Buscar

TCC Final pdf

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 78 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 78 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 78 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

CENTRO UNIVERSITÁRIO PLANALTO DO DISTRITO FEDERAL
TRABALHO DE CONCLUSÃO DE CURSO
CURSO DE ENGENHARIA CIVIL
JHONATA DA SILVA FONSECA
ORTIS GONÇALVES
ANÁLISE DE ESFORÇOS ATUANTES DE PRESSÃO E SUCÇÃO EM UM
GALPÃO METÁLICO DEVIDO A AÇÃO DO VENTO
BRASÍLIA/DF
2020
JHONATA DA SILVA FONSECA
ORTIS GONÇALVES
ANÁLISE DE ESFORÇOS ATUANTES DE PRESSÃO E SUCÇÃO EM UM
GALPÃO METÁLICO DEVIDO A AÇÃO DO VENTO
Trabalho de conclusão de curso para
obtenção do título de Bacharel em
Engenharia Civil apresentado ao Centro
Universitário Planalto do Distrito Federal.
Orientador: Prof. Me. Pedro Gustavo
Pereira Leite
BRASÍLIA/DF
2020
JHONATA DA SILVA FONSECA
ORTIS GONÇALVES
ANÁLISE DE ESFORÇOS ATUANTES DE PRESSÃO E SUCÇÃO EM UM
GALPÃO METÁLICO DEVIDO A AÇÃO DO VENTO
Trabalho de conclusão de curso para
obtenção do título de Bacharel em
Engenharia Civil apresentado ao Centro
Universitário Planalto do Distrito Federal.
Aprovado em: 
BANCA EXAMINDORA:
_________________________________/___/___
 Profª Me Walter S. de Vasconcelos
 UNIPLAN
_________________________________/___/___
 Profª Me José Henrique Silva
 UNIPLAN
_________________________________/___/___
 Profª Me Pedro Gustavo Pereira Leite
UNIPLAN
AGRADECIMENTOS
Agradeço primeiramente a Deus por ter me dado a vida, sabedoria e saúde
para realizar a faculdade, por ter me dado forças para continuar quando a vontade
era desistir.
Agradeço a minha esposa que sempre esteve ao meu lado me apoiando e me
dando forças para continuar principalmente quando eu estava a fraquejar nessa
jornada, agradeço aos meus familiares pelo apoio irrestrito aos meus filhos Rafael e
Ana Júlia pelo amor e compreensão.
Agradeço à equipe de professores e funcionários do UNIPLAN, ao Nosso
orientador Profº Pedro Gustavo Pereira Leite, pelo apoio e direcionamentos e ao
Coordenador do curso de Engenharia Civil, Carlos. R .F Oliveira.
 Ortis Gonçalves Costa
Em primeiro lugar, agradeço a Deus pela minha vida e por me permitir chegar
até aqui. Gratidão aos meus pais Divino e Lenice que de perto acompanharam todos
os meus desafios, agradeço por toda confiança depositada em mim e pela paciência
para comigo nos momentos mais difíceis. Agradeço a minha família e aos amigos
que me acompanharem até aqui. Gratidão aos meus professores por todos os
ensinamentos, em especial ao nosso orientador Profº. Pedro Gustavo Pereira Leite,
por todo apoio. Agradeço a todas as pessoas que de alguma forma me auxiliaram.
Jhonata da Silva Fonseca
RESUMO
Os galpões metálicos são estruturas comumente utilizadas para
estabelecimentos comerciais, industriais e armazenamento de produtos, após o
processo de fabricação. Estas edificações industriais são submetidas a cargas
permanentes e variáveis, estas últimas devido às ações acidentais e às ações do
vento sobre os seus planos de fechamento, lateral e cobertura, sobre efeito de
sobrepressão e sucção.
Este trabalho apresenta um estudo de caso sobre o comportamento de um
galpão industrial sob efeito da sucção e sobrepressão devido à ação do vento na
cobertura, considerando este carregamento variável atuando como carregamento
estático de acordo com a NBR 6123/1988 e considerações de cálculo obtidos com o
auxílio do software Visual Ventos 2.0.2. Criou-se três diferentes modelações do
contraventamento, com o auxílio do software SAP 2000, das quais se diferenciaram
apenas a disposição dos tirantes para as formas de X, K e V no plano da cobertura,
analisando os deslocamentos horizontais, os deslocamentos verticais e os esforços
axiais.
Os esforços resultantes da sucção do vento se alteram à maneira que a
configuração dos tirantes no contraventamento muda. Nesse sentido, comparou-se
as três modelações do contraventamento, para as situações analisadas, verificando
qual disposição dos tirantes melhor atende à segurança e estabilidade global da
estrutura de acordo com a NBR 8800/2008.
Palavras-Chave: Sucção, Contraventamentos, Estrutura de Cobertura.
ABSTRACT
Metal sheds are structures commonly used for commercial, industrial and product
storage after the manufacturing process. These industrial buildings are subjected to
permanent and variable loads, the latter due to accidental actions and the actions of
the wind on their closing, side and roof planes, overpressure and suction effect 
This work presents a study on the behavior of industrial sheds under the effect of
suction and under pressure due to the action of the wind, considering this variable
load acting as static load according to ABNT NBR 6123/1988 and considerations of
calculation, analyzing three different models, which differ in the plot and position of
the bracing with the structure of the plan of the deck in aid of the software SAP
2000®. The efforts resulting from the wind suction change as the bracing
configuration changes in the plane of the roof structure. According to ABNT NBR
8800/2008, for the situations analyzed, it was compared if the same metallic profile
indicated for an element would meet the variations between the efforts, also verifying
the displacements of the main gantry and of the purling.
Keywords: Suction, Bracing, Covering Structure. 
 
 
SUMÁRIO
1. INTRODUÇÃO.....................................................................................................................................1
1.1. Justificativa......................................................................................................................................2
1.2. Objetivos.........................................................................................................................................3
1.2.1. Objetivo Geral..............................................................................................................................3
1.2.2. Objetivos Específicos....................................................................................................................3
2. INTRODUÇÃO TEÓRICA.......................................................................................................................3
2.1. O aço na construção civil.................................................................................................................3
2.2. Composição química e propriedades do aço...................................................................................6
2.3. Perfis estruturais de aço................................................................................................................11
2.4. Galpões industriais........................................................................................................................13
2.4.1. Contraventamento.....................................................................................................................15
2.4.2. Elementos do contraventamento...............................................................................................18
2.5. Tirantes da cobertura....................................................................................................................20
2.6. Ação do vento em edificações.......................................................................................................22
2.6.1. Cálculo das Cargas de vento conforme a NBR 6123/1988..........................................................27
2.7. Ações Permanentes (G).................................................................................................................35
2.8. Ações Variáveis (SC)......................................................................................................................35
3. METODOLOGIA.................................................................................................................................364. APRESENTAÇÃO DOS DADOS............................................................................................................36
4.1. Características do galpão...............................................................................................................36
4.2. Ações Permanentes (G).................................................................................................................39
4.3. Ações Variáveis (SC)......................................................................................................................39
4.4. Ação do Vento (V)..........................................................................................................................40
4.5. Cálculos dos Carregamentos do Vento..........................................................................................40
5. ANALIZE E DISCURSSÂO DOS DADOS................................................................................................61
5.1. Análise de contraventamento.......................................................................................................62
5.2. Análise de Deslocamentos Verticais..............................................................................................64
6. CONCLUSÃO.....................................................................................................................................67
7. BIBLIOGRAFIA...............................................................................................................................68
1
1. INTRODUÇÃO
No Brasil, a história do uso de estruturas metálicas é recente. Foi no final do
século XIX e início do século XX que o aço começou a ser utilizado, mas ainda na
forma de estruturas pré-fabricadas importadas para atender à demanda crescente
por pontes e edifícios. Apenas a partir do início de operação da Companhia
Siderúrgica Nacional – CSN, a primeira siderúrgica integrada instalada no país, em
1946, é que o aço importado passou a ser substituído pelo produto de fabricação
nacional.
Segundo o Centro Brasileiro de Construção em Aço (CBCA, 2015), o aço
produzido no Brasil tinha como destino prioritário o setor industrial, que crescia
impulsionado pela ênfase na política de substituição de importações e pelo
crescimento do setor automotivo. Assim, desde o início do século passado, a
construção civil no Brasil se desenvolveu privilegiando o concreto e a alvenaria,
tendo como característica o uso intensivo de mão de obra, principalmente, a de
baixa qualificação. 
Os galpões ou edifícios industriais, geralmente, são construções em aço, de
um único pavimento, constituídos de sistemas estruturais compostos por pórticos
regularmente espaçados, com cobertura superior apoiada em sistemas de terças e
vigas ou tesouras e treliças. 
Estima-se que atualmente a maior parte das construções em aço no Brasil
seja de estruturas simples, como as coberturas e as estruturas de um único
pavimento. Neste importante segmento, os galpões lideram as construções,
apresentando soluções econômicas e versáteis para uma larga faixa de vãos e uma
infinidade de aplicações no comércio e na indústria.
É nos galpões industriais que a estrutura metálica de aço apresenta sua
aplicação mais frequente em nosso país. Tal fato deve-se à exigência de
grandes vãos livres, em que a estrutura metálica se apresenta como
solução mais econômica se comparada à estrutura de concreto armado.
REBELLO (2007, p. 99)
Estas edificações são projetadas normalmente sendo submetidas a ações de
cargas permanentes e variáveis. As ações permanentes envolvem o peso próprio da
estrutura e o peso dos materiais de acabamento; são usualmente fáceis de serem
tratadas, pois dependem somente das seções transversais e dos elementos que
compõem a estrutura metálica dos galpões. 
