
 
 SISTEMA 
 VIZINHANÇA 
 
 
Sistema: é o meio em estudo. 
Fronteira: é o limite de separação entre o sistema e a vizinhança. 
Vizinhança: é o meio externo ao sistema. 
 
Se imaginarmos como exemplo um tubo de ensaio contendo água e fechado com uma rolha, a água pode 
ser considerada como sendo o sistema, as paredes do tubo como sendo a fronteira e o ar ambiente em 
torno do tubo como sendo a vizinhança. 
 
 02) Transformações Exotérmicas 
 
São as transformações químicas ou físicas que ocorrem com liberação de calor do sistema para a 
vizinhança (ou meio ambiente). Neste tipo de transformação a energia do sistema antes da transformação é 
maior do que após a transformação. 
Como exemplos temos reações químicas de queima (ou combustão) e dissolução de NaOH em água 
(temperatura do sistema aumenta), que ocorrem com liberação de calor para o ambiente ou simplesmente 
uma transformação física de condensação ou solidificação da água. 
 
 03) Transformações Endotérmicas 
 
São as transformações químicas ou físicas que ocorrem com absorção de calor da vizinhança (ou meio 
ambiente) para o sistema. Neste tipo de transformação a energia do sistema antes da transformação é 
menor do que após a transformação. 
Como exemplos temos a dissolução de NH4Cl em água (temperatura do sistema diminui), que ocorre com 
absorção de calor do ambiente, ou apenas uma transformação física de fusão ou vaporização da água. 
 
 este sentido ocorre com absorção de calor (endotérmico) 
 
 sublimação 
 
 fusão vaporização 
 
 
 
 SÓLIDO LÍQUIDO GASOSO 
 
 
 
 solidificação condensação 
 
 ressublimação 
 
 
 este sentido ocorre com liberação de calor (exotérmico) 
 
 20
04) Entalpia (H) 
 
Em um sistema químico, ainda que seja um simples copo com água de torneira, apresenta vários tipos de 
energia: a energia cinética, associada a todos os movimentos de átomos e moléculas, a energia potencial, 
associada à atração e repulsão entre partículas, entre outros tipos de energia, como a entropia, energia 
interna e energia livre, estes últimos em estudos de Termodinâmica. 
 
A todo esse conjunto de energias, ou seja, a medida da energia global de um sistema, à pressão constante, 
atribuímos o nome de ENTALPIA (H), que do grego enthálpo significa “aquecer”. 
 
O valor absoluto da entalpia de um corpo ou sistema não pode ser medido experimentalmente. Na prática o 
que se mede é a variação da entalpia (ΔH), que se manifesta na forma de ganho ou perda de calor. Essa 
medição é feita por aparelhos chamados CALORÍMETROS, construídos com grande eficácia de isolamento 
térmico, para não haver perdas para o ambiente durante a medição. 
 
As reações químicas são exotérmicas ou endotérmicas, isto é, ocorrem com perda ou ganho de calor. 
Portanto o ΔH da reação depende apenas das entalpias dos reagentes e dos produtos. 
 
 ΔH = Hf - Hi ou 
 ΔH = Hprod - Hreag 
 
Essa variação de entalpia (ΔH) é também chamada de calor de reação. 
 
5) Equação termoquímica e gráficos de entalpia 
 
As reações químicas feitas em calorímetros e os dados experimentais obtidos nessas reações são 
representados pelas equações termoquímicas, a qual deve possuir os seguintes dados: 
 
- Os coeficientes estequiométricos de reagentes e produtos. 
- O estado físico de todos os participantes. 
- A forma alotrópica, quando for o caso. 
- A temperatura e pressão em que a reação é feita. 
- O ΔH da reação. 
 
 
Exemplo da formação da água líquida – H2O (l): 
 
a) H2 (g) + ½ O2 (g) ---------------- H2O(l) + 68,3 kcal (25ºC e 1 atm) 
b) H2 (g) + ½ O2 (g) - 68,3 kcal ---------------- H2O (l) 
c) H2 (g) + ½ O2 (g) ---------------- H2O (l) ΔH = - 68,3 kcal 
 
Reação: exotérmica (ΔH < 0), ou seja, liberou calor. 
 
Graficamente: 
 
 H (entalpia) 
 
 
 H2 (g) + ½ O2 calor liberado 
 (exotérmico) 
 Hi 
 ΔH 
 H2O (l) 
 Hf 
 CR (caminho da reação) 
 21
Exemplo da formação do monóxido de nitrogênio – NO (g): 
 
a) N2 (g) + O2 (g) ---------------- 2 NO (g) - 43 kcal (25ºC e 1 atm) 
b) N2 (g) + O2 (g) + 43 kcal ---------------- 2 NO (g) 
c) N2 (g) + O2 (g) ---------------- 2 NO (g) ΔH = + 43 kcal 
 
Reação: endotérmica (ΔH >0), ou seja, absorveu calor. 
 
