Buscar

Cap+¡tulo_IV_Solucoes_a_FQMI

Prévia do material em texto

1 
 
 Capítulo IV- Introdução a teoria das soluções 
 
 
IV-1 Generalidades 
 
Em sistemas metalúrgicos, várias vezes nos defrontamos com uma variedade de fases 
participando de uma dada transformação. Por exemplo, quando um metal entra em 
contato com uma escória, para fins de refino, são duas as fases trocando matéria e 
energia, Figura IV-1 e Figura IV-2. Fases, no contexto desta disciplina são soluções, 
formadas pela interação a nível atômico, iônico ou molecular de dois ou mais compo-
nentes. No caso geral, os componentes perdem suas características físicas e químicas 
originais após serem incorporadas em uma solução; deste modo, as propriedades da 
solução não podem ser obtidas pela simples adição ponderada dos valores correspon-
dentes aos componentes puros. 
 
 
Figura IV- 1 – Interações aço líquido/escória durante o sopro de oxigênio no converte-
dor LD de sopro combinado 
 
Figura IV- 2 – Reações químicas ocorrentes durante o processo de refino primário do 
aço líquido no convertedor LD 
 
 2 
 
Além do mais, muito raramente o processo de formação de soluções é termicamente 
neutro. Modo geral o processo de formação se dá com liberação de calor (exotermia) 
ou com absorção de calor(endotermia); portanto a formação de soluções, se a mesma 
ocorre em um determinado processo, precisa ser contabilizada nos balanços térmicos. 
 
Considere, por exemplo, dois processos imaginários em que sal de cozinha e água en-
tram em contato. No primeiro o sal seco é impermeabilizado por um filme fino de plásti-
co e então despejado no vasilhame com água. Não existe interação a nível molecular 
entre o NaCl e H2O de modo que o volume resultante pode ser encontrado pela sim-
ples soma dos volumes originais; não se nota também efeito térmico algum. Produziu-
se uma mistura. No segundo caso, na ausência de impermeabilização, o NaCl se dis-
solve na água, gerando uma solução iônica contendo as espécies OH 2 , +H , −OH , 
+Na e −Cl . Observa-se, experimentalmente, uma tendência ao resfriamento da solu-
ção, o que indica uma reação endotérmica, e que o volume resultante não é igual à 
soma dos volumes originais dos componentes. Produziu-se uma solução. A figura IV-3 
indica como a variação de entalpia de formação da solução água-NaCl pode ser obtida 
considerando-se um caminho com duas etapas: a formação de íons gasosos +aN 
e −Cl a partir do cristal; a hidratação destes íons para a formação da solução. O efeito 
global é endotérmico, com absorção de energia da ordem de 3,9 kJ/mol. Ciclo seme-
lhante é apresentado para o sistema água-NaOH (exotérmico; -44,5 kJ/mol). A figura 
reforça que valores de propriedades termodinâmicas de soluções são específicos e 
precisam ser determinados caso a caso. 
 
Figura IV- 3 – Variação de entalpia de formação de solução aquosa de NaCl e NaOH( 
itl.chem.ufl.edu)) 
 
Desta pequena discussão se apreende que se faz necessário determinar experimen-
talmente as características e os valores de propriedades das soluções, isto é descrever 
o comportamento termodinâmico de seus componentes em função de variáveis como 
temperatura, pressão e composição. Este é o objetivo dos tópicos seguintes. 
 
Em todos os ramos da ciência uma preocupação comum se refere a “como obter o 
maior número de informações confiáveis realizando o menor número possível de expe-
rimentos”. No caso de soluções metálicas, cujos experimentos característicos em geral 
envolvem altas temperaturas e sistemas bastante reativos, esta preocupação se refletiu 
em um conjunto de técnicas através das quais se pode obter o valor de uma proprieda-
de global da solução a partir das propriedades dos componentes e vice-versa; ou de-
terminar o valor de propriedade termodinâmica de um componentes através dos valo-
 3 
 
res de propriedades dos demais – ver equação de Gibbs-Duhem. Por motivos históri-
cos estas técnicas envolvem alguma derivação ou integração, gráfica ou numérica, que 
podem ser consideradas “lentas”, para os padrões de hoje. Hoje, a profusão de aplica-
tivos matemáticos, estatísticos, planilhas eletrônicas em geral tornam mais fácil a vida 
do estudante. Sugere-se o estudo dos tópicos seguintes sob esta ótica. 
 
IV-2 – GRANDEZAS PARCIAIS MOLARES 
 
Seja uma fase multicomponente composta das espécies i = A, B, C,.. e Y’ uma sua 
grandeza extensiva qualquer, tal como energia livre, energia interna, entalpia, entropia, 
volume, etc.. Esta grandeza seria função da pressão, da temperatura, das quantidades 
das espécies e natureza das mesmas. Logo, 
 
...)n,n,n P, (T, Y' Y' CBA= 
 
o que permite escrever: 
 
i
nT,P,inT,nP,
dn
dn
dY'dP
dP
dY'dT
dT
dY'dY'
jii






+



+



= ∑ 
A grandeza , 
jnT,P,i
dn
dY'






 
a qual representa a taxa de variação da grandeza extensiva com o número de moles da 
espécie i, mantidos constantes a temperatura, pressão e os números de moles de to-
das as outras espécies, é simbolizada por iY , e chamada de grandeza parcial molar de 
i referente a função termodinâmica escolhida Y. 
 
iY pode também ser entendida como a variação em Y’, resultante da adição de um mol 
de i a uma grande quantidade da solução, mantidas fixas a pressão, temperatura e 
as quantidades das outras espécies. 
 
iY é função de estado intensiva, portanto depende de temperatura, pressão, quantida-
de relativa das espécies e natureza química das mesmas. 
 
Quando a espécie, elemento ou composto, se encontra pura a grandeza parcial molar 
adquire o valor característico desta condição e a ela se refere normalmente como 
grandeza molar, isto é, entalpia molar, energia livre molar, etc. A simbologia adotada 
para estes casos normalmente é oiY ou oiY ; existem compilações bastante abrangen-
tes destes valores e a Tabela IV-1 apresenta um exemplo para o composto Cr3C2, reti-
rado de Kubaschewski et al(1). São fornecidos os valores de Entalpia molar (a 1 atm de 
pressão), Entropia molar (a 1 atm de pressão) e Energia Livre de Gibbs molar (a 1 atm 
de pressão) do Cr3C2 puro e sólido, em função da temperatura. 
 
 Naturalmente se tem 
 
oG = oH - T oS , por exemplo, a 600 oK, -149890 = -49397 – 600 x 167,488 Joules. 
 4 
 
Tabela IV-1: Valores de Grandezas Molares do composto Cr3C2 puro e sólido, como 
função de temperatura. Ho(J/mol), So(J/K.mol), Go(J/mol) 
 
T(K) Ho So Go T(K) Ho So Go 
298 -85349 85,433 -110821 1300 51572 277,834 -309611 
300 -85165 86,048 -110979 1400 67240 289,444 -337981 
400 -74286 117,234 -121179 1500 83186 300,445 -367480 
500 -62207 144,151 -134282 1600 99409 310,914 -398052 
600 -49397 167,488 -149890 1700 115905 320,913 -429647 
700 -36060 188,038 -167687 1800 132671 330,496 -462221 
800 -22296 206,412 -187426 1900 149706 339,705 -495734 
900 -8161 223,057 -208912 2000 167008 348,58 -530151 
1000 6311 238,302 -231990 2100 184576 357,151 -565439 
1100 21099 252,395 -256534 2168 196674 362,82 -589919 
1200 36190 265,523 -282437 
 
 
 
IV-3 RELAÇÕES ENTRE AS GRANDEZAS PARCIAIS MOLARES 
 
As grandezas termodinâmicas de um sistema multicomponente – volume, energia in-
terna, energia livre de Gibbs, energia livre de Helmholtz, entropia, entre outras - depen-
dem da natureza química e proporção relativa das espécies componentes, temperatu-
ra, pressão e massa. As grandezas parciais molares de um sistema multicomponente – 
potencial químico, volume parcial molar, entropia parcial molar, entre outros, dependem 
de todas as variáveis citadas exceto massa do sistema; as grandezas parciais molares 
podem ser matematicamente interrelacionadas, conforme delineado a seguir. 
 
Se Y’ é função de estado e, portanto suas derivadas cruzadas são iguais, então 
 
dTdn
Y'd
dTdn
Y'd
i
2
i
2
= , dPdn
Y'd
dPdn
Y'd
i
2
i
2
= 
 
Por exemplo, reconhecendo que, para energia livre de Gibbs se tem: 
 
 
i
nT,P,inT,nP,
dn
dn
dG'dP
dP
dG'dT
dT
dG'dG'
jii






+



+



= ∑ 
 
i
nT,P,i
dn
dn
dG'dPdTdG'
j






++−= ∑'' VS 
então se pode escreverV'
dP
dG'
inT,
=



 i
nP,T,i
V
dn
dV'
j
=





 
 5 
 
 
i
i
j
j
i
nT,
i
nT,
nP,T,i
nP,T,
i
nT,
i dP
Gd
dP
dn
dG'd
dn
dP
dG'd
V 





=




















=
















= 
 
De modo semelhante, por exemplo, G’ = E’ + PV’ – TS’, expressão que derivada em 
relação a in fornece: 
 
 
iiii
nP,T,inP,T,inP,T,inP,T,i
STVPEGdn
dS'Tdn
dV'Pdn
dE'
dn
dG'
jjjj
−+==





−





+





=





 
 
 
Logo, as relações válidas para as grandezas extensivas também são válidas para as 
grandezas parciais molares correspondentes. 
 
IV-4 RELAÇÃO ENTRE Y’ e in 
 
Seja o processo de formação de uma solução à temperatura e pressão constantes, 
desde o volume zero até uma quantidade qualquer. De acordo com 
 
i
nT,P,inT,nP,
dn
dn
dY'dP
dP
dY'dT
dT
dY'dY'
jii






+



+



= ∑ 
Y’ será: 
∑∫
=
=
=
 ii
i
nn
0n ii
dnYY'
 
 
e para se chegar a Y’ é preciso conhecer como iY varia com in . Esta dificuldade pode 
ser contornada se a formação da solução ocorrer à composição constante, o que pode 
ser feito com a adição das espécies i = A, B, C... em proporções fixas. Por exemplo, se 
a solução for uma ternária A, B, C, com 20% de A, 50% de B e 30% de C, basta que A, 
B, C sejam adicionados na razão 2:5:3. Deste modo, permanecendo invariáveis tempe-
ratura, pressão e composição, isto é, tudo o que influencia iY , iY permanecerá cons-
tante, e então, 
 
∫ ∑∑∑∫
=
=
=
=
===
nn
0n iiii
nn
0n ii
i
i
i
i
nYdnYdnYY'
 
 
∑= iinYY' 
 
Dividindo a expressão anterior por ∑= iT nn vem 
 
 6 
 
∑==
T
i
i
T n
nYsolução) de mol(por Y
n
Y'
 
 
 e como por definição a fração molar de i é dada como 
T
i
n
n
=iX resulta 
 
∑= iiXYY 
 
 
IV-5 SIGNIFICADO DE ∆Y 
 
.No estudo do comportamento das soluções pretende-se descrever a dependência en-
tre Y e a composição. Na maioria das vezes é mais fácil encontrar ∆Y , a diferença en-
tre os valores da grandeza na situação de estudo e numa situação de comparação, dita 
de Referência. É evidente que, nestes casos, para que os dados termodinâmicos te-
nham consistência, a situação de referência tem que estar bem definida. Uma referên-
cia bastante utilizada é a chamada referência Raoultiana (de Raoult),que consiste em 
estabelecer como situação de comparação aquela em que as espécies estão puras, à 
temperatura e pressão do estudo, no mesmo estado físico da solução. Esquematica-
mente tem-se, Figura IV-4: 
 
 
 
Figura IV- 4 - Diagrama esquemático simbolizando a formação de solução de acordo 
com a referência Raoultiana 
 
Por outro lado, para A, B, C... puros tem-se 
 
∑= oiio YXY 
 
 7 
 
onde a fração molar é dada como 
T
i
i n
nX = e oiY é o valor de Y por mol de i puro. En-
tão oY representa o valor da grandeza extensiva da mistura, antes da interação dos 
vários componentes. Após a formação da solução 
 
ii YXY ∑= . 
 
onde iY é a grandeza parcial molar. Logo, por definição : 
 
)YY(X∆Y oiii −= ∑ 
 
Fica claro que, com a adoção desta referência, quando a concentração de uma das 
espécies atinge 100% ∆Y é nulo, pois a situação final é idêntica à de referência. 
 