2
Já as ações variáveis, tais como sobrecarga vento ou outras causas,
apresentam um maior grau de dificuldade. As cargas dinâmicas de vento podem ser
consideradas cargas estáticas respeitando as condições da ABNT NBR 6123/1988 –
Forças de vento em Edificações. 
No entanto, a estabilidade e segurança estrutural em projetos de edificação
podem ser colocadas em risco quando as ações do vento não são consideradas
devidamente, podendo assim levar a estrutura ao colapso global ou parcial devido à
composição de forças do vento internas e externas à edificação. Por serem
estruturas amplas e leves e, muitas vezes altamente permeáveis ao ar externo, são
facilmente atingidas pela as cargas de vento.
Sob efeito de sobre pressão do vento, as telhas da cobertura se apoiam sobre
as terças e o carregamento é distribuído pelos elementos estruturais de forma
equilibrada, mas quando o vento provoca sucção na estrutura, os pontos solicitados
serão os pontos de amarração entre telhas metálicas e o plano da estrutura gerando
solicitações de esforços variáveis a partir da configuração da amarração.
O contraventamento tem finalidade de aumentar a rigidez da construção é um
dos sistemas de proteção da edificação contra a ação do vento, tem a função de
impedir deslocamentos transversais nos nós da estrutura, transferindo os esforços
para os nós fixos de apoio. 
1.1. Justificativa
Faz-se notório a importância da realização de várias análises estruturais sob
a atuação do vento e sob o efeito de sucção e pressão na estrutura metálica, ações
do vento oferecem grandes riscos à estabilidade estrutural. Estas ações,
normalmente preponderantes atuam de forma geral em estruturas leves, sendo
assim quando não devidamente previstas e calculadas com o seu fator de
segurança correto, podem até levar ao colapso global ou parcial da estrutura, devido
às forças do vento externas e internas à edificação.
Nesse sentido este trabalho pretende verificar se o telhado do galpão metálico
avaliado, sob esforços atuantes de pressão e sucção devido a ação do vento,
atende aos parâmetros de segurança e estabilidade estrutural estabelecidos pela
NBR 6123/1988.
3
1.2. Objetivos
1.2.1. Objetivo Geral
Objetivo geral desse trabalho é realizar uma análise estrutural sob a atuação
do vento e sob efeito de pressão e sucção na estrutura metálica da cobertura de um
galpão de uso geral, com a finalidade de analisar comparativamente o uso dos
tirantes na estabilidade e na segurança da estrutura, este é um estudo de caso
considerando os diferentes tipos de contraventamento na estrutura de cobertura de
um galpão, obedecendo as variações de velocidades e posição do vento
estabelecidas pela NBR 6123/1988.
1.2.2. Objetivos Específicos
Os objetivos específicos são:
 Calcular a ação do vento, pressão e sucção, verificando a estabilidade e
segurança da cobertura conforme determina a NBR 6123/1988 a partir do
programa computacional Visual Ventos.
 Analisar os esforços resultantes no sistema de contraventamento da
cobertura de um galpão metálico devido ao efeito do vento, por meio de
análise utilizando as ferramentas computacionais SAP 2000.
 Realizar a verificação comparativa da deformação da estrutura do
contraventamento, de três modelos diferentes de contraventamento com o
auxílio do software SAP 2000. 
2. INTRODUÇÃO TEÓRICA
2.1. O aço na construção civil
A constante busca da engenharia por inovação e desenvolvimento com
economia, redução do tempo das obras e eficiência foi responsável pela introdução
do aço na construção civil. O primeiro material siderúrgico a ser utilizado em
estruturas, o ferro fundido, data do século XVIII, como se pode observar na figura 1
foi aplicado na ponte Coalbroockdale, sobre o rio Severn, na Inglaterra, possuindo
um vão de 30 metros.
4
Figura 1 - Ironbrige
Fonte: Vincent (2010)
Segundo Rebello (2007) o aço já era conhecido pelos egípcios, romanos e
chineses desde a antiguidade, porémapenas no século XIX surge a metalurgia -
arte e ciência que estuda os metais e suas ligas a partir de seus minerais, de sua
elaboração e de seu tratamento. Com o desenvolvimento tecnológico, econômico e
social provenientes da Revolução Industrial surge, então, a necessidade da
construção de espaços com grandes vãos livres e é nesse momento que o aço
ganha relevância por ser um material resistente.
A estrutura de aço é, portanto, a mais adequada às obras em que há a
necessidade de vencer grandes vãos, como é a situação de ginásio de
esportes, estádios, centros de compras, galpões e hangares, ou grandes
alturas, como em edifícios altos, além disso, por causa do menor peso
próprio da estrutura, o uso do aço é vantajoso quando as condições do solo
são pouco favoráveis para a fundação. FAKURY (2016, p. 4)
Segundo o Instituto de Engenharia (2015) mais de 3 mil tipos de aço são
conhecidos atualmente e da qual uma parte é destinada exclusivamente a
construção civil, seguindo suas especificidades e exigências. Nas edificações o aço
pode ser empregado na estrutura base ou na forma de armaduras, sendo uma saída
inteligente, pois as seções de pilares e vigas de aço são mais reduzidas do que as
equivalentes em concreto, o resultado é percebido pela melhor utilização do espaço
disponível e aumento da área útil do projeto.
O uso de estruturas de aço conta com inúmeras vantagens. Por ser um
material flexível em processo estrutural, onde o seu uso garante a liberdade para
criar o que se imaginar, assim, diversas construtoras estão investindo no uso do aço
5
no processo estrutural de casas, prédios e outras construções. Desta forma, vemos
necessário relacionar algumas vantagens e pontos positivos das estruturas em aço.
Conforme o Centro Brasileiro da construção em Aço - CBCA (2014), o uso de
estruturas em aço pode reduzir em até 40% o tempo de execução quando
comparado com os processos convencionais, devido ao fato de serem usadas peças
pré-fabricadas, à possibilidade de se trabalharem diversas frentes de serviço
simultaneamente, à diminuição de fôrmas e escoramentos e a uma maior
independência em relação aos fatores climáticos.
Figura 2 - Gráfico comparativo de tempo/ construção
Fonte: Autores (2020)
Em construções convencionais, há a necessidade de grandes depósitos de
areia, brita, cimento, madeiras e ferragens no canteiro de obras, o que não acontece
nas construções com estruturas metálicas, visto que elas são totalmente pré-
fabricadas. Assim, há uma maior organização e limpeza do canteiro, além de reduzir
a produção de entulhos e de garantir maior segurança aos trabalhadores, diminuindo
o número com acidentes e incidentes decorrentes desses problemas.
Em uma construção convencional, o desperdício de materiais chega a 25%
em peso. Em contrapartida, a estrutura metálica permite que esse desperdício seja
sensivelmente reduzido, devido à adoção de sistemas industrializados.
Por ser uma estrutura pré-fabricada, sua produção ocorre sob um rígido
controle existente durante todo o processo industrial, com utilização de uma mão-de-
obra altamente qualificada, o que dá ao cliente a garantia de uma obra com
qualidade superior.
6
Conforme Rebello (2007), as vigas metálicas apresentam uma altura referente
a 60% das vigas de concreto, o que proporciona diversas vantagens: menor pé-
direito, resultando em menor área de acabamento; altura final do edifício em aço fica
menor que um edifício de estrutura em concreto, podendo até viabilizar um edifício
com a maior quantidade de andares dentro do mesmo gabarito, menores dimensões
dos elementos estruturais de acordo como mostra a tabela 1, obtendo assim menor
peso próprio da estrutura, o que resulta em menor carga nas fundações,
possibilitando fundações mais econômicas.
 Tabela 1 - Comparativo resistência de materiais estruturais convencionais 
Resistência à compressão Resistência à tração
σ aço = 1500 kg/cm2 σ aço = 1500 kg/cm2
σ concreto = 100 kg/cm2 σ concreto = 10 kg/cm2 
σ madeira = 85 kg/cm2 σ madeira = 90 kg/cm2 
 Fonte: Yopanan (2007)
Segundo a Arquitetura & Aço (2012), além de ser extremamente versátil e
durável, o aço está em perfeita sintonia com o conceito de desenvolvimento
ambientalmente sustentável, por ser um material infinitamente reciclável, podendo,
esgotada a vida útil de uma edificação, retornar aos fornos sob forma de sucata e se
renovar sem perda de qualidade. A construção com estruturas em aço utiliza
tecnologia limpa, reduz sensivelmente os impactos ambientais na etapa de
construção e, concluída a obra, garante segurança e conforto aos ocupantes da
edificação.
2.2. Composição química e propriedades do aço
Segundo Maringoni (2004) O ferro é um elemento abundante na natureza,
normalmente encontrado sob a forma de óxidos. As matérias primas passam por um
processo que envolve a redução do óxido de ferro a ferro gusa em alto forno para,
então, passar por um processo de refinaria no qual adiciona-se cobre, níquel, cromo
e outros elementos. Inúmeros tipos de aço, possuindo variações quanto à dureza,
resistência mecânica, ductilidade e resistência a corrosão, são obtidos a partir do
controle do teor de carbono em sua composição química. Na figura 3 pode-se
observar e entender melhor o processo de produção do ferro, seja com o
reaproveitamento de sucata ou apenas com o minério de ferro extraído da jazida.
 Figura 3 - Modelo de produção do aço
7
 Fonte: Instituto Aço Brasil (2015)
Para o Instituto Aço Brasil (2015) a fabricação do aço pode ser dividida em
quatro etapas: preparação da carga, redução, refino e laminação.
Como se pode visualizar na figura 3, inicialmente grande parte do minério de
ferro (finos) é aglomerada utilizando-se cal e finos de coque, resultando em sinter, e
o carvão é processado na coqueria e transformando-se em coque. Logo após, as
matérias-primas, já preparadas, são carregadas no alto forno, onde o oxigênio
aquecido a uma temperatura de 1000ºC é soprado pela parte de baixo do alto forno.
