Buscar

AULA - 2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 44 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 44 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 44 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 1/44
 
 
 
 
 
 
 
 
 
 
 
 
PRINCÍPIOS DE MECÂNICA E
RESISTÊNCIA DOS MATERIAIS
AULA 2
 
 
 
 
 
 
 
 
 
Prof.a Francielly Elizabeth de Castro Silva
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 2/44
CONVERSA INICIAL
Olá, seja bem-vindo(a) a esta aula. Nela, vamos introduzir o conceito de diagrama de corpo livre
(DCL) para uma partícula e resolver problemas de equilíbrio de uma partícula aplicando as leis de
equilíbrio. Além disso, veremos o que é o momento de uma força e momento de um binário.
Ao final da aula, você estará apto a compreender, identificar e representar as forças e momentos
atuantes em problemas simples e em situações práticas da estática.
TEMA 1 – EQUILÍBRIO DE UMA PARTÍCULA
Como já mencionamos, esta disciplina dedica-se ao estudo da mecânica de corpos em repouso
(estáticos) quando sujeitos à ação de forças; ou seja, trata do equilíbrio desses corpos. Um exemplo
simples é mostrado na Figura 1, em que um conjunto de pedras devidamente posicionadas está em
equilíbrio.
Figura 1 – Conjunto de pedras em equilíbrio
Créditos: Aleksandr Simonov/Shutterstock.
Sabemos que um corpo está em equilíbrio se a Primeira Lei de Newton for aplicada e satisfeita.
Matematicamente, a força resultante que atua sobre o corpo deve ser igual a zero; ou seja, a soma de
todas as forças deve produzir um vetor resultante de força nula.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 3/44
1.1 DIAGRAMA DE CORPO LIVRE (DCL)
Para aplicar a Equação 1, chamada equação de equilíbrio, devemos representar todas as forças
conhecidas e desconhecidas que atuam sobre a partícula. Isso pode ser feito se isolarmos a partícula
de seu entorno e identificarmos as forças que atuam nela, ou seja, desenhando um DCL.
Um corpo pode estar preso ou ligado à parede ou ao chão/teto com elementos como cabos,
cordas, hastes, molas, entre outros (Figura 2).
Figura 2 – Viga suspensa por cabos de aço
Créditos: Alksandr Simonov/Shutterstock.
A representação da força que esses elementos produzem é simples. Temos que desenhar uma
força com a mesma direção (ângulo) desses elementos e o sentido conforme o problema analisado.
Especificamente, os cabos e cordas resistem apenas a forças de tração, pois à compressão, em geral,
são muito flexíveis. Os demais elementos citados (hastes e molas) podem suportar cargas dos dois
tipos, tração e compressão.
Vamos ao exemplo para compreender um pouco melhor como se desenha o DCL e considerar os
elementos de fixação citados anteriormente.
Exemplo 1: desenhe o DCL da esfera apresentada na figura, sabendo que ela tem massa de 6 kg.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 4/44
Fonte: Hibbeler, 2011.
Solução: o objetivo desse exemplo é representar as forças que atuam sobre nossa partícula, no
caso, a esfera. A primeira coisa a pensar é: como essa esfera está presa? Quais elementos a mantêm
na posição mostrada na figura?
Observe a figura e note que a esfera está presa a uma corda que a liga à parede no ponto A e a
uma mola que a liga à parede no ponto D. Os dois elementos mantêm a esfera na posição. Portanto,
para desenhar o DCL, vamos considerar o nó que conecta estes três elementos: corda, mola e esfera.
Este é o nó C.
O primeiro passo ao desenhar um DCL é justamente compreender as forças envolvidas sobre o
corpo. Logo, nesse exemplo temos que considerar a força que a esfera, o cabo e a mola produzem.
Portanto, podemos iniciar desenhando somente essas três forças na direção em que os elementos
estão no problema. Ou seja:
Note que ainda não atribuímos o sentido para essas forças. Vamos pensar nisso agora. Se a
esfera não estivesse presa aos elementos mostrados, ela tenderia a cair na direção vertical e com
sentido para baixo. Sabendo disso, podemos representar a força que a esfera produz como uma força
na direção vertical como mostrado e com sentido para baixo. Essa força é determinada por:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 5/44
A corda é um elemento que resiste a apenas cargas de tração, então o sentido da força sobre ela
deve produzir esse efeito. Portanto, devemos desenhar o sentido saindo do nó C para o nó B. Vamos
chamá-la de .