 
Graficamente: 
 
 H (entalpia) 
 
 
 
 2 NO (g) 
Hf calor 
 absorvido 
 (endotérmico) 
 ΔH 
 
 N2 (g) + O2 (g) CR (caminho da reação) 
 Hi 0 
 
 
 
06) Fatores que influenciam o valor de ΔH 
 
a) Quantidade de matéria de reagentese produtos 
 
A quantidade de calor envolvida numa reação química é proporcional à quantidade de reagentes e produtos 
que participam da reação. 
 
 1 H2 (g) + 1 Cl2 (g) ---------------- 2 HCl (g) ΔH = - 44,2 kcal 
 
 2 H2 (g) + 2 Cl2 (g) ---------------- 4 HCl (g) ΔH = - 88,4 kcal 
 
 
b) O estado físico de reagentes e produtos 
 
A energia das substâncias aumenta progressivamente à medida que elas passam da fase sólida para a fase 
líquida e gasosa. 
 
 
 Energia na fase sólida < Energia na fase líquida < Energia na fase gasosa 
 
 
Exemplo: 
 
 H2 (g) + ½ O2 (g) ---------------- H2O (g) ΔH = - 57,8 kcal/mol 
 H2 (g) + ½ O2 (g) ---------------- H2O (l) ΔH = - 68,3 kcal/mol 
 H2 (g) + ½ O2 (g) ---------------- H2O (s) ΔH = - 70,0 kcal/mol 
 
 
Graficamente: 
 
 22
 H (entalpia) 
 
 
 H2 (g) + ½ O2 (g) calor liberado 
 Hi 0 CR 
 
 ΔH1 
 ΔH2 H2O (g) 
 Hf1 -57,8 
 
 ΔH3 H2O (l) 
 Hf2 -68,3 
 
 H2O (s) 
 Hf3 -70,0 
 
 
 
c) Forma alotrópica de reagentes e produtos (se houver alotropia) 
 
Alotropia é o fenômeno em que um mesmo elemento químico forma substâncias simples diferentes. 
 
Entre as formas alotrópicas de um mesmo elemento, há aquela mais estável, e portanto, menos 
energética e a menos estável e portanto, a mais energética. 
 
 Em geral, quanto maior a estabilidade, menor a energia e vice-versa. 
 
 
 Tabela de Alótropos 
 
 Elemento Alótropos 
 Carbono 
 
 Grafite (Cgraf) 
 Diamante (Cdiam) 
 Oxigênio 
 
 Gás oxigênio (O2)
 Gás ozônio (O3) 
 Enxofre 
 
 Rômbico (Sr) 
 Monoclínico (Sm) 
 Fósforo Vermelho (Pv) 
 Branco (Pb) 
 
 
 Exemplo: 
 
 Cgraf + O2 (g) --------------- CO2 (g) ΔH = - 94,0 kcal/mol 
 
 Cdiam + O2 (g) --------------- CO2 (g) ΔH = - 94,5 kcal/mol 
 
Partindo-se de duas formas alotrópicas diferentes do elemento carbono (Cgraf e Cdiam), para obtenção do CO2 
(g), a quantidade de energia liberada é diferente. A obtenção de CO2 (g) a partir de Cgraf libera menor 
quantidade de calor (94,0 kcal), pois esta forma alotrópica do carbono é menos energética (mais estável). 
 
 
 
Graficamente: 
 
 23
 H (entalpia) 
 
 
 Cdiam + O2 (g) calor liberado 
 Hi2 
 C graf + O2 (g) 
 Hi1 0 CR 
 
 ΔH1 ΔH2 
 CO2 (g) 
 Hf 
 
 
d) A temperatura de ocorrência da reação 
 
O valor de ΔH varia bastante com a temperatura em que foi feita a reação. 
 
Exemplo: 
 
 Fe2O3 (s) + 3 H2 (g) ------------------- 2 Fe (s) + 3 H2O (l) ΔH = - 35,1 kJ (a 25ºC) 
 
 Fe2O3 (s) + 3 H2 (g) ------------------- 2 Fe (s) + 3 H2O (l) ΔH = - 29,7 kJ (a 85ºC) 
 
 
 
e) A pressão de ocorrência da reação 
 
 O valor de ΔH em uma reação envolvendo substâncias sólidas e líquidas praticamente não varia com a 
mudança de pressão. 
Mas, para reações que envolvem substâncias gasosas o valor de ΔH começa a variar de modo significativo 
para pressões acima de 1000 atm. Como normalmente as reações são padronizadas sob pressão normal (1 
atm), não levaremos em conta a variação de ΔH com a pressão. 
 
 
 
f) O meio de ocorrência da reação (presença ou não de solvente) 
 
Quando dissolvemos uma substância em um solvente qualquer, ocorre liberação (exotérmico) ou absorção 
(endotérmico) de energia na forma de calor. 
Assim, se fizermos uma reação na ausência de um solvente, o valor de ΔH será diferente daquele obtido 
quando fazemos a mesma reação na presença de um solvente. 
 