Quando o carvão entra em contato com o oxigênio é gerado calor suficiente para
fundir a carga metálica, dando início ao processo de redução do minério de ferro em
um metal líquido conhecido como ferro-gusa. Em seguida, parte do carbono é
removido juntamente com impurezas contidos no gusa líquido ou sólido e a sucata
de ferro e aço são transformados em aço líquido pelas aciarias a oxigênio ou
elétricas. Nessa etapa, para a produção de semi-acabados, lingotes e blocos, a
grande parte do aço líquido é solidificada em equipamentos de lingotamento. Por
fim, esses semi-acabados, lingotes e blocos são processados pelos equipamentos
laminadores, onde são transformados em produtos siderúrgicos.
Um aço deve ter uma composição química compatível com sua utilização,
isto é, as propriedades desse aço devem garantir que ele está sendo usado
de modo que se tem plena confiança de que ele desempenhará
corretamente suas funções desejadas. Assim, durante sua utilização, ele
não causará transtornos, tais como: ruptura, deformação excessiva devido a
esforços mecânicos, oxidação ou corrosão em ambientes ou meios
especiais, ou desgaste em ambientes abrasivos. SOUZA (1989, p.1)
8
Para que seja fabricado o aço especificado, a diferença está no refinamento
do ferro fundido, etapa está em que são adicionados elementos de liga. A adição de
elementos e liga é feita em pequenas porcentagens, para que o aço produzido
obtenha as características exigidas na especificação desejada.
Fakury et al. (2016) afirmam que no Brasil os aços estruturais mais utilizados
são classificados em acordo com a composição química: aços-carbono, aços de
baixa liga e alta resistência mecânica. Além disso esses aços podem ser resistentesà corrosão atmosférica normal ou acima da normal. 
Os aços-carbono possuem um teor de carbono entre 0,15%, 0,29% no
máximo 1,5% de manganês, também costumam ter silício, cobre, fósforo e enxofre.
Devido ao carbono esse tipo de aço apresenta uma resistência mecânica média, de
até 300MPa. Conforme se observa na figura 4, ela nos traz um mapa das possíveis
ligas metálicas ferrosas e não ferrosas como também suas sub famílias: aços e ferro
fundidos e suas aplicações.
Figura 4 - Ligas metálicas, ferrosas e não ferrosas
Fonte: Callister Júnior (1991)
 Os aços de baixa liga e alta resistência mecânica possuem um teor de
carbono entre 0,05% e 0,25% e menos de 2% de manganês. A composição também
possui elementos que proporcionam uma resistência mecânica superior aos aços-
carbono, entre esses elementos estão o cobre, o níquel, o cromo, o nióbio, o
vanádio, o molibdênio, o titânio, etc. A resistência ao escoamento está entre
275MPa e 450MPa. 
9
Os aços-carbono e os aços de baixa liga e alta resistência mecânica podem
conter elementos como cobre e níquel que lhes conferem uma resistência à
corrosão superior à normal. Nestes aços ocorre a formação de uma fina camada de
óxidos, de cor castanho-alaranjada, também chamada de pátina, e funciona como
proteção anticorrosiva, isto não quer dizer que esses aços são imunes à corrosão,
mas que levam maior tempo que os demais aços para perder sua espessura. No
quadro 1 pode-se observar as propriedades e definições de cada característica do
aço.
Quadro 1 - Propriedades do aço
PROPRIEDADES DOS AÇOS ESTRUTURAIS
PROPRIEDADES CONCEITO
Ductibilidade
É a capacidade do material de se deformar sob a ação de
cargas
Fragilidade
É o oposto da ductibilidade. Os aços podem ter
características de elementos frágeis em baixas temperaturas
ambientes
Resiliência
É a capacidade do material de absorver energia mecânica em
regime elástico
Tenacidade
É a capacidade do material de absorver energia mecânica em
deformações elásticas e plásticas
Dureza Resistência ao risco ou abrasão
Fadiga Resistência a carregamentos repetitivos
Fonte: Adaptado de Pinheiro (2005)
Nas palavras de Souza (1989), existem algumas formas de se obter aços com
uma resistência mecânica mais elevada, isto é, com maior dureza e resistência. Ao
aumentar a dureza dos aços diminui-se sua ductibilidade e vice-versa: quanto menor
a dureza do aço, maior a sua ductibilidade. Outra propriedade importante, citada por
Souza, é a tenacidade que é a capacidade do material de absorver energia dinâmica
sem se romper.
Pinheiro (2005) afirma que quando um corpo de prova de aço dúctil é
solicitado ao esforço normal de tração pode-se obter números para determinação
das propriedades mecânicas dos aços estruturais: módulo de elasticidade,
coeficiente de Poisson, coeficiente de dilatação térmica, peso específico e módulo
de elasticidade transversal. Como se pode ver, na tabela 2 constam propriedades
mecânicas e estruturais do aço obtidas a partir do ensaio de tração simples. 
10
Tabela 2 - Propriedades dos aços estruturais
Materiais Densidade
(mg/m³)
Tensão de Escoamento (Mpa) Tensão Ultima (Mpa)
Tração Compressão Cisalhamento Tração Compressão Cisalhamento
Ligas de
Ferro
Fundido
Cinza
ASTM 20
7,19 255 255 131 179 669 186
Maleável
ASTM A-
197
7,28 255 255 131 276 572 186
Ligas de
Aço
Estrutural
A-36
7,85 250 250 131 400 400 152
Inoxidáve
l 304
7,86 207 207 131 517 517 152
Aço
Ferramen
tal L2
8,16 703 703 131 800 800 152
Ligas de
Titânio
Ti-6A1-4V 4,43 924 924 131 1000 1000 152
Fonte: Adaptado de Hibbeler (2004)
Dentre os aços-carbono mais utilizados na construção civil destaca-se como
mais conhecido e utilizado o ASTM A36, ASTM é a abreviação de American Society
for Testing and Materials (Sociedade Americana de Testes e Materiais), que é
classificado como um aço carbono de média resistência mecânica, possuindo
resistência ao escoamento aproximadamente de 250 Mpa.
O ASTM-A36 tem como característica o aço carbono com finalidade de
utilização estrutural e em aplicações comuns. Suas principais aplicações são:
estruturas metálicas em geral, serralheria, passarelas, máquinas e implementos
agrícolas e implementos rodoferroviários. Entre os principais produtos destacam-se
as Cantoneiras; Barras Redonda, Chata e Quadrada; e Perfis I, U e T.
No Brasil, para fins estruturais, são fabricados vários tipos de aço, que podem
ser conhecidos mediante consulta à Norma Brasileira NBR 8800/86. Entre eles são
mais comuns os aços apresentados a seguir: 
 O Aço ASTM A-36, também conhecido como aço comum. É usado em perfis
laminados, perfis de chapa dobrada e perfis de chapas soldadas;
 O aço ASTM A-500 - GA (grau A), usado na fabricação de tubos;
 O aço ASTM A-570 - G33 (grau 33), usado na fabricação de perfis de chapa
dobrada finos;
11
 O aço SAE 1020, usado para chapas planas, perfis de chapa dobrada e
barras redondas.
2.3. Perfis estruturais de aço
Na construção civil do Brasil os perfis estruturais de aço mais utilizados
podem ser classificados, segundo o modo de obtenção, como perfis laminados e
perfis soldados, normatizados pela NBR 8800/2008. No entanto, além do grupo dos
perfis laminados e dos perfis soldados há um terceiro grupo de perfis para uso
estrutural, chamado Perfis Formados a Frio (PFF), conhecidos por perfis leves,
normatizados pela NBR 14762/2010. Os perfis laminados são fabricados por meio
de um processo de transformação mecânica, chamado laminação. Já os perfis
soldados são aqueles formados por dois ou mais perfis laminados unidos entre sim
por meio de solda elétrica, na figura 6 observa-se os principais tipos de perfis
estruturais e seus nomes conforme a legenda: (a) barras, com diversas seções
transversais (quadrada, redonda, chata); (b) chapas; (c) perfis estruturais laminados;
(d) trilho; (e) tubo quadrado; (f) tubo redondo.
Figura 6 - Tipos de Perfis Estruturais
Fonte: Pfeil W. e Pfeil Michèle (2009)
Segundo Rebello (2007) denomina-se perfil estrutural à barra obtida por
diversos processos e que apresenta a forma da seção com determinadas
características geométricas que o qualifica para absorver determinados esforços.
Os perfis formados a frio (PFF) são feitos a partir da dobragem de chapas em
temperatura ambiente, por dois processos distintos: descontínuo, com a utilização
12
de prensa dobradeira/viradeira, ou contínua, por meio de perfiladeira. Geralmente o
(PFF) possui espessuras a partir de 0,4mm, com limite estabelecido por norma até 8
mm, embora se possa ter perfis dobrados a frio até 19mm.
As barras redondas (item a – Figura 6) são obtidas por meio de cilindros com
ranhuras, podendo ser lisas ou nervuradas. As barras lisas possuem diâmetro entre
6,35 mm e 88,9 mm, geralmente são empregadas como tirantes ou como elementos
de contraventamento. Por outro lado, a barras nervuradas são comumente usadas
para armadura de concreto e possuem diâmetro entre 5,00 mm e 40 mm.
Os tubos estruturais de aço (item f – Figura 6) são fabricados com seções
circulares, quadradas e retangulares, e possuem grande variedade das dimensões,
sendo fornecidos no comprimento padrão de 6.000mm, fabricados no processo de
laminação a quente, a frio ou soldado.