Analisando a mola, ela está ali a fim de evitar que a esfera se desloque para o lado esquerdo, por
isso ela faz força contrária para o lado direito – esta é uma forma de pensar. A outra forma de
descrever o sentido dessa força é analisando o equilíbrio das forças. Sabemos que a força  tem
componente em x apontada para esquerda; logo, para manter o equilíbrio do sistema, temos que
apontar a força da mola para o lado direito, saindo do nó C e para o nó D.
No decorrer desta disciplina, faremos muitos DCLs, pois são a base para determinar as forças nos
elementos estruturais. Se você não souber o sentido correto da força, insira um dos dois sentidos
possíveis. A única perda é que, para um sentido errado, a força calculada terá o sinal negativo e,
assim, você já saberá que atribui o sentido incorreto à força. Corrija o sentido e o sinal da força, e
continue a desenvolver os cálculos.
1.2 SISTEMAS DE FORÇAS COPLANARES
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 6/44
Podemos determinar facilmente as forças atuantes numa partícula submetida a um sistema de
forças coplanares (no mesmo plano). Seguimos um processo semelhante ao trabalhado em
conteúdos anteriores, porém naquele problema a força resultante podia assumir valores diferentes de
zero.
Como visto na Equação 1, para atingir o equilíbrio, a força resultante deve ser igual a zero; ou
seja, suas componentes x e y do plano x-y devem ser iguais a zero. Assim, temos na forma vetorial
que:
Na forma escalar, temos:
Observe que essas duas equações podem ser resolvidas para no máximo duas incógnitas, como
forças e/ou ângulos. Vamos aos exemplos para aplicar essas equações de equilíbrio.
Exemplo 2: para o Exemplo 1, determine a intensidade das forças  e .
Solução: como já obtivemos o DCL desse exercício, que foi a etapa abordada anteriormente,
vamos direto para a construção das Equações 3a e 3b. Como a força  é inclinada, sabemos que ela
deve ser decomposta nos eixos x e y. A seguinte figura mostra as componentes dessa força e as
demais forças a serem consideradas no cálculo:
Aplicando as Equações 3a e 3b, respectivamente, temos:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 7/44
Lembre-se que o sinal é positivo em x para as forças apontadas para direita, e em y, para as
forças apontadas para cima.
Obs. Se ficou com dúvida sobre a decomposição da força com a aplicação das relações
trigonométricas de seno ou cosseno, relembre os conteúdos anteriores – o macete (enCOSta).
Da equação , podemos obter a força . Para isso, temos que isolá-la. Faremos isso em
duas etapas: a primeira é passar o  para o outro lado da igualdade trocando o sinal:
A segunda é passar o  que está multiplicando a força  para o outro lado da igualdade
dividindo:
O resultado é . Lembre-se de deixar sua calculadora em graus para efetuar o
cálculo.
Podemos substituir o valor anterior na equação ; ou seja, no lugar da força , vamos
inserir o valor dela, que é :
Passando o  para o outro lado da igualdade, ficamos com:
Veja como é um procedimento simples. A partir de agora resolveremos uma série de exercícios
que envolvem esse conceito. Vamos praticar mais um pouco com outros exemplos.
Exemplo 3: determine as forças nos cabos BA e BC necessárias para sustentar o cilindro de 60 kg
mostrado na figura.
31/03/2021UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 8/44
Fonte: Hibbeler, 2011.
Solução: o primeiro passo é construir o DCL. Faça as seguintes perguntas: Qual é o objeto que
estamos analisando (que está sendo sustentado)? Quais elementos mantêm esse objeto em
equilíbrio? E qual é o nó que mantém esses elementos unidos?
Pelo enunciado, sabemos que o objeto sustentado é o cilindro de 60 kg e que os cabos BA e BC
o mantêm na posição de equilíbrio. Pela figura, notamos que o nó B une esses elementos (peso e
cabos); logo, podemos desenhar a direção das forças sobre eles:
Note que a inclinação do cabo BA é dada pelo triângulo. Já trabalhamos com esse tipo de
representação anteriormente.
Como já discutimos no Exemplo 1, a massa produz uma força peso com sentido para baixo.