Exemplo: 
 
 H2 (g) + Cl2 (g) ------------------ 2 HCl (g) ΔH = - 44,2 kcal 
 H2O (l) 
 H2 (g) + Cl2 (g) ------------------ 2 HCl (aq) ΔH = - 80,2 kcal 
 
A diferença 80,2 – 44,2 = 36,0 kcal é igual à energia liberada na dissolução de 2 mol de HCl em água (cada 
mol de HCl dissolvido em água libera 18,0 kcal). 
 
Exercícios: 
 
01) Dada a reação: 
 
 H2O (l) --------------- H2 (g) + ½ O2 (g) - 68,3 kcal 
 24
a) A reação é exotérmica ou endotérmica? Justifique. 
b) Qual o valor da variação de entalpia (ΔH)? 
c) Represente esse processo num gráfico de entalpia X caminho da reação. 
d) Represente num gráfico a reação inversa e indique se ela é exo ou endotérmica. 
 
02) A queima da gasolina produz cerca de 11,6 kcal/g e a queima do óleo diesel produz cerca de 10,9 
kcal/g. Qual é a massa de óleo diesel que produz a mesma quantidade de energia que a liberada pela 
queima de 1,5 kg de gasolina? 
 
03) Queimando-se 20 g de um carvão, obteve-se um desprendimento de 1,4 . 105 cal. Qual o teor em 
carbono nesse carvão, supondo-se que as impurezas são incombustíveis? Dado calor de combustão do 
carbono = 9,6 . 104 cal/mol. 
 
04) Tanto gás natural (CH4) como óleo diesel (C14H30) são utilizados como combustíveis em transportes 
urbanos. A combustão completa do gás natural e do óleo diesel liberam, respectivamente, 900 kJ/mol e 
9000 kJ/mol. A queima desses combustíveis contribui para o efeito estufa. Para a queima de 2 kg de cada 
um desses combustíveis, quantas vezes a contribuição do diesel é maior que a do gás natural? 
 
05) A oxidação de açucares no corpo humano produz ao redor de 4 kcal por grama de açúcar oxidado 
(queimado). Quantos kcal são produzidos na oxidação de um décimo de mol de glicose? 
 
06) Qual o calor de combustão molar do carbono grafite, em kcal e kJ, sabendo-se que a combustão de 0,5 
g do mesmo o calor liberado é 3,92 kcal? 
 
07) Com relação aos combustíveis metanol e etanol: 
 
a) Calcule as massas de CO2 formadas na queima completa de 120 g de cada um dos álcoois. 
b) Para a massa queimada no item a, em qual haverá liberação de maior quantidade de calor? Justifique 
com cálculos. 
 
Dados: calores de combustão do metanol = 640 kJ/mol e do etanol = 1240 kJ/mol. 
 
08) O fósforo P4 , exposto ao ar, queima espontaneamente e forma P4O10. O valor de ΔH para essa reação é 
de –712 kcal/mol de P4. Qual é, em kcal, a quantidade de calor produzida quando 2,48 g de fósforo são 
queimados? 
 
09) Que volume de etanol (C2H6O) produz, por combustão completa, a mesma quantidade de energia que a 
produzida na queima total de 1 L de gasolina, supostamente constituída de octano (C8H18)? Dados referidos 
a 25ºC: calor de combustão do etanol = 330 kcal/mol, do octano = 1320 kcal/mol, densidade do etanol = 
0,78 g/mL, do octano = 0,80 g/mL. 
 
10) Utilize os valores da tabela abaixo para responder à questão: 
 
 
 Combustível Poder Calorífico 
 kJ/kg kcal/kg 
 Gasolina 20% álcool 40546 9700 
 Álcool Combustível 27200 6507 
 
 
Dados: densidade da gasolina = 0,743 kg/L e densidade do álcool = 0,79 kg/L. 
 
11) Em um tanque de um carro com 60 L de capacidade quantos litros aproximadamente de álcool devem 
ser queimados para liberar a mesma quantidade de calor que 60 L de gasolina ? 
 
a) 60 L b) 89 L c) 66 L d) 84 L e) 75 L f) 80 L 
 25
12) Uma vela é feita de um material ao qualse atribui a fórmula C20H42 (s) .Qual o calor e a massa de CO2 (g) 
liberados na combustão de 10 g dessa vela à pressão constante? Dado ΔH = - 13300 KJ/mol. 
 
 
Tipos de Entalpia (ou calor de reação) 
 
As variações de entalpia que ocorrem nas reações termoquímicas são classificadas de acordo com o tipo de 
reação química correspondente: 
 
a) ΔH de formação 
b) ΔH de decomposição 
c) ΔH de combustão 
d) ΔH de dissolução 
e) ΔH de neutralização 
 
 
1) Entalpia ou calor de formação (ΔHºf ) 
 
Calor de formação de um composto, ou entalpia padrão (Hº) é a quantidade de calor liberada ou 
absorvida durante a síntese (ou formação) de 1 mol desse composto a partir de substâncias simples 
no estado padrão. 
 
Estado padrão é o estado mais estável de uma substância, a 25ºC e 1 atm. O estado padrão também 
refere-se à forma alotrópica mais estável. 
Por convenção, a entalpia das substâncias simples, no estado padrão é nula. 
 