Já os perfis de seção aberta, I, H, U e L (item c – Figura 6) são feitos por
laminação a quente, de maneira similar às chapas, porém a partir de blocos. Quando
há necessidade de seções transversais com dimensões maiores que a dos perfis
laminados disponíveis são utilizados os perfis soldados. Os perfis soldados também
são utilizados para se obter formatos especiais de seção transversal para se cumprir
exigências estruturais ou arquitetônicas. Os perfis soldados mais comuns são o I e o
H, constituídos por três chapas cortadas. Esses perfis são normatizados pela NBR5884:2013. podemos ver vários tipos de perfis metálicos na figura 7.
Figura 7 - Tipos de perfis estruturais
Fonte: Dufer (Sem data)
13
2.4. Galpões industriais
Conforme o CBCA (2010) os galpões ou edifícios industriais normalmente são
construções em aço de um único pavimento, formados por sistemas estruturais
constituídos por pórticos regularmente espaçados, com cobertura superior apoiada
em sistemas de terças e vigas ou tesouras e treliças, com grandes áreas cobertas e
destinadas para uso comercial (lojas, estacionamentos, centros de distribuição, entre
outros), uso industrial, agrícola ou outras aplicações.
Bellei (1998) afirma que um edifício industrial, normalmente, é uma
construção de pavimento único pode ser construído com aço, madeira, concreto e
alumínio com a finalidade de cobrir grandes áreas, como fábricas, oficinas,
almoxarifados, depósitos, hangares.
Dentre os materiais que podem ser utilizados para a construção de um
edifício industrial o aço se destaca por ser mais versátil. Os perfis laminados,
soldados e conformados a frio são empregados na fabricação e podem ser utilizados
para montagem no local da obra ou construído em partes para, posteriormente, ser
levado para o local onde será montado.
Para Bellei (1998), os edifícios industriais podem ser em estruturas de vãos
simples ou múltiplos, sendo as estruturas de vãos múltiplos para cobrir grandes
áreas. Como mostra a figura 8 há diferentes tipos de cobertura estruturais
empregadas em galpões metálicos. 
Figura 8 - Tipos de coberturas estruturais
Fonte: Merigo (2012)
Existe também, no caso dos galpões, uma divisão quanto ao número de
pórticos, a estrutura principal pode ser formada por pórticos simples (isolados) ou
14
múltiplos, dependendo do vão a ser vencido. Os pórticos múltiplos são usados
quando os espaços a serem cobertos são muito grandes, onde não é econômico
usar um único pórtico, geralmente para vãos acima de 30m. como mostra a figura 9
os dois tipos de estruturas com pórticos.
Figura 9 - Classificação das Estruturas com Base no Número de Pórticos
 Fonte: CBCA (2010)
Os galpões podem ser produzidos e montados no local da obra ou fabricados
em partes na empresa especializada e, posteriormente, levados para o local onde
serão montados. As montagens de estruturas metálicas se caracterizam pela
rapidez, precisão, adaptabilidade e confiabilidade. 
Segundo Rebello (2007), os principais componentes estruturais de um galpão
industrial mais usuais são: 
- Estrutura principal: pórticos 
- Cobertura: tesouras, terças, telhas e lanternins 
- Fechamento: longarinas e elementos para vedação ...
- Contraventamentos: horizontal e vertical.
Para um melhor entendimento dos elementos citados acima na figura 10
pode-se identificar a localização e função de cada elemento na estrutura.
15
Figura10 - Componentes estruturais de um galpão
Fonte: Pfeil W. (2009)
O sistema portante principal é o pórtico transversal formado pela associação
rígida entre a viga de cobertura e as duas colunas. Esse pórtico deve resistir à força
do vento nas fachadas longitudinais e na cobertura além das cargas gravitacionais.
As terças são vigas longitudinais dispostas nos planos da cobertura e
destinadas a transferir à estrutura principal as cargas atuantes na cobertura, como
peso do telhado e sobrepressões e sucções causadas pelo vento. O espaçamento
entre as terças é definido pelas dimensões das telhas.
Os sistemas de contraventamento, segundo Pfeil Walter e Pfeil Michèle
(2009), compõem sistemas treliçados e são feitos por barras associadas geralmente
em forma de X compondo sistemas treliçados. Além de distribuir as cargas de vento,
esses sistemas têm por objetivo principal fornecer estabilidade espacial ao conjunto.
2.4.1. Contraventamento
Para Bellei (1998) os contraventamentos são definidos como barras
colocadas nas estruturas com o objetivo de assegurar a estabilidade do conjunto
durante a fase de montagem e durante sua vida útil, dando uma rigidez espacial ao
edifício. Bellei distingue os contraventamentos em horizontal e vertical, sendo os
contraventamentos horizontais os que se encontram no plano das terças ou das
cordas das tesouras ou vigas do pórtico e os contraventamentos verticais os que se
encontram entre os pilares.
16
Pfeil Walter e Pfeil Michèle (2009) explicam que o contraventamento no plano
horizontal é indispensável para estabilidade lateral do banzo superior da treliça,
devido a ação das cargas gravitacionais é comprimido. O contraventamento tem por
finalidade reduzir os comprimentos de flambagem que pode ocorrer nesses
elementos comprimidos e consequentemente aumentar a resistência à compressão.
Nesse sistema as terças trabalham transferindo as forças de contenção lateral para
o treliçado do contraventamento.
Conforme Bellei (1998) afirma, para cobertura de edifícios industriais existe
uma série de maneiras de dispor os contraventamentos. Na figura 11 pode-se
observar um modelo de contraventamento nas cordas inferiores das tesouras para
as colunas principais com espaçamento duplo e na figura 12 pode-se observar um
modelo de contraventamento no plano das terças para um edifício industrial
aporticado geminado.
Figura 11 - Contraventamento para colunas principais
Fonte: Bellei (1998)
Figura 12 - Contraventamento para edifício aporticado geminado
Fonte: Bellei (1998)
17
Os esforços internos nos elementos da treliça são invertidos quando há a
predominância da sucção de vento na cobertura sobre as cargas gravitacionais e o
banzo inferior passa a ser comprimido. Na figura 13 pode-se observar um esquema
do contraventamento do banzo inferior comprimido pela sucção de vento.
Figura 13 – Contraventamento do banzo inferior comprimido
Fonte: Pfeil W. (2009)
Diferentemente dos contraventamentos horizontais, para Bellei (1998), os
contraventamentos verticais são responsáveis pela condução das cargas superiores
de vento e ponte rolante até as fundações, garantindo a estabilidade da estrutura.
Como se pode observar na figura 14, normalmente os contraventamentos verticais
entre pilares são dispostos de modo que o da parte inferir fique próximo ao meio do
comprimento longitudinal, permitindo melhor dilatação do edifício.
Figura 14 – Contraventamento vertical entre pilares
Fonte: Belei (1998)
Segundo Franca (2003) os tipos de contraventamento que formam treliças
verticais com triângulos “totais” em cada tramo são os mais eficientes. Nesses
contraventamentos o treliçamento é formado por diagonais simples, treliçamento em
“X”, em “V” e “V” invertido, conforme se pode ver na figura 15. Estes treliçamentos,
normalmente são posicionados onde a circulação não é requerida devido ao seu
elevado grau de obstrução.
18
Figura 15 – Contraventamentos formados por diagonais simples
Fonte: Franca (2003)
Franca (2003) afirma que muitas vezes o contraventamento tem que ser
escolhido de modo que favoreça a abertura de vãos, sacrificando a eficiência na
resistência dos esforços laterais. Estes contraventamentos menos obstrutivos são
conhecidos como excêntricos, na figura 16 pode-se observar que nestes
contraventamentos o treliçamento não forma triângulos completos, onde há estrutura
responde aos carregamentos laterais apenas com esforços axiais em seus
elementos, sendo menos eficientes em relação àqueles formados por triângulos
completos.
Figura 16 - Contraventamento formado por triângulos parciais
Fonte: Franca (2003)
Conforme Sáles et al. (1994) a falha nos projetos de sistemas de
contraventamento de coberturas ou a inexistência deles podem acarretar a
flambagem de elementos estruturais ou de toda a estrutura, conduzindo-a à ruína.
Outra grave causa de acidentes devido ao vento é o contraventamento inadequadodas colunas, causando flambagem nas colunas e levando a edificação abaixo.
2.4.2. Elementos do contraventamento
Os contraventamentos, além de estabelecer a devida rigidez do conjunto,
devem atuar como distribuidores das cargas do vento sobre a estrutura. Existe uma
série de maneiras de se dispor esses elementos, mas geralmente são colocados de
19
forma que possam resistir diretamente ao vento incidente nos tapamentos frontais,
dando apoio às colunas. Deste modo, as cargas atuantes no contraventamento da
cobertura são reações de apoio da coluna que recebe a carga do vento.
Os contraventamentos dos planos da cobertura serão colocados nos vãos
extremos, de maneira que possam ser capazes de resistir a ações devidas ao vento
incidentes nos tapamentos frontais. Além disso, o contraventamento da cobertura
deve dar apoio às colunas do tapamento frontal.
A rigidez do plano de contraventamento é obtida por diagonais colocadas na
forma de “X”, assim quando há solicitação do contraventamento, uma diagonal
trabalha tracionada e a outra, comprimida.
Usualmente simplifica-se o dimensionamento, desconsiderando a existência
de diagonais tracionadas, de forma a se obter um treliçado isostático de solução
simples. Situando o contraventamento no plano das vigas principais livra-se as
terças de qualquer esforço de compressão ou tração, sendo solicitadas apenas por
flexão.
O item 5.2.8.1 da NBR 8800/2008, recomenda que o índice de esbeltez das
barras tracionadas (L/r), com exceção dos tirantes de barras redondas pré-
tensionadas ou outras seções de barras com pré-tensão, não ultrapasse 300, o
índice de esbeltez:
 = ≤ 300 Equação𝐿𝜆 𝑟
(1)
Onde:
 é o limite de esbeltez;𝜆
L é o comprimento do vão livre;
r é o raio de giração.
