Buscar

Resumo de Peptídeos e Proteínas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 3 páginas

Prévia do material em texto

Peptídeos e proteínas:
Duas moléculas de aminoácidos podem ser ligadas de modo covalente por meio de uma ligação amida substituída, denominada ligação peptídica, a fim de produzir um dipeptídeo. Tal ligação é formada pela remoção de elementos de água (desidratação) do grupo a-carboxila de um aminoácido e do grupo a-amino do outro. A formação da ligação peptídica é um exemplo de uma reação de condensação, uma classe comum de rea-
ções nas células vivas.
Três aminoácidos podem ser unidos por duas ligações peptídicas para formar um tripeptídeo; do mesmo modo, quatro aminoácidos podem ser unidos para formar um tetrapeptídeo, cinco para formar um pentapeptídeo, e assim por diante. Quando alguns aminoácidos se ligam desse modo, a estrutura é chamada de oligopeptídeo. Quando muitos aminoácidos se ligam, o produto é chamado de polipeptídeo. As proteínas podem ter milhares de resíduos de aminoácidos. Embora os termos “proteína” e “polipeptídeo” sejam algumas vezes intercambiáveis, as moléculas chamadas de polipeptídeos têm massas moleculares abaixo de 10.000, e as chamadas de proteínas têm massas moleculares mais elevadas.
Como já observado, uma unidade de aminoácido em um peptídeo é frequentemente chamada de resíduo (a parte restante após a perda de elementos de água – um átomo de hidrogênio de seu grupo amino e a metade hidroxila de seu grupo carboxila). Em um peptídeo, o resíduo de aminoácido na extremidade com um grupo a-amino livre é chamado de resíduo aminoterminal (ou N-terminal); o resíduo na outra extremidade, que tem um grupo carboxila livre, é o resíduo carboxiterminal (C-terminal).
Quando uma sequência de aminoácidos de um peptídeo, polipeptídeo ou proteína é exibida, a extremidade aminoterminal é localizada à esquerda e a extremidade carboxiterminal à direita. A sequência é lida da esquerda para a direita, começando com a extremidade aminoterminal.
Peptídeos contêm apenas um grupo a-amino e um grupo a-carboxila livres, em extremidades opostas da cadeia. Esses grupos se ionizam como nos aminoácidos livres, embora as constantes de ionização sejam diferentes porque um grupo de carga oposta não é mais ligado ao carbono a. Os grupos a-amino e a-carboxila de todos os aminoácidos não terminais são ligados covalentemente nas ligações peptídicas, que não se ionizam e, portanto, não contribuem para o comportamento ácido-básico total dos peptídeos. O comportamento acidobásico de um peptídeo pode ser previsto a partir de seus grupos a-amino e a-carboxila livres combinado com a natureza e o número de seus grupos R ionizáveis.
Peptídeos que ocorrem naturalmente variam em comprimento de dois a muitos milhares de resíduos de aminoácidos. Mesmo os menores peptídeos podem ter efeitos biologicamente importantes. Algumas proteínas consistem em apenas uma única cadeia polipeptídica, porém outras, chamadas de proteínas multissubunidade, têm dois ou mais polipeptídeos associados de modo não covalente. As cadeias polipeptídicas individuais em uma proteína multissubunidade podem ser idênticas ou diferentes. Se pelo menos duas são idênticas, a proteína é chamada de oligomérica, e as unidades idênticas (consistindo em uma ou mais cadeias polipeptídicas) são chamadas de protômeros.
Muitas proteínas, como, por exemplo, as enzimas ribonu-
clease A e a quimotripsina, contêm apenas resíduos de aminoácidos e nenhum outro constituinte químico; elas são consideradas proteínas simples. Entretanto, algumas proteínas contêm componentes químicos permanentemente associados além dos aminoácidos; elas são chamadas de proteínas conjugadas. A parte não aminoácido de uma proteína conjugada é normalmente chamada de grupo prostético. As proteínas conjugadas são classificadas com base na natureza química de seus grupos prostéticos; por exemplo, lipoproteínas contêm lipídeos, glicoproteínas contêm grupos de açúcares e metaloproteínas contêm um metal específico. Algumas proteínas contêm mais de um grupo prostético. Normalmente o grupo prostético desempenha um papel importante na função biológica da proteína.