Nesse exemplo, a força peso é dada por:
Vimos que os cabos suportam apenas forças de tração; logo, as forças atuantes em ambos os
cabos são desenhadas para produzir esse efeito. Ou seja, a força no cabo BA está no sentido de B
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 9/44
para A, e a força no cabo BC está no sentido de B para C. O DCL desse exemplo é representado a
seguir:
Agora é só aplicar as Equações 3a e 3b, descritas, respectivamente, assim:
Temos um sistema linear de equações com duas equações e duas incógnitas. Podemos escolher
uma das duas equações (a mais simples) e isolar uma das duas incógnitas. Escolhendo a primeira
equação e isolando a força , ficamos com:
Agora temos que substituir esse resultado na segunda equação; ou seja, no lugar da força ,
vamos inserir o resultado :
Como o  é igual ao , podemos cortar esses termos da equação:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 10/44
Deixando  em evidência e passando o   para o outro lado da igualdade, trocando o
sinal, ficamos com:
Portanto, a força no cabo BA é   Substituindo o valor para obter a força ,
temos:
Por conseguinte, o resultado da força no cabo BC é .
Para fechar este tema, vamos fazer um exercício que envolve mola, cuja rigidez é um dado
importante na sua resolução.
Exemplo 4: determine o comprimento da corda AC de modo que a luminária de 8 kg seja
suspensa na posição mostrada na figura. O comprimento não deformado da mola é de 0,4 m (antes
da aplicação da força), e sua rigidez é 
Fonte: Hibbeler, 2011.
Solução: o início desse exercício se assemelha aos Exemplos 1 e 2, visto que o DCL é
praticamente o mesmo; ou seja, devemos seguir o mesmo raciocínio para obter o DCL desse
problema. A força peso da luminária é   O DCL é representado na seguinte
figura:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 11/44
Aplicando as Equações 3a e 3b, vamos obter as forças  e :
De forma direta, podemos obter o valor da força  com a segunda equação:
Substituindo o valor da força  na primeira equação, ficamos com:
Mesmo com os resultados das duas forças, ainda não finalizamos o exemplo, pois ele solicita o
comprimento da corda AC. Para determiná-lo, é necessário, antes, descobrir o comprimento da mola
esticada por conta da força. Sabemos que, pela Lei de Hooke, temos uma relação entre a força e o
deslocamento, , da mola, dada por:
Sendo  a constante de rigidez da mola. Aplicando a equação no exemplo em tela, sabemos que
a mola tem uma rigidez de 300 N/m e que a força atuante nela é . Portanto,
calculamos o deslocamento da mola por:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 12/44
A solução da divisão resulta em .
O enunciado menciona que o comprimento não deformado da mola é de 0,4  m, ou seja, o
comprimento inicial da mola, , sem aplicação da força. O comprimento final da mola, , pode ser
obtido se somarmos o comprimento inicial com o deslocamento provocado pela aplicação da força.
Ou seja:
Logo, o comprimento final da mola é .
Na figura, temos que, do ponto C ao ponto B, há um vão de . Como o comprimento final da
mola é de  (que equivale à distância entre o ponto A e B), do ponto A ao ponto C temos a
seguinte distância:
Por trigonometria, podemos obter o comprimento do cabo AC considerando o seguinte
triângulo:
Note que o comprimento da corda, , é a hipotenusa do triângulo, , e a medida da distância
 é o cateto adjacente,   (que está encostando no ângulo de 30°); portanto, devemos utilizar a
relação do cosseno para obter :
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 13/44
Logo, .
Neste tema aprendemos como desenhar DCLs com elementos de fixação simples e como aplicar
as equações de equilíbrio em problemas bidimensionais. No próximo tema, evoluiremos nosso
conhecimento e aplicaremos essas ideias em problemas tridimensionais.
TEMA 2 – SISTEMAS DE FORÇAS TRIDIMENSIONAIS
Em sistemas de forças tridimensionais, podemos decompor as forças em suas componentes  e
, de modo que o equilíbrio seja satisfeito se:
Exemplo 5: determine a força em cada cabo usado para sustentar a caixa de 40 kN mostrada na
figura.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 14/44
Fonte: Hibbeler, 2011.
Solução: seguindo o mesmo procedimento adotado nos exemplos anteriores para construir o
DCL, vamos obter o DCL para o problema em tela:
Precisamos obter o vetor posição   e . Para isso, vamos aplicar o conceito visto
anteriormente. Também precisamos da posição dos pontos ,  e :
Não precisamos do vetor posição , pois sabemos que a força  tem componente somente
na direção x. Os vetores posição são dados por:
Em conteúdos anteriores vimos como projetar uma força numa dada direção com a Equação 12a.