Conforme a NBR 8800/2008 pode-se utilizar um modelo de cálculo que
representa o comportamento dos contraventamentos conforme a figura 17. Neste
caso, as terças estão apoiadas na viga de cobertura e podem assumir os esforços
de compressão devidos ao vento nas colunas de tapamento.
20
Figura 17 - Contraventamento simplificado
Fonte: Instituto Aço Brasil (2010)
A força de tração atuante na diagonal pode ser obtida através da equação 2.
Ftd=1,4 . Pp+Sc .Dt . Dp
2
 Equação (2)
onde:
Pp = Peso próprio (terças + tirantes + telhas)
Sc = Sobrecarga da estrutura
Dt = distância entre as terças
Dp = distância entre os pilares
A força na diagonal de contraventamento pode ser obtida pela equação 3.
N t ,Sd=Ftd .
√Dp2+ Dt2
Dp
 Equação (3)
onde:
Ftd = força de tração atuante na diagonal
Dt = distância entre as terças
Dp = distância entre os pilares
21
2.5. Tirantes da cobertura
Os tirantes da cobertura são formados por barras redondas com extremidades
rosqueadas, conforme a figura 18, são barras colocadas entre apoios das terças
com o objetivo de diminuir o vão entre elas, no sentido de menor inércia, isto é, no
sentido mais fraco do perfil da terça.
Figura 18 - Tirante de contraventamento
Fonte: Instituto Aço Brasil (2010)
Segundo o item 6.3 da NBR 8800/2008, para o dimensionamento de barras
redondas com extremidades rosqueadas verifica-se a menor resistência entre o
escoamento da seção bruta e a ruptura da seção rosqueada.
As roscas devem atender aos requisitos da ASME B18.2.6 com tolerância
classe 2A e as porcas das barras deverão ter dimensões conforme especificado na
ASME B.18.2.6 para porcas hexagonais.
Segundo Bellei (2010) utiliza-se uma linha de tirante para distâncias de 5 m a
6 m, e duas para vãos maiores.
É comum utilizar tirantes de barras redondas com 16 mm de diâmetro para
galpões médios e grandes, e 12,5 mm de diâmetro para galpões pequenos, para
ficarem coerentes com o diâmetro dos parafusos, mesmo que não seja necessário.
As forças solicitadas para essas peças são normalmente muito pequenas, porém as
peças são cruciais para estabilidade e segurança das estruturas metálicas por se
tratar de componentes leves e muito suscetíveis às forças do vento.
22
De acordo com o item 5.2.2 da NBR 8800, a força de tração resistente de um
elemento deve ser o menor valor entre o escoamento da seção bruta e a ruptura da
seção líquida:
• Escoamento da seção bruta:
N t ,Rd=A g .
f y
γ a1
 Equação
(4)
• Ruptura da seção líquida:
N t ,Rd=Ae .
f u
γ a2
 Equação (5)
Onde:
Abe=0,75 .π .D .
2
4
 Equação (6)
•Nt,Rd é a força resistente de tração;
• Ag é a área bruta da seção transversal;
• Ae é a área líquida da seção transversal;
• Abe é a área líquida referente à seção com rosca;
• fy é o limite de escoamento do aço;
• fu é o limite de ruptura do aço;
• γa1 é coeficiente de ponderação de escoamento;
• γa2 é coeficiente de ponderação de ruptura;
• D o diâmetro.
2.6. Ação do vento em edificações
Franca (2003) afirma que no início do século XX houve um aumento do
número de pavimentos das edificações e a ação do vento, passou a ter mais
relevância para a engenharia estrutural. Segundo Franca uma construção de
pequena altura é pouco sensível às ações do vento, enquanto em um edifício alto a
força do vento pode ser determinante na decisão do sistema estrutural a ser utilizado
e a conciliação da arquitetura com esse sistema escolhido. Contudo, em suas
palavras Franca explica que o tipo de carregamento atuante em edifícios altos não
23
apresenta muita diferença dos carregamentos atuantes em edifícios de baixa e
média altura, Franca entende que a grande diferença está no aumento expressivo
que algumas ações passam a exercer na estrutura e também dos efeitos dinâmicos
e de segunda ordem.
Conforme a NBR 6123/1988 as ações são causas que provocam
deformações nas estruturas. Estas forças e deformações, do ponto de vista prático,
são impostas pelas ações e são consideradas como se fossem próprias. Muitas
vezes as deformações são intituladas por ações indiretas e as forças por ações
diretas.
As cargas que atuam em um edifício, com exceção das cargas
permanentes, não podem ser avaliadas com precisão. Vento e sismo são
fortuitos na natureza, e difícil de predizer com segurança a intensidade de
suas ações. As sobrecargas podem ser avaliadas, mas não tem a certeza
de quando e em quanto o seu limite será ultrapassado. Teorias
probabilísticas têm ajudado a engenharia estrutural a racionalizar, e até
mesmo a simplificar, as aproximações para o cálculo das cargas variáveis
nas estruturas. FRANCA (2003, p.39)
A NBR 8800/2008 estabelece que todas as ações que possam produzir
efeitos significativos para a estrutura devem ter sua influência considerada, tendo
em vista os estados-limites últimos e de serviço.
A NBR 6123/1988 fixa várias condições exigíveis na consideração das forças
devidas à ação estática e dinâmica do vento, para esses efeitos de cálculo de
edificações. Esta Norma não se aplica a edificações de formas, dimensões ou
localização fora do habitual, casos em que devem ser realizados estudos específicos
para determinação das forças atuantes do vento e da sua possível resultante.
Resultados obtidos em túnel de vento, com simulação das principais características
do vento natural, podem ser usados em substituição do recurso aos coeficientes
constantes nesta Norma.
O Túnel de vento tem como finalidade simular as características principais do
vento natural no local da construção e o espectro de energia das rajadas, inclusive a
ação dasrajadas laterais (e, em certos casos, verticais) que no processo manual
seria necessário um cálculo adicional. Além de simular o vento natural, o túnel
também permite a pesquisa de efeitos estáticos e dinâmicos da ação do vento em
estruturas, paredes, telhados, vidros e esquadrias. Efeitos sobre transeuntes,
veículos e plantas, efeitos sobre os usuários das edificações e poluição (dispersão
de gases e resíduos sólidos da atmosfera). Como se pode ver na figura 19 o
esquema do túnel de Vento Prof. Joaquim Blessmann da Universidade Federal do
24
Rio Grande do Sul, a câmara principal possui dimensões 1,30m x 0,90m x 9,32m
(largura x altura x comprimento), três mesas giratórias (cada uma com aplicações
específicas) e relação comprimento x altura da câmara principal de ensaios de 10,3.
Um motor elétrico de 100 HP aciona as hélices do ventilador e velocidade do
escoamento é controlada manualmente através de aletas radias metálicas que
obstruem a passagem do ar.
O ventilador está diretamente montado no eixo do motor elétrico, de forma
que a velocidade máxima do escoamento do ar seja de 42 m/s sobre as plataformas
giratórias M-I e M-II, 28 m/s sobre a plataforma giratória M-III, e 9 m/s sobre a
plataforma giratória M-IV.
Figura 19 - Tunel de Vento Prof. Joaquim Blessmann
Fonte: Blessmann (2009)
O vento não é um problema em construções baixas e pesadas com paredes
grossas, porém em estruturas esbeltas passa a ser uma das ações mais importantes
a determinar no projeto de estruturas. As considerações para determinar as forças
devidas ao vento são regidas e calculadas conforme com a NBR 6123/1988
intitulada como “Forças Devidas ao vento em Edificações”
Cada região do Brasil possui características peculiares. A Dinâmica do vento
é influenciada pelas diferentes coberturas vegetais, topografias e edificações. As
edificações funcionam como barreiras, geralmente não aerodinâmicas. Quando o
vento incide sobre a edificação surgem grandes vórtices, alterando as pressões no
local e o fluxo do vento no seu entorno.
 A velocidade e a turbulência aumentam atrás de morros e montanhas; da
mesma forma, nos aclives de taludes e colinas há um aumento de
25
Velocidade; porém, pode ocorrer o contrário em vales protegidos por morros
e montanhas, em que a Velocidade do vento tende a diminuir. MARCELLI
(2007, p.151)
Com base nas prescrições da norma brasileira, NBR 6123 (ABNT, 1988) –
Forças Derivadas do Vento em Edificações. os conceitos obtidos por meio de
parâmetros meteorológicos, topográficos, de rugosidade, dimensão e ocupação
utilizados na obtenção da velocidade básica e característica do Vento, assim como
os coeficientes de pressão, interno e externo, de arrasto utilizados para a
determinação da ação estática do vento, além de aspectos complementares. Serve
par melhor entendermos as cargas de vento atuantes na estrutura e suas ações de
sucção e compressão.
A Figura 20 mostra o fluxo esquemático do vento confluindo
perpendicularmente sobre uma edificação. A face onde o vento incide é denominada
“barlavento” e fica sujeita a pressões positiva, sendo que nessa face ocorre uma
diminuição da Velocidade do vento. Por sua vez, o fluxo de vento se divide pelas
laterais e por sobre a edificação, criando vórtices ou turbilhões, que provocam, na
fachada oposta denominada de “sotavento”, e nas coberturas pouco inclinadas,
esforços negativos de sucção. Sucção é o termo denominado para a pressão efetiva
estando abaixo da pressão atmosférica de referência (sinal negativo). Com o vento
soprando axialmente (paralelo à cumeeira), todo o telhado está em sucção, como
apresentado no desenho da Figura 21.
Figura 20 - Fluxo esquemático do Vento incidindo perpendicularmente na edificação.
Fonte: Marcelli (2007)
Figura 21 – Esquema básico de pressões com vento perpendicular há cumeeira.