Em processos de formação de uma solução, tal como o descrito acima, se definem va-
riações de grandezas integrais e parciais: 
 
Variação de grandeza integral de formação de solução de composição conhecida, à 
temperatura e pressão dadas, 
 
∑ ∑∑ =−==∆ ioiiioiiio X)Y-Y(XYXYY-YY 
 
por exemplo, Variação de Entalpia de Formação da solução Ferro-Cromo (30% atômi-
co) sólida a 1600 oK e 1 atm, )()(H ,, soFeFeFesoCrCrCr HHXHHX −−−=∆
−−−−
=1176 cal/mol. 
Nesta expressão CrH
−−
 representa a entalpia parcial molar do cromo na solução sólida 
citada e soCrH , a entalpia molar do cromo puro e sólido. 
 
Variação de grandeza parcial molar de dissolução do componente i em solução de 
composição conhecida, à temperatura e pressão dadas, 
 
o
ii Y-
−−−−
= iYY∆ 
 
por exemplo, Variação de Entalpia Parcial Molar de dissolução do Cromo em solução 
Ferro-Cromo(30% atômico) a 1500 oK e 1 atm, )( ,soCrCrCr HHH −=
−−−−
∆ =2744 cal/mol. 
 
Parte considerável dos dados relativos às soluções metalúrgicas é apresentada na 
forma de variação, relativa à referência Raoultiana. Entretanto a adoção desta referên-
cia não é norma de modo que se faz necessário especificar com clareza o estado inici-
al. 
 
A tabela IV-2 e a Figura IVI-5 apresentam, a título de exemplo, o caso da solução líqui-
da ferro- carbono, a 1873 K. Note-se que as referências são carbono puro e sólido e 
ferro puro e líquido, isto é, os estados mais estáveis a 1 atm e 1873 K. Então as varia-
ções de grandezas parciais molares são dadas por: 
 8 
 
 
−−−−
=∆ FeYY Fe (grandeza parcial molar do ferro dissolvido na solução) - olFeY (grandeza molar 
do ferro puro e líquido) 
−−−−
=∆ CYY C (grandeza parcial molar do carbono dissolvido na solução) - osCY (grandeza 
molar do carbono puro e sólido) 
 
O valor limite de 
−−
∆ iH quando Xi tende a zero é denominado Variação de Entalpia (ou 
calor, desde que a pressão é constante) de Dissolução a Diluição Infinita; esta quanti-
dade é sempre finita e no caso do carbono nesta solução vale 5421 cal/mol. Por outro 
lado o valor limite de 
−−
∆ iG quando iX tende a zero é sempre (por motivos que ficarão 
claros nas seções seguintes) igual a -∞ . Como o sinal de G∆ define se o processo é 
espontâneo ou não este achado tem implicações práticas: pode-se, por exemplo, afir-
mar que a introdução das primeiras quantidades de um componente A em outro com-
ponente, B puro, é sempre acompanhada por diminuição de energia livre de Gibbs; por-
tanto este processo é espontâneo, o que exclui a possibilidade de se encontrar solubili-
dade nula(embora em alguns casos a solubilidade possa ser tomada como desprezí-
vel). 
 
Observe-se que, para uma dada composição, 
iG
−−
∆ = iH
−−
∆ - T iS
−−
∆ , o que permite determinar a variação de entropia parcial molar de 
dissolução, do ferro ou do carbono; 
G∆ = H∆ - T S∆ , o que permite encontrar o valor da variação de entropia de formação 
da solução; 
G∆ = FeX FeG
−−
∆ + CX CG
−−
∆ e H∆ = FeX FeH
−−
∆ + CX CH
−−
∆ o que ilustra que nem todas 
as colunas são independentes umas das outras. 
 
Tabela IV-2: Valores de grandezas termodinâmicas, em cal/mol, para soluções líquidas 
ferro-carbono : X Fe(l) + (1-X) C(s) = Fe-C (líquida), 1 atm e 1873 K. 
XFe Xc FeG
−−
∆ FeH
−−
∆ CG
−−
∆ CH
−−
∆ G∆ H∆ 
1 0 0 0 - ∞ 5421 0 0 
0,98 0,02 -82 -3 -16036 5738 -401 112 
0,96 0,04 -176 -13 -12834 6068 -682 230 
0,94 0,06 -290 -32 -10676 6413 -913 355 
0,92 0,08 -420 -59 -8929 6772 -1101 487 
0,9 0,1 -574 -96 -7391 7147 -1256 628 
0,88 0,12 -747 -144 -5973 7539 -1374 778 
0,86 0,14 -950 -206 -4622 7950 -1464 936 
0,84 0,16 -1181 -282 -3309 8380 -1521 1104 
0,82 0,18 -1447 -374 -2014 8831 -1549 1283 
0,8 0,2 -1751 -485 -717 9305 -1544 1473 
0,789 0,211 -1936 -556 0 9575 -1528 1582 
 
 9 
 
 
Figura IV- 5 - Representação gráfica de dados da tabela II, sistema ferro-carbono 
 
 
IV-6 MÉTODOS GRÁFICOS DE DETERMINAÇÃO DE iY 
 
O primeiro método utiliza a definição de grandeza parcial molar para justificar um pro-
cedimento experimental montado com o objetivo de determiná-la. Suponha que o obje-
tivo seja a determinação de AY . Mantendo fixa a temperatura, pressão e as quantida-
des das outras espécies B, C... mede-se experimentalmente como varia Y ou ∆Y quan-
do se adicionam quantidades crescentes de A. O resultado é uma curva de Y versus 
An ou ∆Y versus An sendo que a inclinação da tangente num ponto dado é o valor de 
AY ou oAAA YYY( −=∆ ) para a composição em particular, Figura IV-6. 
 
 
Figura IV- 6: Determinação experimental de grandeza parcial molar 
 
Através do segundo método pretende-se determinar a grandeza parcial molar a partir 
devalores conhecidos da grandeza integral molar; a técnica dá origem ao Método das 
Tangentes ou Método dos Interceptos, Figura IV-7. Vamos supor que, através de medi-
das experimentais, seja possível construir um gráfico que represente a variação de Y 
com a fração molar. Pode-se provar que os interceptos da tangente à curva para uma 
 10 
 
concentração genérica AX , com as verticais à AX = 1 e BX = 1 são, respectivamente, 
AY e BY . 
 
Figura IV- 7 - ilustração gráfica do Método das Tangentes 
 
Por exemplo, à T e P constantes e para 1 mol de solução tem-se 
 
BBABBAA )dXYY(dXYdXYdY −−=+= 
 
)YY(
dX
dY
BA
B
−−= 
 
BBAABAAA
B
A Y)X(1-YXYXYXdX
dYX- −=−= BBBAA YYXYX −+= 
ou, já que BBAA YXYXY += 
 
resulta 
B
AB dX
dYXYY += e 
A
BA dX
dYXYY += 
e analogamente 
A
BA dX
Yd
XYY
∆
+∆=∆ e 
B
AB dX
Yd
NYY
∆
+∆=∆ 
 
Agora, nota-se facilmente da Figura IV-7, que 
 
NPMNMP += 
 
 e então como 
YMN = e )X-(1NQ A= e 
AdX
dY
tgθ = 
vem 
A
B
A
A dX
dYXY
dX
dY)X-(1YMP +=+= 
 
 11 
 
 AYMP = como se quis demonstrar (c.q.d.). 
 
De modo semelhante 
 
TUSUST −= e como YSU = e AXUQ = e 
AdX
dY
tgθ = , 
resulta 
B
A
A
A dX
dYXY
dX
dYXYST +=−= 
 
BYST = c.q.d. 
 
O mesmo é válido para ∆Y : como a figura 4 indica, os interceptos são 
 
0
iii YYY −=∆ 
 
Exemplo: Construa, com os dados (cal/mol) da tabela seguinte, curvas de variação de 
energia livre e de variação de entalpia de formação das soluções ferro – carbono. Utili-
ze o método das tangentes para encontrar a variação de energia livre e a variação de 
entalpia, parciais molares do ferro, na solução tal que XFe = 0,9. 
 
XFe 1 0,98 0,96 0,94 0,92 0,9 0,88 0,86 0,84 0,82 0,8 0,789 
 
G∆ 0 -401 -682 -913 -1101 -1256 -1374 -1464 -1521 -1549 -1544 -1528 
 
H∆ 0 112 230 355 487 628 778 936 1104 1283 1473 1582 
 
Ilustra-se o cálculo da variação de energia livre parcial molar do ferro pelo método das 
tangentes. O cálculo da variação de entalpia de dissolução seria análogo. 
 
A equação básica do método, aplicada à variação de energia livre seria, 
FeG
_
∆ = G∆ + CX
FedX
Gd ∆
. 
Então, para FeX =0,9 se tem G∆ =-1256 cal/mol e se pode estimar 
FedX
Gd ∆
 como, por 
exemplo, 
90,088,0
12561374
−
+−
= 5900 cal/mol. Portanto uma estimativa de FeG
_
∆ seria 
FeG
_
∆ = -1256 + 0,1 x 5900 = -666 cal/mol. 
 
A figura seguinte apresenta um gráfico do tipo G∆ vs FeX . Estes dados podem ser 
reproduzidos por uma equação de regressão do tipo G∆ = -110156 3CX + 82811 2CX - 
19867 CX , com 2r próximo de 0,9992. Daí se retira 
FedX
Gd ∆
 = - 
CdX
Gd ∆
= 330468 2CX - 
 12 
 
165662 CX + 19867, que alcança valor de 
FedX
Gd ∆
= 6605,48 cal/mol para CX = 0,1. O 
valor da declividade no ponto de interesse se mostra ligeiramente diferente da estimati-
va numérica anterior. Então, por meio desta estimativa se encontra, 
FeG
_
∆ = -1256 + 0,1 x 6605,48 = -595,45 cal/mol. 
 
Finalmente a tangente à curva de G∆ no ponto CX = 0,1 pode, através de seu inter-
cepto no eixo vertical a FeX = 1 pode ser utilizado para se determinar o valor de FeG
_
∆ . 
 
 
Exemplo: Determinou-se, experimentalmente, que a variação de entalpia de formação 
de uma solução seria dada pela expressão BA XXH Ω=∆ cal/mol. Encontre a expres-
são que fornece a variação de entalpia parcial molar de dissolução do componente A, 
nesta solução. 
 