 Hºsubstâncias simples=0 
 
Assim, por exemplo, temos entalpia nula para Cgraf, S8 rômb, O2 (g), I2 (s), H2 (g), F2 (g), Cl2 (g), N2 (g), Al (s), Fe (s) 
P(v), que são os estados físicos e as formas alotrópicas mais estáveis dessas substâncias, a 25ºC e 1 atm. 
 
 O calor de formação de uma substância composta é a sua própria entalpia padrão. 
 
Exemplos: 
 
a) Entalpia ou calor de formação da água líquida (a 25º e 1 atm): 
 
 H2 (g) + ½ O2 (g) ---------------- 1 H2O (l) ΔHºf = - 68,3 kcal/mol 
 
 Hr Hp 
 
Como HºH2 = 0 e HºO2 =0 temos que Hr = 0. Assim a variação de entalpia ΔH = Hp - Hr (ou ΔH = Hf - Hi ) é 
a própria entalpia do produto ou Hp (ou Hf). 
 
Graficamente: 
 
 H (entalpia) 
 
 calor liberado 
 H2 (g) + ½ O2 (g) (exotérmico) 
 Hr 0 CR (caminho da reação) 
 
 ΔH 
 H2O (l) 
 Hp -68,3 
 26
b) Entalpia ou calor de formação do monóxido de nitrogênio gasoso (a 25ºC e 1 atm) 
 
 ½ N2 (g) + ½ O 2 (g) -------------- 1 NO (g) ΔH = + 21,5 kcal/mol 
 
Como HºN2 = 0 e HºO2 =0 temos que Hr = 0. Assim a variação de entalpia ΔH = Hp - Hr (ou ΔH = Hf - Hi ) é 
a própria entalpia do produto ou Hp (ou Hf). 
 
Graficamente: 
 
 H (entalpia) 
 
 
 
 NO (g) 
Hp +21,5 calor absorvido 
 (endotérmico) 
 
 ΔH 
 
 ½ N2 (g) + ½ O2 (g) CR (caminho da reação) 
 Hr 0 
 
 Tabela de alguns calores de formação (em kcal/mol) 
 
 Substância ΔHºf Substância ΔHºf 
 CH4 (g) -17,9 Al2O3 (s) -400,5 
 Fe2O3 (s) -196,5 Br2 (g) -7,4 
 HCl (g) -22,0 C2H6 (g) -20,2 
 CH3Cl (g) -19,6 CH3OH (l) -57,0 
 CO2 (g) -94,1 C3H8 (g) -24,8 
 HF (g) -64,2 CS2 (l) +21,4 
 S02 (g) -70,9 CCl4 (l) - 32,1 
 CO (g) -26,4 C2H4O (g) -39,8 
 NO2 (g) +8,0 CaSO4 (s) -342,4 
 O3 (g) +34,0 H2SO4 (l) -194,5 
 PCl5 (g) -95,4 NaCl (s) - 98,6 
 C2H6O (l) -66,3 NaOH (s) -102,0 
 H2O2 (g) -32,5 Na2O2 (s) -120,6 
 C3H6 (g) + 4,9 PbSO4 (s) -219,0 
 C2H4 (g) +12,5 NH3 (g) -11,0 
 C6H6 (l) +11,7 MgCl2 (s) -153,4 
 
 
Exercícios: 
 
01) Para cada uma das entalpias de formação da tabela acima montar a equação termoquímica de 
formação e representar graficamente. 
 
 
 
Exemplo: para a formação da substância 1-buteno gasoso ou C4H8 (g) , cujo ΔHºf = + 0,28 kcal/mol 
 
 4 Cgraf + 4 H2 (g) -------------- 1 C4H8 (g) ΔHºf = + 0,28 kcal/mol 
 
 
 27
Graficamente: 
 
 H (entalpia) 
 
 
 
 C4H8 (g) 
Hp +0,28 calor ΔH = Hf – Hi ou ΔH = Hp - Hr 
 absorvido ΔH = + 0,28 - 0 
 (endotérmico) ΔH = + 0,28 kcal/mol 
 ΔH 
 
 4 Cgraf + 4 H2 (g) CR (caminho da reação) 
 Hr 0 
 
 
2) Entalpia ou calor de decomposição 
 
Calor de decomposição de um composto é a quantidade de calor liberada ou absorvida na 
decomposição de 1 mol desse composto, no estado padrão. 
 
 
Exercícios: 
 
01) Calcular a entalpia de decomposição do CaCO3 (s), na reação abaixo e representar graficamente. 
 
 CaCO3 (s) ------------------- CaO (s) + CO2 (g) ΔH = + 177,5 kJ/mol 
 
Dados: ΔHºf = HCaO (s) = - 635,5 kJ/mol 
 ΔHºf = HCO2 (g) = - 394 kJ/mol 
 HCaCO3 (s) = ? 
 