Aplicando essa equação ao exemplo, temos:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 15/44
Aplicando o mesmo procedimento nas forças , temos:
A força  pode ser escrita assim:
Sabemos que a caixa é uma força na direção z com intensidade de 40 kN; ou seja,
 Logo, para obtermos as forças nos cabos, temos que aplicar as Equações 7a,
7b e 7c; ou seja, temos que somar cada componente dos quatro vetores de força do problema
. Logo:
Note que temos um sistema linear de equações com três equações e três incógnitas. Da segunda
equação podemos isolar a força ; logo, ficamos com:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 16/44
Como essas duas forças são iguais, podemos substituir  na terceira equação, ficando:
Portanto, . Note que esse também é o resultado da força  ( .
Substituindo os resultados das forças  e  na primeira equação, ficamos com:
É fácil notar que problemas tridimensionais são mais complexos e trabalhosos, porém
correspondem à maior parte dos problemas reais. Vamos praticar com mais um exemplo.
Exemplo 6: o gancho mostrado na figura carrega uma carga de 90 N. Dois cabos e uma mola,
com rigidez igual a 500 N/m, suportam essa carga. Determine a força desses elementos considerando
o equilíbrio estático do sistema e o alongamento da mola . Note que o cabo AB está no plano x-y,
e o cabo AC, no plano x-z.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 17/44
Fonte: Hibbeler, 2011.
Solução: o primeiro passo é desenhar o DCL do sistema. Vamos seguir o mesmo processo
descrito anteriormente para construí-lo. Portanto, o DCL fica da seguinte forma:
Note que esse exemplo não forneceu a posição dos pontos B, C e D, mas podemos obter as
componentes das forças nos eixos de seus respectivos planos. A seguinte figura mostra as
componentes das forças  e Assim fica mais fácil descrever esses vetores de força.
31/03/2021UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 18/44
A força  se localiza no plano x-z, logo, tem uma componente em x e uma componente em z,
e a componente em y é nula. Logo:
A força   está no plano x-y, logo sua componente no eixo z é nula. Portanto, podemos
escrevê-la assim:
A força  está na direção do eixo y, logo, só tem componente nesse eixo, e a força de 90 N
está na direção z, portanto só tem componente nessa direção. Esses vetores podem ser descritos
assim:
Com esses vetores de força, podemos aplicar as Equações 7a, 7b e 7c a fim de determinar a
intensidade dessas forças. Assim, temos que:
Novamente nos deparamos com um sistema linear de equações e três incógnitas. Com a terceira
equação, podemos obter o valor da força  assim:
Substituindo o resultado da força  na primeira equação, ficamos com:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 19/44
Substituindo o resultado da força  na segunda equação, ficamos com:
Para obter o alongamento da mola, basta aplicar a Lei de Hooke, vista na Equação 5. Assim,
temos:
Saiba mais
No Capítulo 3.4 do nosso livro-texto, você encontrará outros exemplos e muitos exercícios
aplicados para praticar. Não deixe de conferi-los, pois certamente te ajudarão a compreender melhor
esse conteúdo.
TEMA 3 – MOMENTO DE UMA FORÇA: FORMULAÇÃO ESCALAR
Se uma força for aplicada a um corpo e ela produzir um efeito de rotação do corpo em torno de
um ponto, ela pode ser chamada de torque, mas normalmente é denominada momento. Alguns
exemplos práticos desse tipo de efeito são observados se você fizer força numa chave de boca, ou
fenda, ou allen etc. para apertar ou soltar um parafuso, como mostra a Figura 3.
Figura 3 – Exemplo de um momento aplicado para apertar um parafuso
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 20/44
Créditos: Smile Fight/Shutterstock.
A força que aplicamos provoca uma rotação da ferramenta, gerando um momento (torque). Se
você abrir a torneira, o mesmo efeito ocorre. A força aplicada provoca o giro da torneira em torno do
centro dela.
A intensidade do momento é proporcional à intensidade da força aplicada e à distância
perpendicular (90°) entre a força e o ponto de giro (Figura 4). Essa distância é comumente chamada
braço de momento ( ).
Figura 4 – Momento de uma força
Fonte: Hibbeler, 2011.
Como há essa proporcionalidade, concluímos que, quanto maior a força ou maior o braço de
momento, maior será o momento (ou torque) aplicado.
Como a força é uma grandeza vetorial, o momento também é. Logo, ele tem uma intensidade
(módulo), uma direção e um sentido. A direção é perpendicular ao plano que contém a força; ou seja,
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 21/44
analisando a Figura 1, a força se aplica no plano x-y, portanto a rotação é no eixo z, como indica a
seta do giro. O sentido do momento é definido pelo sentido do giro, podendo ser horário ou anti-
horário. Pela convenção de sinais, assumimos que o momento no sentido anti-horário é positivo. Isso
vai nos ajudar especialmente em casos que envolvem muitos momentos. Vamos praticar alguns
exemplos mais simples inicialmente.