Então, se BA XXH Ω=∆ , isto é )1( AA XXH −Ω=∆ , vem 2AA XXH Ω−Ω=∆ , ex-
pressão que fornece 
)21( A
A
X
dX
Hd
−Ω=
∆
 
Como AH
_
∆ = H∆ + BX 
AdX
Hd ∆
 as expressões anteriores resultam em 
AH
_
∆ = BA XXΩ + BX )21( AX−Ω = BA XXΩ + )( ABB XXX −Ω = 2BXΩ 
Finalmente, AH
_
∆ = 2BXΩ 
 
 
 13 
 
Exemplo: 5 kg de silício(puro, sólido, 25 C) são adicionados 1000 kg de ferro(puro, 
líquido, 1600C), Figura IV-8. Determine número de mols, fração molar e H∆ de forma-
ção da solução. Esquematize um balanço de energia, desprezando as perdas térmicas 
e encontre a temperatura final. Considere: 
 
(HT-H298)(Si, liq) = 6,10 T + 10400 cal/mol ; (HT-H298)(Fe, liq) = 9,77 T + 0,0002 T2 - 670 
cal/mol 
 
 
Figura IV- 8 – Curvas de energia livre, entropia e termoentropia de formação de ligas 
binárias Fe-Si a1600oC 
 
De acordo com os dados fornecidos o sistema compreende 5000/28 = 178 mols de Si-
lício e 106/56 = 17857 mols de ferro, o que corresponde a FeX =0,99 e SiX =0,01. Leitu-
ra direta do gráfico fornece FeH∆ =0 e SiH∆ = -27500 cal/mol. Daí, por cada mol de so-
lução líquida ferro silício, formada a partir do processo: 
 x Si(l) + (1-x) Fe(l) => solução Fe-Si, se tem H∆ = FeX FeH∆ + SiX SiH∆ 
e, neste caso H∆ = 0,99 x 0 + 0,01 (-27500) = -275 cal/mol. 
 
O processo imaginário poderia ser como o descrito na figura IV-9: 
 
 14 
 
 
Figura IV-9: caminho imaginário para adição de silício a ferro líquido. 
 
Nota-se que a etapa a) representa Saída de energia, pois o silício sólido precisa ser 
aquecido, fundido e levado até 1873 oK; esta transformação retira energia do volume 
de controle. A etapa b), por escolha conveniente de temperatura de referência é irrele-
vante, do ponto de vista energético. A etapa c) é exotérmica e portanto deve ser classi-
ficada como Entrada de energia no volume controle. Assumindo que, deste processo 
resulte uma liga a temperatura superior à de referência a etapa d) deveria ser classifi-
cada como Saída de energia do volume de controle; mas pode resultar o contrário, o 
que seria automaticamente revelado pelos cálculos resumidos a seguir. 
 
Entradas (cal) TR = 1873 oK Saídas 
Calor contido 
Silício : Sin [ K1873,SiH - oK298,SiH ] 
178 x [ 6,10 x 1873 + 10400 ] 
Formação da solução Fe-Si 
Tn x H∆ =(178+17857) x 275 
liga(por aproximação considera-se o ferro) 
Fen x ∫
T
1873
Fe
p dTC 
17857 x 9,77 x (T-1873) 
 
Comparando entradas e saídas encontra-se T = 1880 o K. 
 
 
IV-7 EQUAÇÃO DE GIBBS-DUHEM 
 
Mantidas constantes a temperatura e pressão, se pode escrever 
 
∑= iidnYdY' 
 
Agora, diferenciando iiYnY' ∑= , vem 
 ∑∑ += iiii dnYYdndY' , 
ou 0=∑ ii Ydn 
 15 
 
 
 0YdX i
__
i =∑ (para um mol de solução) 
 
As equações anteriores implicam em que as alterações das quantidades parciais mola-
res das várias espécies que compõem o sistema, oriundas de modificação da composi-
ção à temperatura e pressão constantes, não são independentes, estando relacionadas 
por uma condição de vínculo. As equações citadas são a expressão da equação de 
Gibbs-Duhem. 
 
A equação de Gibbs-Duhem é comumente utilizada para se determinar o valor da 
grandeza parcial de um componente, quando se conhece como os valores das grande-
zas parciais molares dos outros componentes dependem da composição. 
 
Exemplo: considere os dados da tabela seguinte, referente à formação de ligas líqui-
das ferro-carbono a 1873K; são apresentadas variações de entalpia parcial molar de 
dissolução do ferro e do carbono, em cal/mol. As referências utilizadas são ferro puro e 
líquido e carbono puro e sólido. Note-se que vários valores correspondentes ao carbo-
no foram omitidos. Utilize a equação de Gibbs-Duhem e encontre a variação de ental-
pia parcial molar de dissolução de carbono, na solução tal que XFe = 0,8. 
 
 
XFe 1 0,98 0,96 0,94 0,92 0,9 0,88 0,86 0,84 0,82 0,8 0,789 
FeX /
CX 
 24 15,66 11,5 9 7,33 6,14 5,25 4,55 4 
FeH
−−
∆
 0 -3 -13 -32 -59 -96 -144 -206 -282 -374 -485 -556 
CH
−−
∆ 
 6068 
 
Neste caso a equação se escreve 
 
0YdX i
_
i =∑ ou 0=+ FeC
--
Fe
--
C HdXHdX ∆∆ 
ou, ainda, 
 Fe
C
Fe
C
X
X ---- HdHd ∆∆ ∫∫ −= + constante. 
 
A integração desta expressão requer estabelecer limites de integração, os quais, por 
conveniência, se escolhe 
6068;04,0;96,0 ===
−−
CCFe HXX ∆ e 20,0;80,0 == CFe XXe também conhecer a variação de Fe
--
H∆ com a composição. A Figura IV-9 é uma re-
presentação gráfica desta integração, mas o mesmo resultado pode ser alcançado por 
integração numérica, 
C
--
H∆ ( FeX =0,8) - C
--
H∆ ( FeX =0,96)= Fe
C
Fe
X
X X
XFe
Fe
--
8,0
96,0
Hd ∆− ∫
=
=
 
 16 
 
C
--
H∆ ( FeX =0,8) – 6068 = -{ )1332(2
2466,15
+−
+
 + )3259(
2
66,155,11
+−
+
 + 
)5996(
2
5,119
+−
+
 + )96144(
2
933,7
+−
+
 + )144206(
2
33,714,6
+−
+
 + 
)206282(
2
14,625,5
+−
+
 + )282374(
2
25,555,4
+−
+
 + )374485(
2
55,44
+−
+
 } 
 
C
--
H∆ ( FeX =0,8) – 6068 = 3290,31 ou C
--
H∆ ( FeX =0,8)= 9358,31 cal/mol. A título de 
comparação, o valor tabelado para esta variável é 9305 cal/mol. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura IV- 9 – Relação XFe / XC com a entalpia parcial molar do ferro na solução Fe-Si a 
1600º C 
 
Exemplo: A partir de medições do coeficiente de temperatura da força eletromotriz de 
uma célula galvânica contendo eletrodos de uma solução ouro-chumbo líquida, os se-
guintes valores de variação de entropia parcial molar de formação da solução (cal.K-
1
.mol-1) foram determinados a 1200 oK (referência Raoultiana). Encontre a variação de 
entropia parcial molar de dissolução do ouro, na solução tal que PbX =0,6. 
 
PbX 0 0,10 0,20 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 
__
PbS∆ 
∞ 5,95 4,28 3,23 2,43 1,80 1,37 1,03 0,68 0,30 0 
AuS
__
∆ 
0 0,511 ∞ 
 
A equação a ser integrada, para se estimar a variação de entropia de dissolução do 
ouro seria 
AuS
_
∆ = - Pb
Au
Pb S
X
X _∆ . 
 17 
 
Como a referência é Raoultiana se poderia cogitar com limite inferior de integração 
AuX =1, para a qual AuS
_
∆ = 0. Entretanto, como mostra a figura seguinte, a curva 
Au
Pb
X
X
 
vs PbS
_
∆ é assintótica aos eixos coordenados em ambos os extremos de composição, 
de modo que esta escolha não parece conveniente por levar à imprecisão na determi-
nação do valor da integral. Por este motivo, como se conhece que, para AuX = 0,8, 
AuS
_
∆ = 0,511, este será tomado como limite inferior. O valor da integral corresponde à 
área hachurada sob a curva e pode ser estimado pela Regra dos Trapézios. Então 
 
AuS
_
∆ ( PbX = 0,6) – AuS
_
∆ ( PbX = 0,2) = - ∫
=
=
∆
6,0
2,0
_
Pb
Pb
X
X
Pb
Au
Pb S
X
X
 
 
 
Implica em, 
AuS
_
∆ - 0,511 = - { (0,25+0,4285) x (3,23 – 4,28) /2 + (0,6666 + 0,4285) x (2,43 – 3,23) /2 
+ (1+0,6666) x (1,8 – 2,43) / 2 + (1,5 + 1) x (1,37-1,8) /2 } 
 
AuS
_
∆ = 2,367 cal / mol. K ( o valor experimental é 2,323 cal/mol.K) 
 
 
 
Exemplo: As variações de volume de formação (R. Raoultiana) das soluções zinco-
estanho -- cm3.mol-1 -- líquidas, a 420oC são dadas na tabela abaixo. Destes dados, 
 18 
 
calcule o volume parcial molar de dissolução do estanho em uma solução contendo 
30% (% atômica) de zinco. 
 
ZnX 0,10 0,20 0,3 0,4 0,5 0,6 0,7 0,8 0,9 
V∆ 0,0539 0,0964 0,1274 0,1542 0,1763 0,1888 0,1779 0,1441 0,0890 
 
Os valores procurados, para fração molar de zinco igual a 0,3, estão identificados na 
figura seguinte, de acordo com o método das tangentes. 
 
 
 
Exemplo: O comportamento termodinâmico do latão α (solução sólida) a 298oC pode 
ser descrito pelas relações: 
 
ZnH
__
∆ = -5350 2CuX - 2830 CuX cal/mol ; ZnS
__
∆ = -3,7 log ZnX cal/mol.K 
 
Encontre uma relação entre a composição e a energia livre integral molar da solução. 
 19 
 
 
Inicialmente pode ser utilizada a equação de Gibbs Duhem para se determinar os valo-
res correspondentes ao cobre, 
 
CuYd
_
∆ = - 
Cu
Zn
X
X
ZnYd
_
∆ . 
Então, para a variação de entalpia se escreve 
CuHd
_
∆ = - 
Cu
Zn
X
X
ZnHd
_
∆ 
onde 
ZnHd
_
∆ = {- 10700 CuX - 2830} d CuX 
o que implica em 
CuHd
_
∆ = -
Cu
Zn
X
X
 {-10700 CuX - 2830} d CuX = 
Cu
Cu
X
X )1( −
 {10700 CuX + 2830} d CuX 
CuHd
_
∆ = {7870 + 2830/ CuX -10700 CuX } d CuX , 
expressão a ser integrada com limite inferior CuH
_
∆ = 0, para CuX = 1. 
Finalmente se tem 
CuH
_
∆ = 7870 CuX + 2830 ln CuX - 5350 2CuX + 2520 cal/mol.. 
 