02) Calcular a variação de entalpia para a reação: 
 
 Ca(OH)2 (s) + CO2 (g) --------------- CaCO3 (s) + H2O (g) ΔH = ? 
 
Dados: ΔHºf = HCa(OH)2 (s) = - 986,1 kJ/mol 
 ΔHºf = HCO2 (g) = - 393,5 kJ/mol 
 ΔHºf = HCaCO3 (s) = -1207 kJ/mol 
 ΔHºf = HH2O (g) = - 241,8 kJ/mol 
 
03) Um dos sistemas propelentes usados em foguetes é uma mistura de hidrazina (N2H4), como 
combustível e peróxido de hidrogênio (H2O2) como oxidante. Esses reagentes são chamados 
hipergólicos, isto é, eles iniciam a reação pelo simples contato. A reação que ocorre é: 
 
 N2H2 (l) + H2O2 (l) --------------------- N2 (g) + H2O (g) (equação não balanceada) 
 
Calcule o ΔH da reação a partir das entalpias de formação das substâncias no estado padrão: 
 
ΔHN2H4 (l) = +12 kcal/mol ΔHH2O2 (l) = - 46 kcal/mol ΔHH2O(g) = - 57,8 kcal/mol 
 
 
 
 
 
 28
3) Entalpia ou calor de combustão (ΔHºc ) 
 
Calor de combustão ou entalpia de combustão é a quantidade de calor liberada pela combustão de 1 
mol de um composto (combustível) a partir de substâncias no estado padrão. 
 
Combustão é a reação química de uma substância (combustível) com oxigênio (comburente), e ocorre com 
liberação de energia na forma de calor. Portanto uma reação de combustão é sempre exotérmica e seu ΔH 
é sempre menor que zero (ΔH<0). 
 
Porém, vale comentar que nem toda reação com gás oxigênio é exotérmica. Durante as tempestades na 
atmosfera, a passagem dos raios provoca a reação entre os gases N2 e O2 e este processo é endotérmico 
(absorve energia): 
 
 N2 (g) + O2 (g) ---------------- 2 NO (g) ΔH = + 180 kJ 
Exemplos: 
 
a) Combustão de 1 mol de H2 (g) 
 
 1 H2 (g) + ½ O2 (g) --------------- 1 H2O (g) ΔHºc = - 241,8 kJ/mol 
 
b) Combustão de 1 mol de C graf 
 
 1 C graf + 1 O2 (g) ---------------- 1 CO2 (g) ΔHºc = - 393,5 kJ/mol 
 
c) Combustão de 1 mol de gasolina (l) 
 
 1 C8H18 (l) + 25/2 O2 (g) ----------------- 8 CO2 (g) + 9 H2O (l) ΔHºc = - 5.110 kJ/mol 
 
 
 Tabela com alguns caloresde combustão (em kcal/mol) 
 
Substância ΔHºc 
C2H6O (l) -326,7 
CH4 (g) -212,8 
CH3OH (g) -182,6 
Cgraf -94,07 
H2 (g) -68,3 
C2H6 (g) -372,8 
C2H4 (g) -337,2 
C6H6 (l) -781,0 
C4H10 (g) -688,0 
C6H12O6 (s) -673,0 
C12H22O11 (s) -1348,9 
C3H8 (g) -530,6 
 C2H2 (g) -310,6 
 CO (g) -67,6 
 
 
Exercícios: 
 
01) De acordo com a tabela de entalpia de combustão, montar a equação termoquímica para todas as 
substâncias. 
 
02) Calcular o calor liberado na combustão de 690 g de álcool etílico a partir de substâncias no estado 
padrão. Utilizar valores da tabela de entalpia de formação. Representar graficamente. 
 29
03) Calcular o calor liberado na combustão de 104 g de acetileno a partir de substâncias no estado padrão. 
Utilizar valores da tabela de entalpia de formação. Representar graficamente. 
 
04) Considere a combustão de 0,5 g de metano. Sabendo que o calor de combustão do metano é 803,7 
kJ/mol, qual a massa de água e de gás carbônico e a energia liberada nessa combustão? Representar 
graficamente. 
 
05) Calcular o calor liberado na combustão de 290 g de butano a partir de substâncias no estado padrão. 
Utilizar valores da tabela de entalpia de formação. Representar graficamente. 
 
06) O que libera maior quantidade de energia quando queimado: 3,6 g de benzeno ou 11,5 g de álcool 
etílico? 
 
07) A partir de ΔHºf das substâncias envolvidas, calcular o ΔHºc para a combustão de 1 mol de: 
 
a) metanol líquido 
b) ácido etanóico líquido 
c) gás propano 
 
 
 4) Entalpia ou calor de dissolução (ΔHºdis) 
 
Calor de dissolução ou entalpia de dissolução é a quantidade de calor liberada ou absorvida pela 
dissolução de 1 mol de uma determinada substância numa quantidade de solvente (geralmente 
água), até não haver mais variação significativa de calor. 
 