26
Fonte: Marcelli (2007)
Observe que situação que se inverte nos telhados com inclinação de 45°, em
vez de esforços de sucção (negativos) na água de barlavento, como no telhado de
30º, tem- se uma pressão de compressão (positiva), conforme ilustrado na Figura
22. Dessa forma, percebe-se que a forma, a altura, a inclinação do telhado e a
direção dos ventos alteram significativamente as pressões.
Figura 22 – Influência da inclinação do telhado
Fonte: Marcelli (2007)
Além dos efeitos do vento nas partes externas das edificações, há esforços
do vento devido às pressões internas em função das aberturas existentes nas
vedações. A arte da Figura 23 representa a influência da localização de aberturas
dominantes (grandes aberturas em relação às demais) no valor da pressão interna.
Figura 23 – Pressão interna em função da localização de aberturas dominantes com
incidência normal à cumeeira.
Fonte: Fornel apud Blessmann (2009)
27
No caso “a” da Figura 23, observa-se que a abertura principal está situada a
barlavento; e ocorreu a somatória dos esforços internos e externos, tanto para a
cobertura como para paredes de sotavento, o que pode gerar o colapso da
cobertura, e até mesmo o tombamento de paredes de sotavento se os esforços
superarem em muito o peso da cobertura, caso a estrutura de sustentação não
tenha sido projetada para suportar esse acúmulo de pressão.
Na situação “b” a posição da abertura predominante se inverte e fica situada a
sotavento, o que favorece as condições de equilíbrio da cobertura, porém agrava os
esforços na parede de barlavento.
No caso “c” as áreas das aberturas em paredes de barlavento e sotavento
são parecidas. Essa situação é a mais adequada para se evitar as pressões
internas, pois o vento passará por dentro da edificação sem produzir esforços
significativos.
2.6.1. Cálculo das Cargas de vento conforme a NBR 6123/1988
Para que se conheçam as cargas que serão aplicadas a estrutura, além do
carregamento devido ao peso próprio e demais cargas permanentes pertinentes,
primeiramente, faz-se a consideração do vento conforme a NBR 6123/1988 - Forças
devidas ao Vento em Edificações.
Para o cálculo das forças estáticas necessita-se definir a Velocidade básica
do vento, V0, apropriada ao local a ser construído. A velocidade básica do vento é
equivalente a velocidade de uma rajada de 3 segundos, tendo cerca de uma
ocorrência, numa altura de 10 metros acima do terreno, a cada 50 anos em campo
aberto e plano. Na figura 24 pode-se observar as velocidades básicas na forma de
“Isopletas” no Brasil apresentadas na Norma. 
Figura 24 - gráfico das isopletas da velocidade básica no Brasil
28
Fonte: NBR 6123 (1988)
Como se sabe, para uma mesma região a velocidade básica do vento é a
mesma, portanto determina-se Vk, a velocidade característica do vento a qual leva
em consideração as características das diferentes edificações em uma mesma
região. Na equação (7) os fatores S1, S2 e S3 representam as interferências do relevo
local, dimensões da edificação, rugosidade do terreno, grau de segurança requerido
e também vida útil da edificação. Assim, a Velocidade característica do vento é
apresentada pela expressão abaixo:
V k=V 0S1S2S3 Equação
(7)
Onde:
S1: fator topográfico.
S2: fator que considera a combinação dos efeitos da rugosidade do terreno,
da variação da velocidade do vento de acordo com as dimensões e a altura da
edificação ou parte dela em estudo.
S3: fator estatístico.
29
 Fator topográfico
O fator topográfico, S1, considera valor igual a 1,0 para terrenos nivelados ou
pouco acidentados e 0,9 para vales profundos. Utilizando-se das equações (8), (9) e
(4) pode-se obter o fator topográfico em função da altura medida no ponto
considerado a partir da face do terreno, outros valores de inclinações médias podem
ser obtidospor meio de interpolação.
θ<3 °−S1 (z )=1,0 Equação (8)
6 ° ≤θ≤17 °−S ( z )=1,0+(2,5− zd )tg(θ−3 °)≥1 
Equação (3) 
θ≥45 °−S (z )=1,0+(2,5− zd)0,31≥1 Equação (9)
Onde:
z: altura medida em um no ponto considerado a partir da face da superfície do
terreno.
d: diferença de nível entre a base e o topo mais alto do talude ou morro.
θ: inclinação média que se encontra o talude ou encosta do morro.
Se for necessário um conhecimento mais preciso da influência do relevo ou
se a aplicação destas indicações se tornarem difícil pela complexidade do relevo é
recomendado ensaios de modelos topográficos em túnel de vento ou medidas
anemométricas no próprio terreno.
 Fator de rugosidade
O fator de rugosidade S2 descrito pela Equação (10) é obtido através dos
parâmetros que consideram a rugosidade do terreno a partir de cinco categorias
diferentes, as quais podem ser vistas no quadro 2 .A variação da velocidade do
vento em relação a altura acima do nível geral do terreno e as dimensões da
edificação ou a parte da edificação em estudo também são consideradas no cálculo.
S2=b F r(
z
10
)
p
 Equação
(10)
30
Quadro 2 - categorias de rugosidade do terreno segundo a NBR 6123/1988
Rugosidade do terreno
Categorias Descrição
Categoria I
Superfícies lisas de grandes dimensões, com mais de 5
quilômetros de extensão, medida na direção e sentido do
vento incidente.
Categoria II
terrenos abertos em nível ou aproximadamente em nível,
com poucos obstáculos isolados, tais como árvores e
edificações baixas. Sendo a cota média do topo dos
obstáculos considerada inferior ou igual a 1,0 metro.
Categoria III
Terrenos planos ou ondulados com obstáculos, tais como
sebes e muros, poucos quebra-ventos de árvores,
edificações baixas e esparsas. Apresenta cota média do
topo dos obstáculos igual a 3,0 metros.
Categoria IV
Terrenos cobertos por obstáculos numerosos e pouco
espaçados, em zona florestal, industrial ou urbanizada.
Apresenta cota média do topo dos obstáculos igual a 10
metros.
Categoria V
Terrenos cobertos por obstáculos numerosos, grandes,
altos e pouco espaçados. Apresenta a cota média do topo
dos obstáculos igual ou superior a 25 m.
Fonte: NBR 6123 (1988)
A velocidade do vento não é constante, mas a partir de qualquer intervalo de
tempo o seu valor médio pode ser calculado. Para o cálculo a norma 6123/1998
elegeu três classes de edificações, essas classes levam em consideração partes de
edificações e seus elementos, com intervalos de 3 s, 5 s e 10 s. A seguir, no Quadro
3, são apresentadas as três classes escolhidas pela norma.
Quadro 3 – Classes de edificações
Classes de edificações
Classes Descrição
A
Todas as Unidades de vedação, seus elementos de fixação e peças
individuais de estruturas sem vedação. Toda Edificação na qual a
maior dimensão horizontal ou vertical não exceda 20 metros.
B Toda Edificação ou parte de edificação para qual a maior dimensão
horizontal ou vertical da superfície frontal esteja entre 20 metros e 50
31
metros.
C
Toda Edificação ou parte de Edificação para a qual a maior 
dimensão horizontal ou vertical da superfície frontal exceda 50 
metros.
Fonte: NBR 6123 (1988)
A NBR 6123/1993 apresenta os parâmetros que permitem determinar S2
(tabela 3) e os valores de S2 para as diversas categorias e classes de dimensões
das edificações (tabela 4). Ademais a norma fixa o fator de rajada Fr que é
sempre correspondente à categoria II.