De modo análogo, sendo ZnS
__
∆ = -3,7 log ZnX = -1,60 ln ZnX , vem 
 d ZnS
__
∆ = -1,60 
Zn
Zn
X
Xd
 e então 
CuSd
_
∆ = - 
Cu
Zn
X
X
 d ZnS
__
∆ = - 
Cu
Zn
X
X
 { -1,60 
Zn
Zn
X
Xd }= 1,60 
Cu
Zn
X
Xd
 =- 1,60 
Cu
Cu
X
Xd
 
a ser integrada com o limite inferior, CuS
_
∆ = 0 quando CuX =1. Resulta 
CuS
_
∆ = -1,60 ln CuX cal/mol 
 
De posse destas expressões se escreve, 
H∆ = CuX CuH
_
∆ + ZnX ZnH
_
∆ 
H∆ = CuX {7870 CuX + 2830 ln CuX - 5350 2CuX + 2520} + ZnX {-5350 2CuX - 2830 CuX } 
cal/mol 
S∆ = CuX CuS
_
∆ + ZnX ZnS
_
∆ 
S∆ = CuX {-1,60 ln CuX } + ZnX {-1,60 ln ZnX } 
e finalmente, como solicitado, S∆ = H∆ - 298 S∆ cal/mol. 
 
 
 
 20 
 
IV-8 EQUAÇÃO DE GIBBS-MARGULES 
 
A equação de Gibbs-Margules permite determinar o valor da grandeza extensiva, 
quando se conhece a grandeza parcial molar de um dos componentes de uma solução 
binária. 
 
Por exemplo: 






=
+





=+−=
+=+=
+=
B
2
B
AA
BBB
2
B
B
2
B
AA
BBBAAA
A
BA
X
Yd
X
dXY
X
dY
X
1Yd
X
dY
X
YdX
X
dXY
dYX-YdXdYXYdXYdX
dX
dYXYY
 
 
e de modo análogo, para variações de grandezas 
 






=
B
2
B
AA
X
Yd
X
dXY ∆∆
. 
 
Para a integração destas equações se definem limites de integração os mais conveni-
entes. Estes podem incluir um valor específico de composição ou um valor extremo 
(desde que, para referencia Raoultiana, o valor de variação de grandeza integral se 
anula nos extremos). 
 
Então (componentes A e B são intercambiáveis nesta formulação), 
 
∫∫ =




 A
A
*
A
*
A
*
X
X A
2
BB
Y,X
Y,X
A X
dXY
X
Yd
 e ∫∫
∆
=




∆∆
∆
B
B
*
B
*
B
*
X
X A
2
BB
Y,X
Y,X
A X
dXY
X
Yd 
 
e se a expressão em termos de variações for escrita tomando-se referência Raoultiana 
se tem, 
0∆Y = para 1X*B = 
0∆Y = para 1X*A = , 
e então 
∫
=
∆
=
∆ A
A
*
X
1X A
2
BB
A X
dXY
X
Y
 
e 
∫
=
∆
=
∆ B
B
*
X
1X B
2
AA
B X
dXY
X
Y
 
 21 
 
Exemplo: os dados (em cal/mol) da tabela seguinte são pertinentes à formação da so-
lução líquida ferro-carbono, a partir de ferro puro e líquido e carbono puro e sólido. 
 
XFe 1 0,98 0,96 0,94 0,92 0,9 0,88 0,86 0,84 0,82 0,8 0,789 
CX 0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2 
CH
−−
∆ 5421 5738 6068 6413 6772 7147 7539 7950 8380 8831 9305 9575 
2
Fe
C
X
H
−−
∆
 
5421 5975 6584 7258 8001 8823 9735 10749 11876 13134 14539 15381 
 
Pode-se escrever a equação de Gibbs-Margulles, neste caso, como 
 
∫
=
=
Fe
Fe
*
X
X Fe
2
CC
Fe X
dXH
X
H
1
∆∆
 
 
o que permitiria encontrar valores de entalpia integral de formação das soluções cita-
das. A Figura IV-10 é a expressão gráfica desta integração, considerando como limite 
superior a solução tal que XFe = 0,80, isto é, 
 
∫
=
=
=
8,0
1
80,0 Fe
Fe
*
X
X Fe
2
CC
X
dXH
H
∆
∆ 
Em termos de aproximação numérica esta integral pode ser estimada a partir da Regra 
de Simpson, 
 
H∆ =0,8 x { 0,5 x 5421 + 5975 + 6584 + 7258 + 8001 + 8823+ 9735 + 10749 + 11876 + 
13134+ 0,5 x 14539} x 0,02 = 1473,84 
 
valor que pode ser comparado ao dado de tabela, 1473 cal/mol 
 
Figura IV- 10 – Relação 2
Fe
C
X
H
−−
∆
 em função da composição de carbono CX na liga biná-
ria Fe-C a 1600ºC 
. 
 22 
 
Exemplo: Um pesquisador planeja determinar as propriedades termodinâmicas das 
soluções líquidas Fe-Mn a 1600ºC e 1 atm. Particularmente no que se refere à entalpia, 
dois conjuntos de experimentos são propostos: H∆ versus FeX e MnH
__
∆ versus MnX . 
Estas experiências podem ser consideradas redundantes? Justifique. 
 
Claramente são redundantes. A grandeza parcial molar pode ser obtida, via método 
das tangentes, se a dependencia entre grandeza extensiva molar e composição for for-
necida. No sentido contrário a grandeza extensiva molar pode ser obtida, via integração 
via equação deGibbs-Duhem ou Gibbs-Margulles. Estes métodos foram abordados 
anteriormente. 
 
IV-9 – POTENCIAL QUÍMICO 
 
O potencial químico é a grandeza parcial molar correspondente à energia livre de 
Gibbs, isto é, por definição: 
jnP,T,i
ii dn
dG'µG 





== 
 
iidnµdPV'dTS'dG' ∑++−= 
 
Representa, portanto, a taxa de variação da energia livre de Gibbs com o número de 
moles da espécie i, mantidos constantes a pressão, temperatura e número de moles 
das outras espécies, ou, como já visto, a variação em G’ provocada pela adição de um 
mol de i a grande quantidade de solução. 
Como 
 
PV' G'A'
TS' G'H'
PV' TS' G'E'
−=
+=
−+=
 
e portanto 
dPV'- PdV'- dG'dA'
dTS' TdS' dG'dH'
dPV'- PdV'-dTS' TdS' dG'dE'
=
++=
++=
 
vem 
ii
ii
ii
dnµ PdV'- dTS'dA'
dnµdPV' TdS'dH'
dnµ PdV'- TdS'dE'
∑
∑
∑
+−=
++=
+=
 
isto é, 
 23 
 
 
jjjj nV,T,inP,S,inV,S,inP,T,i
i dn
dA'
dn
dH'
dn
dE'
dn
dG'
µ 





=





=





=





= 
 
O valor de iµ pode ser obtido por qualquer dos métodos descritos no item anterior e 
tem especial participação nos estudos sobre espontaneidade e equilíbrio. 
 
Exemplo: dada a variação de energia livre (em cal/mol) de formação das soluções lí-
quidas ferro-carbono, a 1873 K, Figura IV-11, a partir das referências ferro puro e líqui-
do e carbono puro e sólido, determine o valor do potencial químico do carbono na solu-
ção tal que XFe = 0,85. Os potenciais de referência são osCµ =-41017 J/mol e olFeµ =-
113890 J/mol, a 1 atm e 1873 oK. 
 
Xc 0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2 0,211 
G∆ 0 -401 -682 -913 -1101 -1256 -1374 -1464 -1521 -1549 -1544 -1528 
 
Para a composição CX =0,15 uma estimativa do valor de energia livre de formação da 
solução seria G∆ = (-1464 – 1521)/2 = -1419 cal/mol. Também se pode estimar 
CXd
Gd ∆
= 
14,016,0
14641521
−
+−
= - 2850 cal / mol. 
Desta forma, de acordo com o método das tangentes se tem, 
 CG
_
∆ = G∆ + FeX 
CXd
Gd ∆
= -1419 + 0,85 x (-2850) = -3841,5 cal/mol. 
Então, dado que CG
_
∆ = CG
_
-
os
CG e 
os
CG = -41017 J/mol implica em CG
_
= -57074 J/mol. 
O mesmo resultado poderia ser obtido ao se traçar uma tangente à curva G∆ vs CX 
na composição citada, figura seguinte. Esta tangente seria estendida até a vertical em 
CX =1 para fins de determinação de CG
_
∆ . 
 
Figura IV- 11 – Variação de energia livre de Gibbs de formação da liga binária Fe-C em 
função da concentração de carbono a 1600ºC 
 24 
 
 
IV-10 – CONDIÇÕES GERAIS DE EQUILÍBRIO 
 
Seja um sistema de várias fases α, β,..., γ, constituídas das espécies i = A, B, C..., em 
equilíbrio. Para que o equilíbrio esteja caracterizado é preciso que as propriedades do 
sistema sejam invariantes. Como é necessário ainda que todas as fases estejam em 
equilíbrio entre si, basta determinar as condições de equilíbrio entre duas delas e es-
tendê-las as demais. 
 
IV-10.1 - EQUILÍBRIO TÉRMICO 
 
Sejam as fases α e β em contato, sendo suas temperaturas αT e βT , Figura IV-12 
 
Figura IV- 12 - Transformação esquemática, envolvendo troca de calor entre duas fa-
ses, para fins de determinação da condição de equilíbrio térmico. 
 
Se entre estas duas fases ocorrer um fluxo infinitesimal de calor, dq, tem-se por varia-
ção de entropia de cada fase 
α
α'
α T
dqdS = e 
β
β'
β T
dq
dS = 
e já que 
βdqdq −=α 
 
a condição de equilíbrio (considerando o sistema α / β isolado termicamente de suas 
vizinhanças e que a entropia atinge valor máximo em sistema isolado) implica em, 
 
0=+= 'β'α' dSdSdS β-α 
 
0=−=+
β
α
α
α
β
β
α
α
T
dq
T
dq
T
dq
T
dq
 
então, 
βα TT = 
 
condição que estendida às possíveis demais fases resulta: 
 
 25 
 
T...TTT γβα === 
 
De modo geral, se nos referirmos a um referencial tri ortogonal OXOYOZ, então, como 
condição de equilíbrio térmico tem-se: 
 
0k
dZ
dTj
dY
dTi
dX
dTTGrad =



+



+



=
rrr
 
 
0dZ
dT
dY
dT
dX
dT
=




=




=




 
 
IV-10.2 EQUILÍBRIO DE PRESSÕES OU EQUILÍBRIO MECÂNICO 
 
Sejam αP e βP as pressões internas das fases α e β, respectivamente, e considere-se 
um movimento de interface α – β, que se traduz em variações infinitesimais de volume 
αdV e βdV , sem que haja alteração do volume total do sistema, Figura IV-13. 
 
 
Figura IV- 13 - Transformação esquemática, envolvendo alteração isotérmica de volu-
me das duas fases, para fins de determinação da condição de equilíbrio térmico. 
 