Para explicar o calor liberado ou absorvido na dissolução das substâncias devemos considerar duas etapas: 
a separação dos íons e a hidratação deles. Cada uma dessas etapas envolve um valor de ΔH. Seja a 
substância CxAy : 
 
 
a) Etapa I: separação das partículas 
 
Consiste na quebra de ligações interatômicas, em compostos iônicos ou capazes de formar íons, e 
intermoleculares, em compostos covalentes. Esta etapa é sempre endotérmica (ΔH1). 
 
 CxAy H2O (l) x Cy+ (aq) + y Ax- (aq) ΔH1 > 0 
 
 
b) Etapa II: hidratação das partículas 
 
Consiste no envolvimento ordenado das moléculas de água ao redor das partículas e essa etapa é sempre 
exotérmica (ΔH2). 
 
 x Cy+ + y Ax- H2O (l) x Cy+ (aq) + y Ax- (aq) ΔH2 < 0 
 
 
Assim, podemos concluir que: 
 
 ΔHºdis = ΔH1 + ΔH2 
Por exemplo: 
 
a) A dissolução de hidróxido de sódio (NaOH) em água libera calor. Percebemos isso pelo aquecimento da 
solução: 
 
 NaOH (s) H2O (l) Na+(aq) + OH- (aq) ΔHºdis = - 43kJ/mol 
 30
b) A dissolução de nitrato de amônio (NH4NO3) em água absorve calor. Percebemos isso pelo resfriamento 
da solução: 
 
 NH4NO3 (s) H2O (l) NH4+ (aq) + NO3- (aq) ΔHdis = + 26 kJ/mol 
 
 
O símbolo (aq) significa água suficiente para formar uma solução diluída. 
 
 
5) Entalpia ou calor de Neutralização (ΔHºn) 
 
Calor de neutralização ou entalpia de neutralização é a quantidade de calor liberada ou absorvida 
envolvida na neutralização de 1 equivalente-grama de um ácido por 1 equivalente-grama de uma 
base, ambos em soluções aquosas diluídas. 
 
 1 Eácido (aq) + 1 Ebase (aq) 1 E sal (aq) + 1 H2O (l) ΔHºn 
 
 
Por exemplo: 
 
a) HCl (aq) + NaOH (aq) 1 NaCl + H2O (l) ΔHºn = - 13,8 kcal/equivalente 
 
 
b) HNO3 (aq) + KOH (aq) 1 KNO3(aq) + H2O (l) ΔHºn = - 13,8 kcal/equivalente 
 
Observe que o ΔHºn entre ácidos fortes e bases fortes é constante e igual a –13,8 kcal/equivalente. 
Isto se justifica porque todos os ácidos fortes, bases fortes e os sais obtidos pela reação deles se encontram 
praticamente 100 % ionizados ou dissociados em solução aquosa diluída. 
 
 
Energia de ligação 
 
É a medida da energia média, necessária ser absorvida para romper 1 mol de ligações covalente no 
estado gasoso (simples,dupla ou tripla) entre 2 átomos, de modo a obter esses átomos isolados na 
fase gasosa. 
 
Ao se romper uma ligação entre átomos, há absorção de energia para isso. Quanto mais estável é a ligação, 
maior a quantidade de energia envolvida para esse rompimento. O calor de ligação ou energia de ligação é 
numericamente igual à quantidade de calor liberado na formação de 1 mol dessas mesmas ligações 
(6,02 . 1023 ligações). 
 
Assim, por exemplo, para romper 1 mol de ligações H – H do gás hidrogênio, é necessário absorver 104 
kcal (ΔH > 0). 
 
 
 
 H2 (g) 2 H (g) 
 
 
 ΔH = + 104 kcal/mol 
 
 + calor 
 
 
 ΔH > 0 
 
 
 
 
 
 31
 Tabela com algumas energias de ligação (em kcal/mol) 
 
 Ligação Energia Ligação Energia Ligação Energia Ligação Energia 
 H – H 104,2 C -- F 103,8 C = O (carbonila) 178,0 N – F 65,0 
 H – F 134,6 C – Cl 78,2 C = O (CO2) 192,1 N – Cl 46,0 
 H – Cl 103,2 C – Br 67,1 H – O 110,8 F – F 36,6 
 H – Br 87,5 C – I 57,7 O – O 33,2 Cl – Cl 58,0 
 H – I 71,4 C – C 82,9 O = O 119,1 Br – Br 46,1 
 C – H 98,8 C = C 146,8 N = N 225,8 I -- I 36,1 
 C -- O 84,5 C = C 199,2 N -- H 93,4 
 
 
Cálculos de ΔH a partir das energias de ligações: 
 
 
Exemplo: Calcular o ΔH para a reação N2 (g) + H2 (g) --------------- NH3 (g) ΔH = ? 
 
a) Primeiramente precisamos balancear a equação: 
 
 1 N2 (g) + 3 H2 (g) --------------- 2 NH3 (g) ΔH = ? 
 
 
b) Agora precisamos saber a fórmula estrutural das substâncias: 
 