Exemplo 7: determine o momento da força em relação ao ponto O para cada caso ilustrado nas
figuras.
(a)
(b)
(c)
(d)
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 22/44
(e)
Fonte: Hibbeler, 2011.
Solução: em todos os casos, a principal característica que precisamos analisar é a distância entre
a força e o ponto de giro (ponto O), lembrando que a distância a ser considerada deve ser
perpendicular à força.
A solução da Figura (a) é simples. Aplicando a Equação 8, temos:
Note que o sinal é negativo, pois o sentido de giro do objeto é horário, como é possível ver na
figura “sombreada”.
Na figura (b), duas cotas mostram a distância horizontal e vertical da força em relação ao ponto
O. Há um macete para não errar a distância a ser utilizada. Se a força estiver na direção x (horizontal),
devemos utilizar a distância em y (vertical) entre a força e o ponto; se a força estiver na direção y
(vertical), devemos utilizar a distância em x (horizontal) entre a força e o ponto.
Aplicando o “macete” no problema da figura (b), temos que a força está na direção horizontal;
logo, a distância que vamos considerar é 0,75 m, que está na vertical, separando o ponto O do ponto
de aplicação da força:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 23/44
Novamente, o sinal é negativo, pois o sentido de giro do objeto é horário. Aplicando o “macete”
na Figura (c), temos que ela está na direção vertical; logo, temos que considerar a distância horizontal
entre o ponto O e o ponto de aplicação da força, conforme segue:
Note que a distância é 4 m + 2cos30 m, cujo último termo é obtido por trigonometria, conforme
o triângulo gerado pela inclinação da barra. Portanto, o momento que a força de 40 kN provoca em
relação ao ponto O é dado por:
O problema apresentado na Figura (d) é se assemelha ao da Figura (b); a diferença básica é que a
força está com outro sentido e que a barra tem uma inclinação. Novamente, temos uma força na
direção horizontal; logo, temos que considerar a distância vertical entre essa força e o ponto O, como
mostra a figura a seguir:
Note que a distância entre a força e o ponto O é 1sen45 (valor obtido por trigonometria aplicada
ao triângulo gerado pela inclinação da barra). Assim, o momento é dado por:
Conforme a imagem sombreada, o momento provocado pela força de 60 kN faz a barra girar no
sentido anti-horário, por isso o resultado é positivo.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 24/44
Para concluir esta primeira etapa com os exemplos mais básicos de momento, vamos obter o
momento provocado pela força de 7 kN na Figura (e). Como a força está na horizontal, precisamos da
distância vertical entre essa força e o ponto O, conforme a figura a seguir:
Note que a distância entre o ponto O e o topo do objeto é 4 m, e a distância entre o topo do
objeto e a força é 1 m; logo, a distância entre a força de 7 kN e o ponto O é 4 m – 1 m = 3 m. Assim,
o momento é dado por:
Importante: o sinal do momento se relaciona somente com o sentido do giro, ou seja, não se
liga ao sentido da força. Sempre será necessário analisar o sentido da rotação provocada pela força.
3.1 MOMENTO RESULTANTE
Em problemas com mais de um momento aplicado à estrutura, podemos calcular o momento
resultante de todas as forças. Se os momentos aplicados estiverem todos no mesmo plano (problema
bidimensional), o momento resultante é obtido com a simples soma de todos os momentos. Ou seja:
Exemplo 8: determine o momento resultante das quatro forças aplicadas na barra mostrada na
figura em relação ao ponto O:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 25/44
Fonte: Hibbeler, 2011.
Solução: para o cálculo, podemos considerar as forças da esquerda para direita para manter uma
certa ordem. Vamos utilizar o “macete” aplicado nos exemplos anteriores para resolver este exemplo.
A força de 50 N é vertical e está a uma distância horizontal de 2 m do ponto O. Se analisarmos
somente o efeito que essa força provoca naquele pedaço da barra, temos a seguinte situação:
Note que a tendência de giro é no sentido horário. Portanto, o momento dessa força é dado por:
A força de 60 N está na horizontal. Logo, temos que tomar a distância vertical entre essa força e
o ponto O, porém essa força está na mesma linha que o ponto O; ou seja, não tem distância vertical.
Logo, o momento provocadopor essa força é:
A força de 20 N está na horizontal; logo, a distância vertical entre essa força e o ponto O é
representada na figura ( ):
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 26/44
A distância  pode ser calculada por trigonometria se analisarmos o triângulo verde da figura.