Então, considerando a necessidade de equilíbrio térmico se escreve para variação de 
Energia Livre de Helmholtz: 
 
 
'
α
'
α
'
α dVPSdA α−−= dT
'
αdVPα−= 
'
β
'
β
'
β dVPSdA β−−= dT
'
βdVPβ−= 
Como o critério de equilíbrio, a temperatura e pressão constantes é que a Energia Livre 
de Helmholtz seja mínima se pode escrever, 
 
 0dAdA 'β
'
α =+ 
e 
 
0dVdV 'β'α =+ 
 26 
 
de modo que: ( ) 'ααβ'ββ'αα dVPPdVPdVP00 −=−−= 
 
Resulta, desde que a alteração em volume é arbitrária e não nula, 
 
αβ PP = , 
 
condição que estendida às demais fases leva a: 
 
PP...PP γαβ ==== 
 
Fazendo referência a um referencial tri ortogonal OXOYOZ, a condição de equilíbrio de 
pressão (equilíbrio mecânico) então será: 
 
0k
dZ
dPj
dY
dPi
dX
dPPGrad =



+



+



=
rrr
 
 [ ] [ ] [ ] 0dZdPdYdPdXdP === 
 
 
IV-10.3 EQUILÍBRIO DE DISTRIBUIÇÃO 
 
Suponhamos que entre as fases α e β, à temperatura e à pressão constante, se verifi-
que uma troca infinitesimal de matéria, Figura IV-14 
 
 
Figura IV- 14 - Transformação esquemática, envolvendo transferência da espécie i , 
entre duas fases, para fins de determinação da condição de equilíbrio de distribuição. 
 
Então a variação de energia livre das fases, resultante desta troca de matéria à tempe-
ratura e pressão constantes e sob condições de equilíbrio, seria: 
 
∑
∑
=
=
β
i
β
i
'
β
α
i
α
i
'
α
dnµdG
dnµdG
 
 
 27 
 
Como as contribuições são aditivas e as espécies se conservam 
 
0=+ 'β'α dGdG 
e 
β
i
α
i dndn −= 
 
o que implica (desde que as variações em numero de mols são arbitrárias e não nulas) 
em 
 
β
i
α
i
α
i
β
i
α
i µµ)dnµ(µ0 =∴−= ∑ 
 
condição que estendida às demais fases nos leva a: 
 
i
γ
i
β
i
α
i µµ...µµ ==== 
 
e de modo análogo (para cada espécie i) 
 
0k
dZ
dµj
dY
dµi
dX
dµ
µGrad iiii =





+





+





=
rrr
 
 
0dZ
dµ
dY
dµ
dX
dµ iii
=



=



=



 
 
As três condições retratadas anteriormente, de igualdade de temperatura, de igualdade 
de pressões e de igualdade de potencial químico de cada espécie, em todas as fases 
presentes no sistema, representam as Condições Gerais de Equilíbrio. 
 
Se ao menos uma das condições de equilíbrio não for atendida, ocorrerão, enquanto o 
desequilíbrio persistir, fluxos de energia e/ou matéria que poderão implicar em altera-
ção nas propriedades e/ou desaparecimento e nucleação das fases. 
 
Exemplo:a 723 oC e 1 atm de pressão estão em equilíbrio meta-estável (o que signifi-
ca que existe um outro equilíbrio, mais favorável energeticamente) as fases Cementita, 
um carboneto de ferro, CFe3 , com 6,67 % em peso de carbono; uma solução sólida 
conhecida como ferrita α , de estrutura cúbica de corpo centrado, com 0,02 % em peso 
de carbono; e outra soluçào sólida, denominada austenita, de estrutura cúbica de faces 
centradas, com 0,765 % de carbono. Como condições gerais de equilíbrio se pode es-
crever, além de igualdade entre as temperaturas e pressões atuantes sobre as fases, 
que os potenciais químicos de ferro são iguais nas três fases e que os potenciais quí-
micos de carbono cumprem a mesma restrição. Então, principalmente porque as estru-
turas cristalinas e as forças de ligação são diferentes se encontra, a despeito das dife-
rentescomposições: 
Cµ (na cementita ) = Cµ ( na ferrita α ) = Cµ ( na austenita) 
Feµ (na cementita ) = Feµ ( na ferrita α ) = Feµ ( na austenita) 
 
 
 28 
 
Exemplo: Considere que num recipiente previamente evacuado são admitidos, na 
temperatura ambiente, 4CH e 2O na razão 1/3, perfazendo a pressão total de 1 atm. 
Decorrido um breve espaço de tempo, em função da alta mobilidade dos gases, poder-
se-á considerar que equilíbrio térmico, de pressões e de distribuição foram atingidos. 
Isto quer dizer a temperatura é uniforme, a pressão é uniforme e a pressão parcial de 
2O é a mesma em cada ponto do e igual a 0,75 atm. As condições gerais de equilíbrio 
estão sendo respeitadas. Entretanto pode ser argumentado que o sistema não se en-
contra em equilíbrio, pois a reação de combustão do metano pelo oxigênio seria, nes-
tas condições, espontânea. Que tal representa a realidade pode ser verificado em se 
calculando a variação de energia livre de Gibbs da reação 
 
2/3
24
2
2
224 ln;)(2)()(2/3)(
OCH
OHCOo
PP
PP
RTGGgOHgCOgOgCH +∆=∆+=+ 
 
o qual resulta negativo. A reação não é observada, entretanto, porque a cinética não 
lhe é favorável; apenas a introdução de uma fagulha ou outra forma de excitação, ca-
paz de ativá-la, faz com que a mesma se desencadeie. Equilíbrios podem então serem 
parciais. 
 
Na realidade a igualdade de pressões só representa o equilíbrio mecânico se a interfa-
ce de α e β for plana. Caso contrário, se α e β estiverem separadas por uma superfície 
de curvatura R, Figura IV-15 
 
 
Figura IV- 15 - Equilíbrio mecânico entre fases separadas por interface curva 
 
se pode mostrar que a condição de equilíbrio mecânico seria dada por 
 
R
2σPP βα += 
onde σ é a tensão interfacial. Esta particularidade e suas conseqüências são explora-
das em textos sobre Termodinâmica das Interfaces, fora do escopo destas anotações. 
 
 
IV-11 TENDÊNCIA AO ESCAPE 
 
Tradicionalmente estudos de transformações termodinâmicas e espontaneidade de 
processos consideram inicialmente espécies gasosas; ou então, estas em contato com 
fases condensadas(líquidas, sólidas) puras. Como citado na introdução deste texto, em 
 29 
 
parte considerável das situações as espécies químicas tomam parte de processos en-
quanto dissolvidas em soluções. Este último caso poderia ser tratado considerando a 
influencia de temperatura, pressão e composição sobre o potencial químico das espé-
cies; normalmente este tratamento é realizado após a introdução de uma propriedade 
termodinâmica de estado, a Tendência ao Escape ou Fugacidade, aplicável a qualquer 
substância (elemento ou composto) em qualquer condição de dissolução(puro, dissol-
vida). A aplicação do conceito de Fugacidade nos remete a um tratamento unificador e 
a métodos de determinação do potencial químico das espécies constituintes de um sis-
tema. 
 
Sejam duas fases α e β em contato, tal que numa dada situação a condição de equilí-
brio térmico não se cumpra; por exemplo, βα TT > . Haverá então um fluxo de energia 
calorífica desde a fase α até a fase β e pode-se dizer que a temperatura é uma medida 
da tendência ao escape de calor, o equilíbrio térmico só sendo alcançado quando a 
tendência de escape de calor da fase α, ou αT , for igual à tendência de escape de calor 
da fase β, ou βT . 
 
A mesma idéia pode ser aplicada ao equilíbrio de distribuição: se para as fases α e β, 
compostas das espécies i = A, B, C,..., à temperatura T e pressão P definidas, o poten-
cial químico de cada espécie não for o mesmo em todos os pontos do sistema, não 
existirá equilíbrio de distribuição. Por exemplo, para βiαi µµ > a transferência de i des-
de a fase α até a fase β se fará com diminuição da energia livre de Gibbs, sendo, por-
tanto espontânea. Diz-se então que, à semelhança do caso anterior, existe uma Ten-
dência ao Escape da espécie i em cada fase, o potencial químico podendo ser tomado 
como medida desta, e que só haverá equilíbrio de distribuição quando a tendência ao 
escape da espécie, ou iµ , for a mesma em todos os pontos do sistema. A tendência ao 
escape (potencial químico), portanto, é uma função de estado, depende da temperatu-
ra, pressão, quantidades relativas das espécies constituintes e da natureza destas. 
 
 
IV-11.1 FUGACIDADE COMO MEDIDA DA TENDÊNCIA AO ESCAPE 
 
Como foi mostrado, o potencial químico é uma medida demonstrativa da tendência ao 
escape, mas por motivos que ficarão mais claros adiante, seu manuseio direto não é 
muito conveniente para o estudo de soluções, que é objetivo desta seção. Deste modo 
considera-se, inicialmente, uma transformação isotérmica de um gás ideal, 
 
 iii nPdRTdPdµ l== iV 
 
e sendo 1P a pressão final, oP a pressão inicial, se escreve: 
 
 
o
i
1
io
i
1
i P
P
nRT)P(T,µ)P(T,µ l+= 
 
O gás não sendo perfeito, as expressões anteriores não são válidas, mas if , a fugaci-
dade do gás real, será definida de modo que, ainda assim, numa transformação iso-
térmica, 
 30 
 
 ii nfdRTdµ l= 
Ou 
 
o
i
io
ii f
f
nRTµµ l+= 
 
Embora esta relação tenha sido proposta para gases reais, a definição de fugacidade 
pode ser estendida de modo que infRdTl expresse a variação de potencial químico 
para transformações isotérmicas da espécie i, seja gás real ou não, fase condensada 
pura, ou participante de soluções. 
 
A fugacidade if é uma função de estado, está relacionada diretamente ao potencial 
químico, e logo definida a pressão, temperatura e composição, fica definido seu valor. 
Por exemplo, if está relacionado ao estado físico para o qual o potencial químico é iµ ; 
o
if corresponde ao estado de potencial oiµ .Torna-se claro que, para que haja equilíbrio 
de distribuição, é preciso que a fugacidade de i, if , seja a mesma em todos os pontos 
do sistema. 
 
A definição proposta de fugacidade só tem sentido prático se a mesma puder ser asso-
ciada a alguma grandeza física mensurável; é o que se mostra a seguir. 
 
IV-11.2 FUGACIDADE DE UM GÁS IDEAL 
 
A equação iii nPdRTnfdRTdµ ll == , integrada de modo a refletir uma transformação 
isotérmica entre dois estados arbitrários, resulta em: 
o
i
i
o
i
i
f
f
P
P
= 
ou 
ii PKf = 
 
Então, se por pura comodidade K for tomado como igual a 1, resulta ii Pf = , isto é, a 
fugacidade de um gás ideal pode ser tomada como igual à sua pressão. 
 
É fato experimental que o comportamento de um gás real se aproxima do comporta-
mento ideal quando a pressão decresce e/ou a temperatura cresce. Nesta condição 
limite, característica da maioria das situações de interesse metalúrgico, pode-se tomar 
a fugacidade como próxima (igual) da pressão. 
 
 
IV-11.3 FUGACIDADE DE UM GÁS REAL (MÉTODO DE CÁLCULO) 
 
A equação 
ii nPRTddµ l= 
só é válida para gases ideais, porém 
dPVdG `` = 
 
 31 
 
é válida para qualquer sistema, incluindo aqueles constituídos por gases reais, desde 
que este seja fechado e a temperatura mantida constante. Logo 
 
 iiii dPVnfRTddµ == l 
 
onde iV é o volume molar real do gás. A fugacidade do gás real pode, portanto, ser 
obtida se conhecemos como varia iV em função de iP . Na Figura IV-16, a curva que 
passa pelos pontos M e N é a hipérbole correspondente ao comportamento ideal, 
iPRTVi = , enquanto a outra é a que liga o volume molar real à pressão; nota-se que, 
no caso, o volume ideal é maior que o real mas que, à medida que pressão decresce, 
as duas curvas se aproximam. Integrando iiii dPVnfRTddµ == l entre as pressões 
*
iP e iP resulta: 
∫=
i
i
*
P
P io
i
i dPV
f
f
nRTl , 
 
sendo que a integral representa a área )MNP(P ''i*i . 
 