Tabela 3 – Parâmetros meteorológicos
Categoria z (m) Parâmetro
Classes
A B C
I 250 B
P
1,10
0,06
1,11
0,065
1,12
0,07
II 300 B
Fr
P
1,00
1,00
0,085
1,00
0,98
0,09
1,00
0,95
0,10
III 350 B
P
0,94
0,10
0,94
0,105
0,93
0,115
IV 420 B
P
0,86
0,12
0,85
0,125
0,84
0,135
V 500 B
P
0,74
0,15
0,73
0,16
0,71
0,175
Fonte: NBR 6123/1988
Tabela 4 - Fator S2
 
z
(m)
Categoria
 
I
 
II
 
III
 
IV
 
V
Classe Classe Classe Classe Classe
A B C A B C A B C A B C A B C
 5 1,0
6
1,04 1,01 0,94 0,92 0,89 0,8
8
0,86 0,82 0,79 0,7
6
0,73 0,74 0,72 0,67
10 1,1
0
1,09 1,06 1,00 0,98 0,95 0,9
4
0,92 0,88 0,86 0,8
3
0,80 0,74 0,72 0,67
15 1,1
3
1,12 1,09 1,04 1,02 0,99 0,9
8
0,96 0,93 0,90 0,8
8
0,84 0,79 0,76 0,72
20 1,1
5
1,14 1,12 1,06 1,04 1,02 1,0
1
0,99 0,96 0,93 0,9
1
0,88 0,82 0,80 0,76
30 1,1
7
1,17 1,15 1,10 1,08 1,06 1,0
5
1,03 1,00 0,98 0,9
6
0,93 0,87 0,85 0,82
40 1,2
0
1,19 1,17 1,13 1,11 1,09 1,0
8
1,06 1,04 1,01 0,9
9
0,96 0,91 0,89 0,86
50 1,2
1
1,21 1,19 1,15 1,13 1,12 1,1
0
1,09 1,06 1,04 1,0
2
0,99 0,94 0,93 0,89
60 1,2
2
1,22 1,21 1,16 1,15 1,14 1,1
2
1,11 1,09 1,07 1,0
4
1,02 0,97 0,95 0,92
80 1,2 1,24 1,23 1,19 1,18 1,17 1,1 1,14 1,12 1,10 1,0 1,06 1,01 1,00 0,97
32
5 6 8
100 1,2
6
1,26 1,25 1,22 1,21 1,20 1,1
8
1,17 1,15 1,13 1,1
1
1,09 1,05 1,03 1,01
120 1,2
8
1,28 1,27 1,24 1,23 1,22 1,2
0
1,20 1,18 1,16 1,1
4
1,12 1,07 1,06 1,04
140 1,2
9
1,29 1,28 1,25 1,24 1,24 1,2
2
1,22 1,20 1,18 1,1
6
1,14 1,10 1,09 1,07
160 1,3
0
1,30 1,29 1,27 1,26 1,25 1,2
4
1,23 1,22 1,20 1,1
8
1,16 1,12 1,11 1,10
180 1,3
1
1,31 1,31 1,28 1,27 1,27 1,2
6
1,25 1,23 1,22 1,2
0
1,18 1,14 1,14 1,12
200 1,3
2
1,32 1,32 1,29 1,28 1,28 1,2
7
1,26 1,25 1,23 1,2
1
1,20 1,16 1,16 1,14
250 1,3
4
1,34 1,33 1,31 1,31 1,31 1,3
0
1,29 1,28 1,27 1,2
5
1,23 1,20 1,20 1,18
300 - - - 1,34 1,33 1,33 1,3
2
1,32 1,31 1,29 1,2
7
1,26 1,23 1,23 1,22
350 - - - - - - 1,3
4
1,34 1,33 1,32 1,3
0
1,29 1,26 1,26 1,26
400 - - - - - - - - - 1,34 1,3
2
1,32 1,29 1,29 1,29
420 - - - - - - - - - 1,35 1,3
5
1,33 1,30 1,30 1,30
450 - - - - - - - - - - - - 1,32 1,32 1,32
500 - - - - - - - - - - - - 1,34 1,34 1,34
Fonte: NBR 6123/1988
 Fator estático
O fator estático, S3, tem como base os estudos estatísticos. Segundo a NBR
6123/1988, a possibilidade de a velocidade básica ser igualada ou superada em um
período de 50 anos é de 63%. Tais dados são considerados apropriados para
moradias e hotéis apresentando valor unitário de fator estatístico. Na ausência de
uma norma específica para as demais edificações os valores variam de 0,83 a 1,1,
como se pode constatar na Tabela 5.
Sendo a velocidade característica do vento conhecida, pode-se calcular a pressão
dinâmica, q, a partir da equação (11) com q= em N/m² e Vk= em m/s.
q=0,613V k
2 Equação (11) 
Tabela 5 - Valores mínimos do fator estatístico S3
Grupo Descrição S3
1 Edificações cuja ruína total ou parcial pode afetar a segurança
ou possibilidade de socorro a pessoas após uma tempestade
destrutiva (hospitais, quartéis de bombeiros e de forças de
1,10
33
segurança, centrais de comunicação, etc.)
2
Edificações para hotéis e residências. Edificações para comércio
e indústria com alto fator de ocupação
1,00
3
Edificações e instalações industriais com baixo fator de
ocupação (depósitos, silos, construções rurais, etc.)
0,95
4 Vedações (telhas, vidros, painéis de vedação, etc.) 0,88
5
Edificações temporárias. Estruturas dos grupos 1 a 3 durante a
construção
0,83
Fonte: NBR 6123/1988
 Coeficientes de força
A força global do vento sobre uma edificação ou parte dela, Fg, é obtida pela
soma vetorial das forças do vento que aí atuam.
A componente da força global na direção do vento, força de arrasto Fa é obtida por:
 Fg=Ca q Ae Equação
(12)
Onde:
Ca = coeficiente de arrasto
Ae =área frontal efetiva: área da projeção ortogonal da edificação, estrutura ou
elemento estrutural sobre um plano perpendicular à direção do vento ("área desombra")
De um modo geral, uma componente qualquer da força global é obtida pela
equação (13)
F=C f qA Equação (13)
Onde:
Cf = coeficiente de força, especificado em cada caso: Cx, CY, etc.
A = área de referência, especificada em cada caso.
 Coeficientes de forma
A força do vento sobre um elemento plano de edificação de área A atua em
direção perpendicular a ele, sendo dada pela Equação (14).
F=F e−F i Equação (14)
34
Onde:
Fe = força externa à edificação, agindo na superfície plana de área A
Fi = força interna à edificação, agindo na superfície plana de área A
A partir dessa equação obtém-se a Equação (15).
F=(C e−C i )qA Equação (15)
Onde:
Ce é o coeficiente de forma externo, obtido através da Equação (16).
C e=
F e
q
A Equação (16)
Ci é o coeficiente de forma interno, obtido através da Equação (17)
C i=
F i
q
A Equação (17)
Valores positivos dos coeficientes de forma externo e interno correspondem a
sobrepressões, e valores negativos correspondem a sucções.
Um valor positivo para F indica que esta força atua para o interior, e um valor
negativo indica que esta força atua para o exterior da edificação.
Para os casos previstos nesta Norma, a pressão interna é considerada
uniformemente distribuída no interior da edificação. Consequentemente, em
superfícies internas planas, cpi = Ci.
 Coeficientes de pressão
Como a força do vento depende da diferença de pressão nas faces opostas
da parte da edificação em estudo, os coeficientes de pressão são dados para
superfícies externas e superfícies internas. Para os fins desta Norma, entende-se
por pressão efetiva, ∆p, em um ponto da superfície de uma edificação, o valor
definido pela Equação (18).
∆ p=∆ pe−∆ pi Equação (18)
Onde:
∆pe = pressão efetiva externa
35
∆pi = pressão efetiva interna
Portanto, a partir da Equação (13) chega-se à Equação (19).
∆ p=(CPe−CPi )q Equação (19)
Onde:
cpe = coeficiente de pressão externa, obtido através da Equação (20).
CPe=
∆Pe
q
 Equação (20)
cpi = coeficiente de pressão interna, obtido através da Equação (21).
CPi=
∆Pi
q
 Equação (21)
Valores positivos dos coeficientes de pressão externa ou interna
correspondem a sobrepressões, e valores negativos correspondem a sucções. Um
valor positivo para ∆p indica uma pressão efetiva com o sentido de uma
sobrepressão externa, e um valor negativo para ∆p indica uma pressão efetiva com
o sentido de uma sucção externa.
 Determinação das forças estáticas devidas ao vento
As forças estáticas devidas ao vento são determinadas do seguinte modo:
a) a velocidade básica do vento, Vo, adequada ao local onde a estrutura será
construída, é determinada de acordo com equação 1;
b) a velocidade básica do vento é multiplicada pelos fatores S1, S2 e S3 para
ser obter a velocidade característica do vento, Vk, para a parte da edificação
em consideração.
c) a velocidade característica do vento permite determinar a pressão
dinâmica. As forças de vento devem ser calculadas considerando as direções
0º - vento atuando na direção +X do sistema de coordenadas globais da
estrutura – e 90º - vento atuando na direção +Z do sistema de coordenadas
globais da estrutura.
36
2.7. Ações Permanentes (G)
Para galpões industriais leves, as ações permanentes correspondem ao peso
próprio dos elementos que compõem a estrutura e dos materiais ligados a ela. 
O peso próprio dos elementos estruturais do pórtico transversal é definido
pela norma NBR 8800/2008 (ABNT, 2008) - ações causadas pelo uso e ocupação
da edificação no dimensionamento de estruturas de aço, enquanto as demais ações
são informadas separadamente. O sentido de atuação dessas ações permanentes
está ilustrado na Figura 29. 
Figura 29 - Atuação da ação permanente.
 Fonte: Nogueira (2009)
2.8. Ações Variáveis (SC)
As ações variáveis ou sobrecargas no telhado são aquelas que ocorrem com
valores que apresentam variações significativas durante a vida útil da construção.
Para galpões industriais leves, as ações variáveis a serem consideradas são a ação
de sobrecarga de cobertura e a ação do vento.
 De acordo com o Anexo B da NBR 8800/2008, para coberturas comuns, na
ausência de especificação mais rigorosa, deve ser prevista uma sobrecarga
característica mínima de 0,25 kN/m2, que equivale a 25,4925 Kgf/m². O sentido de
atuação dessa ação variável está ilustrado na figura 25.
Figura 25 - Atuação da sobrecarga
37
Fonte: Nogueira (2009).
3. METODOLOGIA
Esse trabalho é um estudo de caso de um galpão de uso múltiplo em que se
utiliza dados qualitativos, coletados com o auxílio de ferramentas computacionais. A
partir de três tipos de contraventamento realiza-se uma análise, verificando, entre os
modelos utilizados no estudo, qual a disposição dos tirantes mais apropriada para a
estrutura de cobertura do galpão, qual atinge a menor deformação e qual o
quantitativo de material empregado em cada tipo, a fim de comparar sua eficiência.
Verifica-se também se a estrutura analisada (galpão em estudo) está em
conformidade com as normas vigentes e se atende aos quesitos de segurança
exigidos pelas normas.
 Empregou-se o método comparativo para confrontar os dados encontrados
no projeto original com os dados dos três modelos calculados no programa
computacional SAP 2000, além desse programa utilizou-se o Visual Ventos 2.0.2
para auxiliar nos cálculos de pressão e sucção devido a ação dos ventos a 0º e a
90º, conforme estabelecido pela NBR 6123/1988.
4. APRESENTAÇÃO DOS DADOS
4.1. Características do galpão
A estrutura tratada neste trabalho é um galpão de uso geral projetado para a
área central de Brasília – DF, Almoxarifado central do QGEx. Quando se iniciou esta
pesquisa o galpão estava em fase de execução, agora, como se pode ver nas
figuras 26, o projeto encontra-se concluído e a estrutura já encontra-se em uso pelo
Exército Brasileiro.