Note que  corresponde ao cateto oposto ( ) e que 3 m corresponde à hipotenusa do triângulo ( ).
Logo, a relação trigonométrica que contém o cateto oposto e a hipotenusa é:
O momento provocado pela força de 20 N é:
Note que o sentido do giro é anti-horário. Sempre busque analisar o sentido da força em relação
ao ponto e que rotação essa força vai gerar na estrutura.
A força de 40 N é vertical; logo, a distância a ser considerada é a distância horizontal entre essa
força e o ponto O, conforme a figura:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 27/44
Foram definidos os pontos A e B na figura a fim de representar a distância horizontal entre esses
pontos ( ). Essa distância corresponde ao cateto adjacente do triângulo verde; logo, a relação
trigonométrica que contém o cateto adjacente e a hipotenusa é:
Com essa distância, podemos determinar a distância total entre o ponto O e a força de 40 N; do
ponto O ao ponto A temos 4 m; e do ponto A ao ponto B temos 2,6 m. Logo, a distância total é
.
O momento provocado pela força de 40 N é calculado por:
Concluindo o exemplo, temos que determinar o momento resultante. Para isso, basta somar
todos os momentos calculados (Equação 9). Assim, temos:
3.2 PRINCÍPIO DOS MOMENTOS
O princípio dos momentos é muito utilizado nos estudos da mecânica, também chamado de
Teorema de Varignon. Ele estabelece que o momento provocado por uma força em relação a um
ponto é igual à soma dos momentos das componentes da força em relação ao mesmo ponto. Esse
teorema é muito utilizado especialmente se a força estiver inclinada em relação aos eixos de
referência. Em problemas bidimensionais, esse teorema é definido por:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 28/44
 e  são as componentes x e y da força, e  e  são, respectivamente, a distância horizontal
e a vertical entre a força e o ponto analisado.
Exemplo 9: determine o momento da força de 400 N em relação ao ponto O, como mostra a
figura.
Fonte: Hibbeler, 2011.
Solução: devemos obter as componentes x e y da força de 400 N, conforme a figura:
A distância horizontal e a vertical são, respectivamente,   e . Aplicando a
Equação 10 ao problema, o momento é dado por:
Lembre-se do macete para aplicar as leis trigonométricas, vistos anteriormente, e atente-se ao
sentido do giro provocado pela força.
Exemplo 10: determine o momento da força de 100 N em relação ao ponto O, como mostra a
figura.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 29/44
Fonte: Hibbeler, 2011.
Solução: o processo de solução é o mesmo do exemplo anterior. Devemos obter as
componentes x e y da força de 100 N, conforme a figura:
A distância horizontal e a vertical são, respectivamente,   e . Aplicando a
Equação 10 ao problema, o momento é dado por:
TEMA 4 – MOMENTO DE UMA FORÇA: FORMULAÇÃO VETORIAL
Em problemas tridimensionais para calcular momentos, vamos aplicar uma formulação vetorial
utilizando o produto externo (produto vetorial representado por ) dado por:
 corresponde ao vetor posição, e  corresponde ao vetor força.
A equação anterior é resolvida se aplicarmos o determinante à matriz dada por:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 30/44
,   e   são as componentes x, y e z do vetor posição, , dirigido de O até qualquer ponto
sobre a linha de ação da força – como o ponto em que a força está sendo aplicada –, e ,   e 
 correspondem às componentes x, y e z do vetor força, .
O determinante da matriz da Equação 12 é obtido se replicarmos os termos das duas primeiras
colunas, multiplicando as diagonais da esquerda para direita e depois subtraindo com o produto dos
termos da direita para esquerda, como mostra a imagem a seguir:
Vamos aplicar essa metodologia de solução para resolver o seguinte exemplo.
Exemplo 11: determine o momento produzido pela força , com intensidade igual a 2 kN, em
relação ao ponto O, como mostra a figura.
Fonte: Hibbeler, 2011.
Solução: como não foi dado o vetor força, precisamos obtê-lo com a Equação utilizada no
Exemplo 5 desta aula:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 31/44
Para aplicar essa equação, precisamos do vetor posição . Para isso, vamos descrever a posição
dos pontos A e B, respectivamente, por:
Aplicando a Equação 12a, temos:
Como conhecemos o vetor força  e a posição dessa força (  ou ), podemos determinar o
momento se aplicarmos a Equação 12 desta aula. Logo:
Extraindo o determinante dessa equação, temos:
A intensidade desse momento pode ser determinada se extrairmos o módulo desse vetor. Logo:
Em problemas que envolvem mais de um momento, podemos determinar o momento resultante
pela soma das componentes de cada momento. Ou seja:
Vamos resolver um exemplo para determinar o momento resultante proveniente da aplicação de
dois momentos no sistema.