A estrutura de proteínas:
Estrutura primária: Uma descrição de todas as ligações covalentes (principalmente ligações peptídicas e ligações dissulfeto) ligando resíduos de aminoácidos em uma cadeia polipeptídica é a sua estrutura primária. O elemento mais importante da estrutura primária é a sequência de resíduos de aminoácidos. A estrutura primária de uma proteína determina como ela se dobra em sua estrutura tridimensional única, e isso, por sua vez, determina a função da proteína.
A estrutura secundária se refere a arranjos particularmente estáveis de resíduos de aminoácidos dando origem a padrões estruturais recorrentes.
A estrutura terciária descreve todos os aspectos do enovelamento tridimensional de um polipeptídeo.
Quando uma proteína tem duas ou mais subunidades polipeptídicas, seus arranjos no espaço são chamados de estrutura quaternária.
Diferenças na função de proteínas resultam de diferenças na composição e na sequência de aminoácidos. Algumas variações na sequência podem ocorrer em uma proteína particular, com pouco ou nenhum efeito em sua função. A estrutura da proteína é estabilizada em grande parte por múltiplas interações fracas. As interações hidrofóbicas, derivadas do aumento da entropia da água circundante quando moléculas ou grupos apolares estão agrupados, são os principais contribuintes para a estabilização da forma globular da maioria das proteínas solúveis; as interações de van der Waals também contribuem. As ligações de hidrogênio e interações iônicas são otimizadas nas estruturas termodinamicamente mais estáveis.
Considerando esses níveis mais altos de estrutura, é conveniente designar dois grandes grupos nos quais muitas proteínas podem ser classificadas: proteínas fibrosas, com cadeias polipeptídicas arranjadas em longos filamentos ou folhas, e proteínas globulares, com cadeias polipeptídicas dobradas em forma esférica ou globular. Os dois grupos são estruturalmente distintos. As proteínas fibrosas em geral são formadas por um único tipo de estrutura secundária, e sua estrutura terciária é relativamente simples. As proteínas globulares normalmente contêm diversos tipos de estruturas secundárias. Os dois grupos também se diferenciam funcionalmente: as estruturas que garantem suporte, forma e proteção externa aos vertebrados são feitas de proteínas fibrosas, enquanto as enzimas e as proteínas reguladoras em sua maioria são proteínas globulares.
As estruturas proteicas evoluíram para atuar em determinados ambientes celulares. Condições diferentes daquelas da célula podem resultar em mudanças estruturais grandes ou pequenas na proteína. A perda de estrutura tridimensional suficiente para causar a perda de função é chamada de desnaturação. O estado desnaturado não necessariamente corresponde ao desdobramento completo da proteína e à randomização da conformação. Na maioria das condições, as proteínas desnaturadas existem como um conjunto de estados parcialmente dobrados.
A maioria das proteínas pode ser desnaturada pelo calor, que tem efeitos complexos nas muitas interações fracas da proteína (principalmente sobre as ligações de hidrogênio). Se a temperatura é aumentada lentamente, a conformação da proteína em geral permanece intacta até que, em uma estreita faixa de temperatura, ocorre uma perda abrupta da estrutura (e da função). A mudança repentina sugere que o desdobramento é um processo cooperativo: a perda de estrutura em uma parte da proteína desestabiliza as outras partes.
As proteínas também podem ser desnaturadas por pHs extremos, por certos solventes orgânicos miscíveis, como álcool ou acetona, por certos solutos como ureia e hidrocloreto de guanidina, ou por detergentes.
A estrutura terciária de uma proteína globular é determinada por sua sequência de aminoácidos. A prova mais importante disso vem dos experimentos que mostram que a desnaturação de algumas proteínas é reversível. Certas proteínas globulares desnaturadas por temperatura, extremos de pH ou agentes desnaturantes reassumem suasestruturas nativas e suas atividades biológicas se retornarem às condições nas quais a conformação nativa é estável. Esse processo é chamado de renaturação.

Mais conteúdos dessa disciplina