38
As características do galpão encontram-se descritas abaixo:
 largura total de 20,9 metros;
 comprimento total de 80 metros;
 Área total de 1.672m2
 pé direito de 6,32 metros;
 galpão com duas águas;
 telhado com inclinação de 10,52º;
 distância entre os pilares 6,37m;
 três portas de 210x200cm na lateral da frente;
 uma porta de 210x200 na lateral do fundo;
 janelas lacradas.
Figura 26: Almoxarife central do QGEx em Brasilia.
Fonte: Autores (2020)
Detalhes da tesoura, do lanternim e os tipos de soldas utilizadas na
montagem das tesouras são especificados no projeto estrutural da cobertura,
conforme apresentado na figura 27. 
Figura 27 – Projeto estrutural da cobertura.
39
Fonte: Autores (2020)
Observa-se, nas figuras 28 e 29, a estrutura da cobertura já montada com o
sistema de contraventamento executado, bem como o sistema de incêndio e as
aberturas dos lanternins para ventilação. 
Figura 27 - interior do galpão.
Fonte: Autores (2020)
Figura 28 – Cobertura executada.
40
Fonte: Autores (2020)
4.2. Ações Permanentes (G)
O peso próprio da estrutura de aço, terças, tirantes e contraventamento foram
computados pelo programa de análise estrutural (SAP2000), em função da seção
transversal de cada elemento que compõe o pórtico principal da estrutura. Também
se considera 0,05kN/m² do peso próprio das telhas, lançadas nos nós do banzo
superior das treliças.
4.3. Ações Variáveis (SC)
 Para a sobrecarga de cobertura considerou-se o valor recomendado na norma,
0,25kN/m². O sentido de atuação desse carregamento é apresentado na Figura 29.
Figura 29 – Sentido do carregamento (SC)
Fonte: Autores (2020).
41
4.4. Ação do Vento (V)
A ação do vento nos galpões foi calculada segundo as recomendações da NBR
6123:1988 (ABNT, 1988). Esse cálculo será detalhado agora no tópico 3.3 desse
trabalho.
 
4.5. Cálculos dos Carregamentos do Vento
O Software Visual Ventos 2.0.2 foi desenvolvido para determinar as forças 
atuantes do vento em uma estrutura de acordo com a NBR 6123/1988. É de grande 
importância a utilização de dois fatores na execução dos cálculos, sendo eles 
aerodinâmicos e meteorológicos. Segundo Pravia e Chiarello (2003), para a 
determinação da força atuante do vento no software Visual Ventos, é necessário 
especificar alguns dados como:
 a geometria da estrutura que se deseja analisar;
 a região onde a estrutura deve ser executada para que se defina a 
Velocidade Básica do vento (V0);
 analisar a topografia do terreno para determinar o Fator topográfico 
(S1);
 características do terreno que determina o Fator de rugosidade (S2);
 a utilização da edificação que caracteriza o Fator estatístico (S3). Feito 
isso o programa fornece os resultados contendo os esforços atuantes 
na estrutura.
Utilizou-se o referido software para gerar os esforços nas paredes e telhado,
provocados pelo vento. O programa apresenta uma didática de utilização simples e
objetiva, cuja utilização não necessita de conhecimentos profundos da NBR
6123/1988, pois os cálculos são feitos de maneira automática, como se pode ver na
figura 33, apenas há a necessidade de entrar com os dados em etapas: geometria
da edificação, velocidade básica do vento, Fator S1, Fator S2, Fator S3 e Cpi. Após
o preenchimento desses dados, os resultados são apresentados na última etapa, em
formato de gráficos e de texto.
42
Figura 30 – Visão geral do programa VisualVentos
Fonte: Visual Ventos 2.0.2 - Autores (2020).
A figura 30 apresenta a tela inicial do programa, como se pode observar
inicialmente inseriu-se os dados da geometria do galpão: a largura, o comprimento,
o pé direito, a inclinação do telhado e a distância entre os pórticos. Em seguida, de
acordo com o local de implantação e em conformidade com a NBR 6123/1988
adicionou-se os seguintes dados de entrada no programa:
 Velocidade básica do vento: 35 m/s.
 Fator topográfico (S1): Terreno plano ou fracamente acidentado.
 Rugosidade do terreno (S2): Terrenos abertos em nível ou aproximadamente
em nível com poucos obstáculos isolados, tais como árvores e edificações
baixas. (Rugosidade II)
 Dimensões da edificação (S2): Classe C: Toda a edificação ou parte de
edificação para qual a maior dimensão (horizontal ou vertical) da superfície
frontal for maior que 50 metros.
 Fator Estatístico (S3): Grupo 3 – Edificações e instalações industriais com
baixo fator de ocupação.
 Coeficiente de pressão interna: duas faces diferentemente permeáveis.
Cpi = -0,83 ou 0 (considerado o valor mais nocivo). 
43
A partir dos dados de entrada, o software gerou o coeficiente de pressão externo,
a pressão nas paredes, o coeficiente de pressão externo no telhado, as
combinações de coeficientes de pressão para ventos a 0º e a 90º, a velocidade
média dos ventos e a pressão dinâmica conforme se apresenta nas figuras 31 e 32.
Figura 31 – Coeficiente de pressão externa nas paredes
Fonte: Visual Ventos 2.0.2 - Autores (2020) 
44
Figura 32 – Coeficiente de pressão externa no telhado
Fonte: Visual Ventos 2.0.2 (2020)
 Por ser o valor mais nocivo adota-se o valor do Cpe médio = -1,4, esse
coeficiente é utilizado para os cálculos de dimensionamento das telhas, terças,
tirantes, contraventamentos e vigas principais. Já o coeficiente de pressão interna
determina-se a partir da geometria, a qual possui uma abertura dominante situada
em zona de alta sucção externa, sendo o Cpi igual a -0,83 ou igual a -0,40, como se
pode ver na figura 36, nesse caso também se opta pelo mais nocivo.
45
Figura 33 – Combinação dos coeficientes de pressão
Fonte: Visual Ventos 2.0.2 - Autores (2020)
Como resultado o programa computacional Visual Ventos 2.0.2 determina:
 Velocidade característica do vento.
V k=S0S1S2
V k=35,00.1,00 .0,86 .0,95
V k=28,74m /s 
 Pressão Dinâmica:
q=0,613 .V k
2
q=0,613 .28,742
q=0,51 kN /m2
A força do vento depende da diferença de pressão nas faces interna e externa
geradas na edificação, os valores dos coeficientes e local onde atuam são dados 
pela tabela 5 da NBR 6123, diferenciando-os de acordo com as características da 
46
estrutura. Empregando-se as informações do galpão utilizado no estudo tem-se os 
esforços resultantes na estrutura, como se pode notar na figura 34.
Figura 34 – Esforços resultantes
Fonte: Visual Ventos 2.0.2 (2020)
Embora os valores extremos aconteçam somente em parte da cobertura, o
dimensionamento é feito para evitar qualquer tipo de dano, utilizando-se desses
valores para a estrutura como um todo.
com os valores de Ce e Ci é calculado a carga distribuída a ser lançada sobre as 
terças (F), considerando-se a largura efetiva de influência distancia entre os pórticos 
(Li) e (q) que representa a pressão dinâmica calculada. Adotou-se a situação menos 
favorável para os cálculos.
 Para ventos a 90º na cobertura:
F = (Ce–Ci) x q x Li → kN/m
47
F= (-0,80-(1,4) x0,51x6,37= 6,238kN/m.sobrepressão no barlavento.
F= (-0,40-(-2,51) x0,51x6,37= -6,85kN/m. Sucção no sotavento.
 Para ventos a 0º na cobertura:
F = (Ce–Ci) x q x Li→ kN/m
F= (-0,83-(0,11) x 0,51x6,37= 3,05kN/m. subpressão no barlavento.
F= (-0,4-(-1,29) x 0,51x 6,37= -2,89KN/m. Sucção no sotavento.
O vento atua sobre toda a face do galpão em que incide, transmitindo a carga
gerada para as colunas, de acordo com as relativas áreas de influência. A coluna
por sua vez transmitirá metade desse esforço para a fundação e metade para os
contraventamentos.
4.6. Cálculos utilizando o Software SAP 2000
Segundo Ferrari e Silva apud Nunes (2011) A sigla SAP é originada da
abreviação de Structural Analysis Program e desde a introdução do SAP,
SOLIDSAP e SAPIV, há mais de 30 anos, tem sido sinônimo de “estado da arte”
como recurso para análise estrutural. O software possui uma interface gráfica
poderosa, com muitas ferramentas que auxiliam na construção da modelagem,
combinadas com poderosas técnicas de processamento para análise de projetos
com maior complexidade. A criação e modificação do modelo bem como a execução
da análise, ajustes da estrutura e a visualização gráfica dos resultados, das quais
incluem animações dos deslocamentos, podem ser realizadas por meio da interface
gráfica do programa.
De acordo com a Multiplus (sem data), empresa responsável pela distribuição do
software SAP2000, o programa gera os dados a partir do Método dos Elementos
Finitos (MEF), método numérico para resolução de problemas de campo. 
No âmbito da Engenharia de Estruturas, o Método dos Elementos Finitos (MEF) tem como objectivo a
determinação do estado de tensão e de deformação de um sólido de geometria arbitrária sujeito a
acções exteriores”. Este tipo de cálculo tem a designação genérica de análise de estruturas e surge,
por exemplo, no estudo de edifícios, pontes, barragens, etc. Quando existe a necessidade de
projectar uma estrutura, é habitual proceder-se a uma sucessão de análises e modificações das suas
características, com o objectivo de se alcançar uma solução satisfatória, quer em termos económicos,
quer na verificação dos pré-requisitos

Outros materiais