Exemplo 12: determine o momento resultante que as duas forças provocam em relação ao
ponto O.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 32/44
Fonte: Hibbeler, 2020.
Solução: para determinar o momento resultante, como teremos que aplicar a Equação 13,
precisamos conhecer as coordenadas dos pontos de aplicação das duas forças – ou seja,   e ,
dados por:
Aplicando a Equação 12 para cada força do problema, temos:
Extraindo o determinante dessa matriz, temos:
Extraindo o determinante dessa matriz, ficamos com:       
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 33/44
Aplicando a Equação 13, podemos obter o momento resultante. Logo:
A intensidade do momento resultante é:
4.1 MOMENTO DE UMA FORÇA EM RELAÇÃO A UM EIXO
Em algumas situações é necessário determinar o momento produzido por uma força em relação
a um eixo específico. Por exemplo, supondo que você queira soltar a porca em O, conforme a figura a
seguir:
Fonte: Hibbeler, 2001.
A porca fará uma rotação somente em torno do eixo y. Sendo assim, para determinar o efeito de
rotação da porca, devemos considerar apenas a componente y do momento; ou seja, o momento
total produzido não nos interessa nesse tipo de aplicação.
Até agora nós precisamos basicamente de duas informações: as componentes do vetor força, ,
e a posição do ponto de aplicação dessa força, . Com essas duas informações, aplicamos a Equação
12 e obtemos o momento.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 34/44
Agora vamos precisar de uma terceira informação: o vetor unitário que passa pela direção na
qual queremos determinar o momento. Matematicamente, temos:
Sendo ,  e  as componentes x, y e z do vetor unitário definido na direção do eixo . O
vetor do momento que passa pelo eixo , , é obtido assim:
Vamos resolver alguns exemplos aplicando este último conceito.
Exemplo 13: calcule o momento resultante das três forças em relação ao eixo x, ao eixo y e ao
eixo z.
Fonte: Hibbeler, 2011.
Solução: o primeiro passo é obter as componentes dos vetores ,  e :
O segundo passo é obter as coordenadas dos pontos de aplicação dessas forças, ou seja, as
coordenadas dos pontos A, B e C:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 35/44
O terceiro passo é obtero vetor unitário de cada eixo. É uma tarefa simples, tendo em vista que
os momentos solicitados são em torno dos eixos x, y e z. Logo:
Aplicando a Equação 14a, podemos obter o momento que cada força produz em relação aos
respectivos eixos x, y e z:
Extraindo o determinante das três matrizes, temos:
Extraindo o determinante das três matrizes, temos:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 36/44
Extraindo o determinante das três matrizes, temos:
Para finalizar este tema, vamos resolver um último exemplo sobre o assunto.
Exemplo 14: calcule o momento  produzido pela força , mostrada na figura, que tende a
girar o tubo em relação ao eixo AB.
Fonte: Hibbeler, 2011.
Solução: o procedimento de solução é idêntico ao problema anterior; a diferença básica é que
temos uma única força e que teremos que obter o vetor unitário que está na direção , 
O primeiro passo é identificar as componentes do ponto em que a força se localiza, ou seja, o
ponto C:
O próximo passo é determinar as componentes do vetor força, , dadas por:
O terceiro passo é obter o vetor unitário que está na direção ,  Para isso, precisaremos
ainda da posição dos pontos A e B, dados por:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 37/44
Sabemos que . Logo:
Por fim, aplicamos a Equação 14a para obter o momento que a força   produz em relação à
direção :
O determinante da matriz é:
Aplicando a Equação 15, podemos obter o vetor momento:
TEMA 5 – MOMENTO DE UM BINÁRIO
Chagamos ao último tema desta aula. Vamos falar sobre momento de um binário. Se tivermos
um sistema com duas forças paralelas, de mesma intensidade, mas sentidos opostos, essas forças vão
rotacionar o objeto analisado (Figura 4). Chamamos essas duas forças de binário, e esse efeito, de
rotação de momento de um binário.
Figura 4 – Momento de um binário
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 38/44
Fonte: Silva, 2020.
Esse efeito ocorre no volante do carro, ao abrirmos uma torneira ou registro, ou também ao
apetarmos um parafuso com uma chave de fenda (Figura 5).