 1 N = N + 3 H – H ----------------- 2 H – N – H 
 
 H 
 
c) Lembrando que todo processo de quebra (ou rompimento) das ligações é endotérmico (absorve energia) 
e todo processo de formação é exotérmico (libera). Assim, buscando os valores na tabela: 
 
 Para reagentes Para produtos 
 
 1 x (225,8) + 3 x (104,2) ------------------- 2 x (3 x 93,4) 
 
 
 225,8 312,6 560,4 
 
 
 Processo endotérmico = + 538,4 kcal Processo exotérmico = - 560,4 kcal 
 
 
Portanto o ΔH da reação será: 
 
 ΔH = + 538,4 – 560,4 
 ΔH = - 22 kcal 
 
 
Exercícios: 
 
01) A partir dos dados da tabela de energias de ligação, calcular o variação de entalpia para a combustão 
de 1 mol de metano (CH4). 
 
04) Calcular (via energia de ligação) o ΔH para a reação: 
 
 H2 (g) + O2 (g) --------------- H2O (g) 
 32
05) Calcular (via energia de ligação) o ΔH para a reação: 
 
 H2 (g)+ Cl2 (g) --------------- HCl (g) 
 
06) Calcular (via energia de ligação) o ΔH para a combustão de 2 mols de etanol (C2H6O). 
 
07) Calcular o ΔH para a reação: 
 
 HBr (g) + Cl2 (g) --------------- HCl (g) + Br2 (g) 
 
08) Qual ligação é mais estável: N2 (g), H2 (g) ou F2 (g). Justifique e comente sua resposta. 
 
09) A partir das energias de ligação, calcule o ΔH da reação de adição de fluoreto de hidrogênio ao 
acetileno: 
 
 
 C2H2 (g) + HF (g) --------------- C2H3F (g) 
 
 
EXPLOSIVOS 
 
É possível armazenar quantidades enormes de energia nas ligações química, e talvez o melhor 
exemplo esteja na química dos explosivos. Um explosivo é uma substância líquida ou sólida que 
satisfaz três critérios principais: 
 
a) A decomposição deve ser rápida; 
b) A decomposição deve ser muito exotérmica; 
c) Os produtos da decomposição devem ser gasosos; assim a reação é acompanhada de um 
tremendo aumento de pressão exercido por esses gases. 
 
A combinação desses três efeitos leva a uma produção violenta de calor e gases, geralmente 
associada com as explosões. 
Quais os produtos mais adequados nos quais se deve decompor um explosivo? 
Idealmente, para se ter uma reação muito exotérmica, um explosivo deve ter ligações químicas muito 
fracas e sua decomposição dever produzir substâncias com ligações químicas muito fortes. Ao 
analisar as energias de ligação, vemos que as ligações N N, C O e C O são muito fortes. Não 
surpreende que os explosivos sejam fabricados para produzir N2 (g), CO (g) e CO2 (g). Quase sempre 
também é produzido vapor d’água. 
Um bom exemplo é a nitroglicerina (TNG), um líquido amarelo, pálido, oleoso, muito sensível ao 
impacto. Basta agitá-lo para ocasionar sua decomposição explosiva em nitrogênio, dióxido de 
carbono, água e oxigênio gasosos: 
 
 4 C3H5N3O9 (l) -------------------- N2 (g) + 12 CO2 (g) + 10 H2O (g) + O2 (g) 
 
As elevadas energias de ligação nas moléculas de N2 (941 kJ/mol), de CO2 (2700 kJ/mol) e de água 
(2463 kJ/mol) fazem com que essa reação seja muito exotérmica. Com exceção de uma pequena 
quantidade produzida de O2 (g), os únicos produtos são N2, CO2 e H2O. 
 
 
Lei de Hess 
 
O cientista suíço Germain Hess efetuou inúmeras medidas de calores de reação, chegando à seguinte 
conclusão: 
 
“O calor absorvido ou liberado numa transformação química é o mesmo, qualquer que seja o caminho 
percorrido pela transformação” 
 33
Em outras palavras, o calor absorvido ou liberado independe das fases do processo, somente importando o 
estado inicial das substâncias reagentes e o estado final dos produtos. Por isso, a Lei de Hess é também 
conhecida como lei dos estados inicial e final, ou lei da aditividade dos calores de reação. 
Visualizando as aplicações da Lei de Hess como uma transformação cíclica: 
 
 
 
 B 
 
 Podemos dizer que 
 ΔH1 ΔH2 
 ΔH = ΔH1 + ΔH2 
 
 A C onde B é o estado intermediário 
 ΔH 
 
 
Aplicações da lei de Hess 
 
Na prática, nem toda reação de formação ocorre. Um exemplo de uma reação quantitativamente muito difícil 
é a combustão do C (g) produzindo CO (g) (formação do CO (g)). Durante a reação, parte do CO (g) reage com 
o O2 (g) e forma CO2 (g), enquanto parte do carbono fica sem reagir. 
Desse modo, o calor molar de formação do CO (g) é impossível de ser determinado experimentalmente. 
Assim como o ΔHºf do CO (g) é impossível de ser determinado, muito outros ΔHºf também o são, e então 
teríamos uma tabela de ΔHºf incompleta. 
 