 
Figura IV- 16 – Comparação entre comportamento real e ideal, de um gás. 
 
Evidentemente,esta área vale também a diferença entre as áreas NM)P(P i*i , valor da 
integral se o gás se comportasse idealmente, isto é, 
*
i
i
P
P
nRTl e a área NM)N(M '' , ha-
churada. Então, 
NM)NÁrea(M
P
P
nRT
f
f
nRT ''
*
i
i
*
i
i
−= ll 
 
NM)NÁrea(M
P
f
nRTP
f
nRT ''
*
i
*
i
i
i
−= ll . 
 32 
 
 
De modo a eliminar a indeterminação da razão 
*
i
*
i
P
f
 faz-se *iP tender a zero (os pontos 
M’ e M se deslocam sobre suas respectivas curvas aumentando o valor da área 
(M’N’NM) até que se possa tomar *i*i Pf = ) e aí então: 
 
NM)NÁrea(MP
f
nRT ''
i
i
−=l 
 
O assunto pode ser conduzido de modo diferente se for introduzida a quantidade iα , 
medida do desvio do gás em relação ao comportamento ideal: 
 
 i
i
i
ideal
ii VP
RTVVα −=−= 
 
Considerando então a função desvio já definida se escreve: 
 
iii
i
ii
ideal
iiii dPαdPP
RT)dPαV(dPVnfRTd −=−==l 
 
∫−=
i
*
i
P
P ii*
i
i
*
i
i dPα
P
P
nRT
f
f
nRTd ll 
 
∫−=
i
i
*
P
P iii
*
*
i
i
i dPα
P
f
nRT
P
f
nRT ll 
 
Com o mesmo artifício utilizado anteriormente, isto é, 0P*i → , *i*i fP = , se encontra 
 
 ∫−=
iP
0 ii
i
i dPα
P
f
nRTl 
 
A Figura IV-17 apresenta um esquema de variação de iα com a pressão, à temperatu-
ra constante. 
 
Figura IV- 17: Variação esquemática do desvio em relação à idealidade, de um gás, à 
temperatura constante. 
 33 
 
 
 
O dado interessante da Figura IV-17 é que a mesma sugere que, nas regiões de baixas 
pressões, iα é praticamente constante e, desde que iP não ultrapasse iP' , iα pode ser 
removida da integral. Este é justamente o caso de gases na maioria dos sistemas me-
talúrgicos: temperaturas altas ou moderadamente altas e baixas pressões, próximas da 
atmosférica. Então: 
ii
i
i PαP
f
nRT −=l 
 
 
RT
Pα
ii
ii
Pf
−
= e 
 
A desvantagem dos métodos anteriores em relação a este é que pressupõem uma fa-
miliaridade experimental da relação que liga iP a iV , enquanto que neste caso apenas 
uma medição de iα nos permite encontrar a fugacidade. 
 
Se a pressão é realmente baixa e a temperatura alta, RT
Pα ii
 é pequeno, e RT
Pα ii
−
e pode ser 
desenvolvido pela série de Taylor. Tem-se neste caso: 
 
RT
Pα iiRT
Pα ii
−≅
− 1e , RT
Pα
P
f ii
i
i
−= 1 
e como 
 
ii
ideal
i αVV =− 
 
RT
PVV(
P
f ii
ideal
i
i
i )1 −−= 
 
RT
VP
RT
VP
P
f ii
ideal
ii
i
i +−= 1 
 
O segundo termo do segundo membro por definição é unitário, 
 
RT
VP
P
f ii
i
i
= 
 
e se for considerado o conceito de pressão ideal, 
i
ideal
i V
RTP = , a pressão que o gás 
exerceria se o mesmo se comportasse idealmente ocupando o volume iV , então 
 
ideal
i
i
i
i
P
P
P
f
= , 
 
 34 
 
isto é, a pressão do gás é a média geométrica da pressão do gás calculada a partir da 
lei do gás ideal e da fugacidade. 
 
Exemplo: da tabela seguinte, devida a Agamat, para o hidrogênio a C0o , encontre a 
fugacidade do mesmo a esta temperatura e a 1000 atm. 
P atm) 100 200 300 400 500 600 700 800 900 1000 
RT
VP
 
1,069 1,138 1,209 1,283 1,356 1,431 1,504 1,577 1,649 1,720 
 
Pode-se escrever 
222 H
ideal
HH VVα −= 
 
e identificando como X o valor de RT
VP , apresentado na tabela, tem-se: 
 
P
RTXV
2H = 
e 
X)(1P
RT
P
RTX.P
RTVVα
222 H
ideal
HH −=−=−= , 
 
expressão que permite montar a tabela 
 
P (atm) (litros)10α 2x P (atm) (litros)10α 2x 
100 
200 
300 
400 
500 
-1,545 
-1,545 
-1,560 
-1,584 
-1,594 
600 
700 
800 
900 
1000 
-1,608 
-1,612 
-1,615 
-1,614 
-1,612 
 
que mostra que α varia pouco e tem como valor médio litros101,589α 2H 2
−
⋅−= ; portanto, 
utilizando a fórmula 
 
RTαPePf −= 
vem 
atm2033e1000f 2730,082100010x1,589
2
2H
=⋅=
−+ xx
 
 
 
 
IV-11.4 FUGACIDADE DE UMA FASE CONDENSADA PURA 
 
Seja uma fase condensada pura (elemento ou composto químico i, sólido ou líquido), 
encerrada em um aparato tal como o esquematizado na Figura IV-18. A câmara inferior 
é dotada de um cilindro móvel, de modo que a fase condensada se encontra submetida 
a uma pressão fixa, P atmosferas. A câmara superior, inicialmente evacuada, está co-
nectada à câmara inferior, através de uma membrana conhecida como Divisória de 
Gibbs; a Divisória de Gibbs é uma membrana semipermeável que permite apenas a 
passagem do elemento (ou composto) na forma de vapor. A situação inicial não é uma 
 35 
 
situação de equilíbrio, este só será alcançado quando um certo número de partículas 
passar ao estado de vapor, de modo a exercer uma pressão sobre a fase condensada, 
que é função apenas de temperatura, da natureza da substância (ou espécie) e da 
pressão exercida sobre a faze condensada. 
 
Figura IV- 18 - Equilíbrio entre fase condensada pura e seu vapor. 
 
A condição de equilíbrio entre a fase de vapor e a fase condensada é que o potencial 
químico da espécie que as compõe seja igual em todos os pontos do sistema, isto é, 
 
condensada
i
vapor
i µµ = 
 
É claro que esta condição resulta em que a fugacidade de i na fase condensada deve 
ser igual à fugacidade de i na fase vapor: 
 
 
vapor
i
condensada
i ff = 
 
Isto resulta evidente após integração de 
 
ii nfRTddµ l= 
 
entre as situações que representam i na fase condensada e i na fase vapor (o que re-
presenta a transferência hipotética de um mol de i desde a fase condensada até o va-
por): 
 
 
 
 
Como 
vapor
i
cond
i µµ = , vem 
 
vapor
i
cond
ivapor
i
cond
i f
f
nRTµµ l+=
 36 
 
vapor
i
cond
i ff = . 
 
Finalmente, no caso particular em que o vapor se comporta idealmente, a fugacidade é 
igual à pressão de vapor e se pode escrever 
 
 
0
i
vapor
i
cond
i Pff == , 
 
Caso contrário, se o vapor não se comporta idealmente, vaporif pode ser conseguida 
através dos métodos de cálculo expostos anteriormente. 
 
 
 
IV-11.5 FUGACIDADE DE UMA ESPÉCIE QUE PARTICIPA DE UMA SOLUÇÃO SÓ-
LIDA OU LÍQUIDA 
 
Seja uma solução condensada, composta pelas espécies i = A, B, C ..., em equilíbrio 
com seu vapor, Figura IV-20. 
 
Figura IV- 19 : Equilíbrio entre uma solução condensada e seu vapor, através de uma 
divisória de Gibbs 
 
O sistema está à temperatura T e cada espécie exerce sua pressão de vapor AP , BP , 
CP ... . A condição de equilíbrio é que a cada espécie tenha a mesma tendência ao es-
cape em ambas as fases, isto é: 
vapor
C
cond
C
vapor
B
cond
B
vapor
A
cond
A
ff
ff
ff
=
=
=
 
 37 
 
Se os vapores se comportam idealmente 
 
i
vapor
i
cond
i Pff == 
 
se não, suas fugacidades podem ser calculadas com auxílio dos métodos expostos 
anteriormente. 
 
 
Exemplo: Encontre o valor do potencial químico do Zn em uma solução líquida Zn – Sn 
a C700o , para a qual 0,484X Zn = , sabendo-se que a pressão de vapor de Zn, de equi-
líbrio, sobre esta liga é 0,0458 atm e que, o Zn puro e líquido a C700o exerce pressão 
de vapor de 0,0788 atm. Determine também a fugacidade do Zn puro e sólido a esta 
temperatura. 
 
Considere os dados: molcalT2,511740∆G
 Zndo Fusão ⋅−= ; )973( K
ool
Znµ =-13494 cal/mol 
 
O potencial químico do zinco está relacionado à fugacidade do zinco através da relação 
de definição, 
 
 d Znµ = d ZnfnRTl 
de maneira que, escolhendo num caso o zinco puro e líquido como limite inferior de 
integração e, noutro, o zinco puro e sólido, se encontra: 
 
oL
Zn
ZnoL
ZnZn f
f
nRTµµ l+= , 
oS
Zn
ZnoS
ZnZn f
f
nRTµµ l+= , 
onde 
 
oL
Znµ e 
oS
Znµ 
 
são os potenciais químicos do zinco puro e líquido e do zinco puro e sólido respectiva-
mente. Znf é a fugacidade do zinco na solução e, 
 
oL
Znf e oSZnf 
 
são as fugacidades do Zn quando este estápuro e líquido, e, puro e sólido respectiva-
mente. 
 
Caso o vapor de zinco se comporte idealmente: 
 
Znf = 0,0458 atm e oLZnf = 0,0788 atm 
 
Subtraindo uma da outra as expressões de Znµ 
 
0
f
f
nRT
f
f
nRTµµµµ
oS
Zn
Zn
oL
Zn
ZnoS
Zn
oL
ZnZnZn =−+−=− ll , 
ou 
 38 
 
oS
Zn
oL
ZnoS
Zn
oL
Zn f
f
nRTµµ l=− 
e, para T = 973K vem 
 
atmx 0,1299f
f
0,0788
n739987,19732,511470 oSZnoS
Zn
=∴=⋅− l . 
O potencial químico do Zn, de acordo com as considerações prévias, será a C700o : 
 
molcal
0,0788
0,0458
n973987,1(973K)µ
f
f
nRTµµ oLZnoL
Zn
ZnoL
ZnZn ll x+=+= , 
molcal14550
0,0788
0,0458
n973x987,113494µ Zn −=+−= l 
 
IV-11.6 DEPENDÊNCIA ENTRE A FUGACIDADE DE UMA FASE CONDENSADA E A 
PRESSÃO 
 
Como foi visto a expressão geral de variação de potencial químico à temperatura cons-
tante é do tipo: 
 
dPVdµ ii = 
 
onde iV pode significar o volume molar no caso de i puro ou volume parcial molar no 
caso em que a espécie participa de solução. Como 
 
ii nfRTddµ l= , 
vem 
 RT
V
dP
nfd i
T
i
=


 l
 
 
A expressão anterior sugere que, desde que a variação de pressão não seja exagera-
da, esta não influi muito sobre a fugacidade da espécie em solução condensada, pois, 
para estes casos, iV é muito pequeno. 
 