Figura 5 – Momento de binário aplicado ao volante do carro
Créditos: Oleksandr Grechin/Shutterstock.
Na formulação escalar, o momento de binário pode ser determinado com a Equação 8 (
). Aqui, a distância  corresponde à distância perpendicular entre as duas forças. Vamos ao exemplo:
Exemplo 15: determine o momento de binário resultante dos três binários que agem sobre o
objeto da figura.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 39/44
Fonte: Hibbeler, 2011.
Solução: precisamos identificar os três pares de forças que geram os três momentos de binário e
as distâncias entre cada par a fim de aplicar a Equação 8. O primeiro par de forças é representado na
seguinte figura:
Note que o par de forças   contém duas forças paralelas entre si, e a distância perpendicular
que separa essas duas forças corresponde a 0,4 m. Além disso, a rotação que esse par de binário
provoca em relação ao centro dessas duas forças é no sentido horário (negativo). Logo:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 40/44
O segundo par de forças que gera o segundo momento de binário é representado pelas forças
, como mostra a seguinte figura:
Logo, o momento de binário gerado por esse par de forças é dado por:
O terceiro par de forças que gera o terceiro momento de binário é representado pelas forças ,
como mostra a figura:
Consequentemente, o momento de binário gerado por esse par de forças é dado por:
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 41/44
Portanto, o momento resultante é obtido pela soma dos três momentos de binário. Ou seja:
Se não for possível determinar a distância perpendicular entre o par de forças que gera o binário,
podemos determinar o momento de binário pelo Princípio dos Momentos, visto no Tema 3.2
(Equação 10). Vamos aplicá-lo no seguinte exemplo:
Exemplo 16: calcule o momento de binário que age sobre a engrenagem mostrada na figura a
seguir:
Fonte: Hibbeler, 2011.
Solução: note que nesse tipo de problema a distância perpendicular entre as duas forças que
formam o binário não foi disponibilizada. Veja essa distância na seguinte figura:
Nesse caso, podemos determinar o momento de binário calculando o momento que cada uma
das forças gera em relação a um ponto qualquer (A, ou B, ou O, ou algum outro). Vamos escolher o
ponto A para facilitar, pois sabemos que, se alguma força está explicada sobre o ponto em que
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 42/44
vamos calcular o momento, essa força não provoca momento nesse ponto, pois a distância dessa
força para o ponto é zero. Assim, temos que a força de 600 N no ponto A não gera momento nele.
Aplicando a Equação 10 para calcular o momento de binário em relação ao ponto A (pois a força
de 600 N é inclinada), temos:
Observe os sentidos dos momentos provocados pelas componentes x e y da força,
respectivamente, nas seguintes figuras (a) e (b):
(a)
(b) 
A formulação vetorial para calcular o momento de binário é utilizada em problemas
tridimensionais. Vamos aplicá-la no próximo exemplo.
Exemplo 17: calcule o momento de binário que age sobre o tubo mostrado na figura, sabendo
que o segmento AB está direcionado a 30° abaixo do plano x-y.
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 43/44
Fonte: Hibbeler, 2011.
Solução: podemos calcular o momento que cada força provoca em relação a qualquer ponto.
Vamos escolher o ponto O dessa vez. Logo, precisamos das coordenadas do ponto A, do ponto B e os
vetores da força em A e da força em B. Note que o ponto O está na origem; ou seja,
. Assim, temos:
O momento é calculado se aplicarmos as Equações 13 e 12. Logo:
E seu módulo é .
FINALIZANDO
31/03/2021 UNINTER - PRINCÍPIOS DE MECÂNICA E RESISTÊNCIA DOS MATERIAIS
https://univirtus.uninter.com/ava/web/roa/ 44/44
Nesta aula aprendemos a desenhar o DCL de estruturas fixas por elementos simples, como cabo,
corda, barra e mola, e vimos como determinar as forças nesses elementos com a formulação escalar,
utilizando a decomposição de forças no plano e com a formulação vetorial. Vimos também o conceito
de momento e momento de binário, e aprendemos a calculá-los.
Agora você deve se sentir apto a representar e resolver problemas simples da estática utilizando
a Primeira Lei de Newton e a determinar os momentos provocados por forças.
Não deixe de praticar os exercícios propostos em nosso livro-texto, Estática: mecânica para
engenharia. Aplique a metodologia explicada na aula para obter os resultados.
Até o próximo encontro!
REFERÊNCIAS
HIBBELER, R. C. Estática: mecânica para engenharia. 12. ed. São Paulo: Pearson, 2011.

Outros materiais