 
Exemplo: 
 
Dadas as equações de formação: 
 
I) Cgraf + O2 (g) ------------------ CO2 (g) ΔH = - 94,1 kcal/mol 
II) H2 (g) + O2 (g) ------------------ H2O (l) ΔH = - 68,3 kcal/mol 
III) Cgraf + H2 (g) ----------------- CH4 (g) ΔH = - 17,9 kcal/mol 
 
Calcular o ΔH para a combustão de 96 g de CH4 (g). 
 
Resolução: 
 
As equações I, II e III são as equações de trabalho e a proposta do exercício é queimar metano gasoso (CH4 
(g)). A equação que expressa esta proposta é: 
 
 CH4 (g) + O2 (g) ---------------- CO2 (g) + H2O (l) ΔH = ? 
 
Ou seja, o ΔH que será calculado é a entalpia molar de combustão do CH4 (g) e depois, por fim calcularemos 
para 96 g. 
 
1º. passo: Balancear todas as equações disponíveis, as de trabalho e a proposta pelo exercício: 
 
I) 1 Cgraf + 1 O2 (g) ------------------ 1 CO2 (g) ΔH = - 94,1 kcal/mol 
 
II) 1 H2 (g) + ½ O2 (g) ------------------ 1 H2O (l) ΔH = - 68,3 kcal/mol 
 
III) 1 Cgraf + 2 H2 (g) ----------------- 1 CH4 (g) ΔH = - 17,9 kcal/mol 
 
 34
A proposta pelo exercício: 
 
 1 CH4 (g) + 2 O2 (g) ---------------- 1 CO2 (g) + 2 H2O (l) ΔH = ? 
 
2º. passo: Multiplicar e/ou inverter as equações de trabalho, orientando-se por cada substância da equação 
proposta pelo exercício: 
 
Inverter a equação III 1 CH4 (g) -------------------- 1 Cgraf + 2 H2 (g) ΔH1 = + 17,9 kcal/mol 
 
Copiar a equação I 1 Cgraf + 1 O2 (g) ------------------ 1 CO2 (g) ΔH2 = - 94,1 kcal/mol 
 
Multiplicar por 2 a equação II 2 H2 (g) + 1 O2 (g) ------------------ 2 H2O (l) ΔH3 = - 136,6 kcal 
 
3º. Passo: Somar as três equações do 2º. Passo, cancelando substâncias iguais em quantidades iguais e 
em membros diferentes e reescrever a equação resultante: 
 
 1 CH4 (g) -------------------- 1 Cgraf + 2 H2 (g) ΔH1 = + 17,9 kcal/mol 
 
 1 Cgraf + 1 O2 (g) ------------------ 1 CO2 (g) ΔH2 = - 94,1 kcal/mol 
 
 2 H2 (g) + 1 O2 (g) ------------------ 2 H2O (l) ΔH3 = - 136,6 kcal 
 
 CH4 (g) + O2 (g) ---------------- CO2 (g) + H2O (l) ΔH = ? 
 
Note que a equação obtida pelo cancelamento coincide com a proposta pelo exercício. 
 
Aplicando a lei de Hess 
 
 ΔH = ΔH1 + ΔH2 + ΔH3 
 
 ΔH = + 17,9 + (-94,1) + (-136,6) 
 
 ΔH = + 17,9 -94,1 -136,6 
 
 ΔH = - 212,8 kcal/mol 
 
Calculando o ΔH para 96 g: 
 
 1 mol CH4 (g) ----------------- 16 g CH4 (g) ------------------- -212,8 kcal 
 
 x mol CH4 (g) ---------------- 96 g CH4 (g) ------------------- y kcal 
 
 x = 6 mols y = -1276,8 kcal 
 
Assim a combustão de 96 g de CH4 (g) libera 1276,8 kcal, obtidos por aplicação da lei de Hess. 
 
Exercícios: 
 
01) Dados os processos: 
 
 Cgraf + O2 (g) ------------------ CO2 (g) ΔH = - 94,1 kcal/mol 
 Cdiam + O2 (g) ------------------ CO2 (g) ΔH = - 94,5 kcal/mol 
 
Calcule o ΔH para a reação: 
 Cgraf -------------------- Cdiam ΔH = ? 
 35
02) Dados os processos: 
 
II) H2 (g) + O2 (g) ------------------ H2O (l) ΔH = - 68,3 kcal/mol 
 
II) H2 (g) + O2 (g) ------------------ H2O (v) ΔH = - 57,8 kcal/mol 
 
Calcule o valor de ΔH para o processo de condensação da água: 
 
 H2O (v) ------------------- H2O (l) ΔH = ? 
 
 
03)Dados os processos: 
 
C2H2 (g) + O2 (g) ------------ CO2 (g) + H2O (l) ΔH = - 310,7 kcal/mol 
 
C6H6 (l) + O2 (g) ----------- CO2 (g) + H2O (l) ΔH = - 799,3 kcal/mol 
 
Calcular o valor de ΔH para

Outros materiais