Exemplo: Calcular a fugacidade do mercúrio puro líquido a (1000 atm e C25o ) e a ( 5 
atm e C25o ), sabendo que, a esta temperatura, sua pressão de vapor é 
3101,89 −× mm de Hg. Considere os dados: 
 
β (mercúrio líquido a C25o ) = 16211 atm103,89Nm103,84 −−− ×=× 
ρ (mercúrio a C25o e 1atm) = 3cmgramas13,6 
HgM = 200 g/mol. 
 
Como já visto a fugacidade varia com a pressão de acordo com a fórmula 
 
 39 
 
i
T
i VdP
nfdRT
i
=




 l
 
isto é, 
dP
RT
Vfnd i
o
i
i
o
i
P
P
i
i
f
f ∫∫ =l . 
 
Por definição de coeficiente de compressibilidade, 
 
TdP
dV
V
1β




−= 
e assumindo que β é constante, então: 
 
∫ ∫−= V
dVβdP 
 





 −
−≅




 −
+−=
+−
−=−=−
0
0
0
0
0
00
0
0 V
VV
V
VV1nV
VVV
nV
Vn)Pβ(P lll 
 ou 
 
{ })Pβ(P1VV 00 −−= , 
 
expressão válida se 00 V)V(V − é bastante pequeno de modo a admitir aproximações 
pela fórmula de Taylor. 
 
Então, 
{ } 36Hg cm1,0)(P103,89113,6
200V −×−×= − , 
 { } 362Hg dm1,0)(P103,891101,47V −×−×= −− , (pressão em atm). 
 
Logo, pode-se escrever: 
 
∫∫ ∫ −×− =×==
1000atm
mmHg101,89
Hg
3
Hg
HgHg
Hg 3 RT
dPV
mmHg)10(1,89f
(1000atm)f
n
RT
dPV
nfd ll 
e tomando 
 
mmHg101,89mmHg)10(1,89f 33Hg −− ×=× , vem 
 
{ }∫ =−×−×=× −−− dP1,0)(P103,891101,47RT
1
mmHg101,89
(1000atm)f
n
62
3
Hg
l 
 
=×−
×
≅





−×−
×
=
−
−
×
−
−
×
− 1000
102,48
26
21000
102,48
2
6-
2
6
6
P101,945P
RT
101,47P
2
P103,89P
RT
101,47
 
 40 
 
{ }
RT
/14,67
102,48998
RT
101,47 62 mollitroatm≅×−×= −
−
 
 
∴×== −1106
298082,0
67,14
x
 
 
33
Hg 103,441,82101,89(1000atm)f −− ×=×=∴ x mm de Hg. 
 
De modo semelhante 
 
[ ] =×−×=
×
−×
−
−
−
5
102,48
26
2
3
Hg
6P101,945P
RT
101,47
mmHg101,89
(5atm)f
nl 
 
( ) ( )[ ]{ }××⋅×−×−⋅×−= −−−− 26666 1048,210945,11048,22510945,15
RT
101,475
RT
101,47 22 −− ×⋅
≅
×
× 
 
RT
 litro atm 107,35
mmHg101,89
(5atm)f
n
2
3
Hg
−
−
×
=
×
l = 3
2
100,3
298 x 0,082
107,35
−
−
=
×
x 
 
003,1
mmHg101,89
(5atm)f
3
Hg
=
× −
 
 
mmHg101,89(5atm)f 3Hg −×≅ . 
Estes cálculos sugerem que, a menos de variações significativas de pressão, a influên-
cia de pressão sobre a fugacidade de uma fase condensada é desprezível. 
 
 
Exemplo: é possível encontrar, na literatura, expressão para o cálculo da pressão de 
vapor sobre uma fase condensada na forma DCTTlogB
T
A)Hgmm(Plog +++= . 
Valores específicos para ferro sólido e ferro líquido, além das respectivas densidades, 
estão apresentados na tabela seguinte. Encontre a temperatura de equilíbrio entre ferro 
puro e sólido e ferro puro e líquido (isto é, a temperatura de fusão) à pressão atmosfé-
rica e sob pressão de 100 atm. Qual a relação entre as tendências ao escape, acima 
da temperatura de equilíbrio? 
 A B C x 1000 D ρ [kg/m3] 
<Fe> -21080 -2,14 16,861 7600 
{Fe} -19710 -1,27 13,27 7000 
 
Admite-se primeiramente que as fases condensadas estejam em equilíbrio com seus 
vapores, figura seguinte 
 41 
 
 
Por meio de um piston e uma Divisória de Gibbs as fases condensadas (ferro puro e 
sólido ou ferro puro e líquido) se encontram submetidas a uma pressão P(atm) ; a po-
rosidade seletiva da divisória permite que apenas vapor a atravesse, de modo que na 
porção superior se forma uma fase vapor. Como condição de equilíbrio de distribuição 
se escreve que as tendências ao escape são iguais, considerando as fases em equilí-
brio, isto é: 
os
Fef (fugacidade do ferro puro e sólido)= Fef (fugacidade do vapor)= sovFeP , (pressão de va-
por sobre o ferro puro e sólido) 
e 
ol
Fef (fugacidade do ferro puro e líquido)= Fef (fugacidade do vapor)= lovFeP , (pressão de va-
por sobre o ferro puro e líquido) 
 
As igualdades, entre pressões de vapor e fugacidades, se mantêm apenas se os vapo-
res puderem ser considerados gases ideais, o que ocorreria para uma combinação fa-
vorável de baixas pressões e altas temperaturas. 
Finalmente, como condição de equilíbrio entre as fases condensadas se deve ter, 
 
os
Fef = Fef = sovFeP , = olFef = Fef = lovFeP , 
 
Deste modo temperatura de equilíbrio pode ser estimada a partir da restrição anterior. 
Por exemplo, as expressões de cálculo de pressão de vapor listadas anteriormente são 
válidas para pressão ordinária(1 atm) sobre as fases condensadas. Então 
 
861,16log14,221080)(loglog +−−== T
T
HgmmPf osFe 
27,13log27,119710)(loglog +−−== T
T
HgmmPf olFe 
 42 
 
e logo 
 
 861,16log14,221080 +−− T
T
= 27,13log27,119710 +−− T
T
 
 
fornece 
T
T
log87,0591,3
1370
−
= = 1810,41 oK, por iteração. 
Note-se, para esta temperatura, ovFeP = 0,0176 mm de Hg, o que justifica a suposição de 
comportamento ideal do vapor. 
 
Por outro lado o aumento de pressão, até 100 atm, faria com a fugacidade da fase 
condensada fosse aumentada, o que implica em maior pressão de vapor em equilíbrio. 
Este efeito de pressão pode ser aferido considerando-se a influência de pressão sobre 
o potencial químico de uma fase condensada. Por exemplo, levando em conta a defini-
ção de fugacidade, 
 
d Feµ = RT d Fefln 
 para uma transformação isotérmica, o que resulta em 
d Feµ = dPV Fe
_
= RT d Fefln 
 
Feµ (T, P) - Feµ (T, P=1 atm) = dPV Fe
P
atmP
_
1
∫
=
= RT )1(
)(ln
atmPf
Pf
Fe
Fe
=
 
Considerando que o volume de uma fase condensada praticamente seja insensível à 
pressão, a expressão anterior se resume a 
dPV
P
atmP
Fe ∫
=1
_
= RT )1(
)(ln
atmPf
Pf
Fe
Fe
=
 
RT )(ln Pf Fe = RT )1(ln atmPf Fe = + dPV
P
atmP
Fe ∫
=1
_
. 
Como citado, as expressões fornecidas, de pressão de vapor, na forma 
)(log Hgmmf = DCTTlogB
T
A)Hgmm(Plog +++= 
permitem estimar também a fugacidade, sob pressões ordinárias (1 atm). Então podem 
ser facilmente reescritas como, 
 fln = 2,303 flog = 2,303 Plog = }log{303,2 DCTTB
T
A
+++ 
E por conseqüência, 
)(ln atmf = }log{303,2 DCTTB
T
A
+++ - 760ln 
RT )(ln atmf = }log{303,2 DCTTB
T
ART +++ - RT 760ln 
Por outro lado os volumes molares podem ser inferidos a partir das densidades, e da 
massa atômica do ferro 
 43 
 
FeV
_
 = )/(
)/(
3mkg
molkgM Fe
ρ
 e 
os
FeV
_
= 7,348 x10-6 m3/mol ; 
ol
FeV
_
= 7,978 x 10-6 m3/mol 
Finalmente, escrevendo mais uma vez que as fugacidades de ferro puro sólido e líqui-
do devem ser iguais no equilíbrio, 
RT )1(ln atmPf osFe = + dPV
P
atmP
os
Fe ∫
=1
_
 = RT )1(ln atmPf olFe = + dPV
P
atmP
ol
Fe ∫
=1
_
 
Ferro sólido Ferro líquido 
 
Ou, utilizando as expressões anteriores, 
 
2,303 RT { 861,16log14,221080 +−− T
T
} - RT 760ln + dPV
P
atmP
os
Fe ∫
=1
_
= 
2,303 RT { 27,13log27,119710 +−− T
T
} - RT 760ln + dPV
PatmP
ol
Fe ∫
=1
_
 
que após breve reordenamento fica 
861,16log14,221080 +−− T
T
= 27,13log27,119710 +−− T
T
+ dP
RT
VV P
atmP
os
Fe
ol
Fe
∫
=
−
1
__
303,2
. 
Note-se que, em relação aos cálculos realizados para pressão ordinária requer-se ape-
nas um termo de correção, 
 dP
RT
VV P
atmP
os
Fe
ol
Fe
∫
=
−
1
__
303,2
.= ))(1100()()./.(082,0303,2
)/(10)348,7978,7( 3
atm
KTKmollitroatmx
mollitros
−
−
−
=
T
330,0
.. 
Portanto a equação a ser resolvida, 
861,16log14,221080 +−− T
T
= 27,13log27,119710 +−− T
T
+
T
330,0
 
rende 
T
T
log87,0591,3
33,1370
−
= =1811,28. Esta pequena diferença apenas reflete o fato 
que “a pressão afeta muito pouco a fugacidade de fases condensadas ”. 
 
A temperatura de equilíbrio é, neste exemplo, a temperatura de fusão. Portanto acima 
da temperatura de fusão a fase de maior tendência ao escape deve ser a fase instável 
(ferro sólido). Por exemplo, para T= 1900 oK viria 
 
 
os
Fef =
861,16log14,221080
10
+−
− T
T
= 0,0562 mm de Hg e 
 
ol
Fef =
27,13log27,119710
10
+−
− T
T
= 0,0539 mm de Hg 
 
 
Como indicam estes exemplos, a influencia da pressão sobre a fugacidade de fases 
condensadas é desprezível, para variações ordinárias de pressão. 
 44 
 
IV-11.7 DEPENDÊNCIA DA FUGACIDADE COM A TEMPERATURA 
 
É sempre possível comparar a fugacidade de uma espécie num dado estado com sua 
fugacidade a pressões muito baixas, à mesma temperatura. Se a substância i for um 
gás, basta que, isotermicamente, aumentemos o volume do recipiente até que 
*
I
*
I Pf = ; se for ou participar de fase condensada, inicialmente o aumento de volume 
não se traduz em diminuições de pressões, mas a partir do instante em que não exis-
tam partículas(átomos, moléculas) da espécie na fase condensada sua pressão pode 
ser diminuída indefinidamente. Figura IV-21 mostra um diagrama esquemático para 
cálculo da influencia de temperatura sobre a fugacidade. 
 
 
Figura IV- 20: Diagrama esquemático para cálculo da influencia de temperatura sobre a 
fugacidade. 
 
Em qualquer dos casos, para uma transformação isotérmica 
 
*
i
i*
Ii f
f
nRTµµ l+= 
e se a pressão no estado inicial é suficientemente baixa *I*I Pf = 
 
*
Ii
*
Ii nfRnfRT
µµ
ll −=
−
 
 
Aplicando a equação de Gibbs-Helmholtz vem 
 
2
i
P,n
i
T
H∆
dT
T)∆µd(
i
−=





 
 
 2
i
*
i
P,n
i
RT
HH
dT
nfd
i
−
=




 l
 
 
A quantidade i*i HH − é chamada calor ideal de vaporização. Representa a variação de 
entalpia quando a substância escapa no vácuo. 
 
IV-11.8 DEPENDÊNCIA DA FUGACIDADE COM A COMPOSIÇÃO 
 
 45 
 
Seja uma fase condensada composta das espécies i = A, B, C,... em equilíbrio com seu 
vapor. A fase de vapor contém também um gás inerte, insolúvel na fase condensada, 
cuja função é garantir que a pressão sobre a solução permaneça inalterada, mesmo 
que as pressões dos vapores de A, B, C... variem. ( O mesmo efeito poderia ser con-
seguido com o uso de uma divisória de Gibbs). 
 
Agora, se à temperatura constante, a composição de uma solução varia de uma quan-
tidade infinitesimal, vem: 
 
ii nfRTddµ l= 
 
e como a pressão sobre ela permanece constante, a equação de Gibbs-Duhem é váli-
da, isto é, 
∑
∑
∑
=
=
=
0nfdX
0dµX
0YdX
ii
ii
ii
l
 
 
0...nfdXnfdXnfdX CCBBAA =+++ lll 
 
Então, o que esta expressão ressalta é que, sendo a fugacidade uma função de esta-
do, os valores de fugacidade dos componentes de uma solução condensada não po-
dem ser alterados, via mudança de co0mposição, de maneira completamente indepen-
dente; a equação de Gibbs-Duehm é uma restrição entre elas. 
 
O conceito de Fugacidade, exposto nas seções anteriores, se mostra extremamente 
útil pelo fato de possibilitar a definição de uma função de estado, de valor característico 
do estado físico da espécie pura ou em solução; a utilidade maior provém entretanto do 
fato de se poder considerar que a fugacidade de um gás ideal seja igual à sua pressão 
parcial, e que a fugacidade de uma espécie em solução seja igual à pressão de vapor 
de equilíbrio da espécie com a solução. 
 
 
Do conceito de fugacidade se passa ao conceito de atividade, abordado a seguir. 
 
 
IV-12. ATIVIDADE DE UMA ESPÉCIE 
 
Se for comparado o potencial químico de uma espécie i num dado estado, iµ , com seu 
potencial em outro estado à mesma temperatura, oiµ (o qual será identificado a partir 
daqui como Estado de Referência), tem-se: 
 
o
i
io
ii f
f
nRTµµ l+= 
 46 
 
Por definição, a relação oii ff é a atividade da espécie i e a mesma é simbolizada por 
ia . É evidente, pela própria definição, que um dado valor de atividade não tem aplicabi-
lidade se o estado de referência não for especificado. Poderíamos, por exemplo, esco-
lher a referência )f,(µ o1io1i e, esquematicamente, já que o potencial químico iµ é função 
de estado, poderia ser representada a situação descrita na Figura IV-22. 
 
Figura IV- 21: Invariância do potencial químico, definindo valores diferentes de ativida-
de. 
 
Argumenta-se que, para que haja equilíbrio de distribuição, o valor de iµ deve ser o 
mesmo em todos os pontos do sistema. Este argumento pode ser estendido à fugaci-
dade: a condição de equilíbrio de distribuição é que a fugacidade de i seja a mesma em 
todos os pontos do sistema. Entretanto esta restrição só se transfere para a atividade 
de i se, para todas as fases, for utilizado o mesmo estado de referência para medi-la. 
 
É claro também que, quando i se encontra no estado de referência oii ff = , a atividade 
é unitária. 
 
A definição de atividade pode parecer fortuita; entretanto existe um sentido químico a 
ela: quanto maior o valor de atividade maior o valor de potencial químico. Em conse-
quência maior a tendência ao transporte desde um ponto(de maior potencial) até ou-
tro(de menor potencial) e maior a disponibilidade para uma reação química. 
 
Define-se também o Coeficiente de Atividade, como a razão entre a Atividade e a con-
centração, por exemplo, 
 
i
i
i X
a
=γ 
 
Como a atividade depende da escolha, arbitrária e conveniente, do estado de referên-
cia, o mesmo ocorre com o Coeficiente de Atividade. 
 
 47 
 
Independente de qual seja a referência utilizada pode-se sempre escrever, por conve-
niência, para um componente em solução, iii Xγa = , e definir o Coeficiente de Ativi-
dade do componente i, iii X/aγ = ; naturalmente iγ é uma função de temperatura, 
pressão e composição. 
 
 A tabela seguinte mostra um exemplo, referente às soluções sólidas ferro-carbono 
(austenita) a 1426 oK. Os estados de referência são: ferro sólido, estrutura cúbica de 
face centrada, a 1 atm e 1426 oK, e carbono puro e sólido, grafita, a 1 atm e 1426 oK. 
Portanto se medem as atividades a partir das relações: 
Feµ (na austenita) = oFeµ (ferro puro e sólido cfc, 1 atm, 1426 o K) + RT ln Fea 
Cµ (na austenita) = oCµ (carbono puro e sólido, 1 atm, 1426 o K) + RT ln Ca 
FeX 1 0,99 0,98 0,97 0,96 0,95 0,94 0,93 0,92 0,91 
Fea 1 0,989 0,978 0,966 0,953 0,939 0,924 0,908 0,891 0,874 
Feγ 1 0,999 0,998 0,996 0,993 0,988 0,983 0,976 0,969 0,960 
Ca 0 0,053 0,116 0,190 0,276 0,378 0,499 0,638 0,805 1 
Cγ 4,894 5,323 5,80 6,323 6,911 7,570 8,309 9,121 10,064 11,111 
 
 
Posteriormente se verá que o Coeficiente de Atividade carrega consigo as informações 
sobre a termodinâmica do sistema; daí o esforço despendido em retratar como o coefi-
ciente de atividade depende de temperatura, pressão e composição. 
 
Exemplo: Pedder e Barratt mediram a pressão de vapor sobre os amálgamas líquidos 
de potássio a 387,5°C; nesta temperatura, a pressão de vapor do potássio puro é de 
3,25mm de Hg e a do mercúrio 1280 mm de Hg. Obtiveram os seguintes resultados: 
 
%K 41,1 46,8 50,0 56,1 63,0 72,0 
HgP 31,87 17,3 13,0 9,11 6,53 3,70 
KP 0,348 0,68 1,07 1,69 2,26 2,95 
 
Calcule a atividade e os coeficientes de atividade do mercúrio e potássio nos diversos 
amálgamas. 
 
Admite-seinicialmente que para as combinações de temperatura e pressões citadas se 
pode assumir que os vapores de mercúrio e potássio sobre os amalgamas líquidos 
possam ser considerados gases ideais. Desta forma para os componentes da fase va-
por se pode escrever que, 
Hgf = HgP e Kf = KP . 
 
Por outro lado, se existe equilíbrio entre o vapor e o amalgama as fugacidades num e 
noutro precisam ser iguais, 
amaama
Hgf lg = Hgf = HgP e amaamaKf lg = Kf = KP . 
 
 48 
 
Por exemplo, para KX = 0,468 se teria amaamaHgf lg = Hgf = 17,3 mm de Hg e amaamaKf lg = Kf = 
0,68 mm de Hg. 
 
Para a construção de uma escala de atividade se faz necessário escolher os estados 
de referência, por exemplo mercúrio e potássio puros e líquidos a 387,5 oC. Neste ca-
so, para a situação de referencia, 
o
Hgf = oHgP = 1280 mm de Hg e oKf = oKP = 3,25 mm de Hg. 
 
Finalmente, para cada composição, por definição de atividade se escreve que, 
amaama
Hga
lg
= Hgf / oHgf = HgP / oHgP e amaamaKa lg = Kf / oKf = KP / oKgP 
 
Então, para KX = 0,468 se teria que 
amaama
Hga
lg
= HgP / oHgP = 17,3/1280 = 0,0135 e amaamaKa lg = KP / oKgP = 0,68/3,25 = 0,209. 
 
Estes cálculos estão representados na figura seguinte, que também apresenta os valo-
res de coeficiente de atividade, iγ = ia / iX . 
 
Figura: atividades e coeficientes de atividade nos amálgamas líquidos, Hg-K, 387,5 oC 
 
Exemplo: Calcule a fugacidade do cobre puro sólido a 1200K sob pressões de 500 atm 
sabendo que sua pressão de vapor é dada pela expressão: 
12,290,86logT17770/THg) de (mm logP +−−= 
Considere os dados: 
 
 dm³/mol 107,4521atm) (1200K,V 3Cu −⋅== e 16Cu atm 101,04(1200K)β −−⋅= 
Encontre ainda a atividade do cobre medida em relação ao cobre puro, sólido, a 1200K 
e 1 atm. 
 
A fórmula acima fornece a pressão de vapor do cobre puro e sólido, sob pressão ordi-
nária(1 atm). A 1200 oK a mesma fornece ovCuP = 8,97 x 10-9 atm, o que permite escrever 
os
Cuf = 
ov
CuP = 8,97 x 10-9 atm como o valor da fugacidade do cobre puro e sólido sob 1 
atm. 
 
 49 
 
A influência de pressão exercida sobre o cobre puro e sólido pode ser avaliada consi-
derando que, para uma transformação isotérmica, 
 
d Cuµ = RT d Cufln 
d Cuµ = dPV Cu
_
= RT d Cufln 
 
Cuµ (T, P) - Cuµ (T, P=1 atm) = dPV Cu
P
atmP
_
1
∫
=
= RT )1(
)(ln
atmPf
Pf
Cu
Cu
=
 
Se for levada em conta a compressibilidade do cobre sólido, o que fornece 
)1(
__
PVV
o
CuCu β−= 
a expressão de cálculo de fugacidade fica, 
 
)(ln PfCu = )1(ln atmPfCu = + dPRT
PV
o
Cu
P
atmP
)1(
_
1
β−
∫
=
. 
 
Então, para 500 atm de pressão se tem, 
)(ln PfCu = 91097,8ln −x + dPKKmollitroatm
Patmxmollitrosx
atmP )(1200)./.(082,0
))/1(1004,11()/(10452,7 63500
1
−−
=
−
∫ 
 
)(ln PfCu = 91097,8ln −x + 0,0377, o que rende 
)(ln PfCu = 9,31 x 10-9 atm, um aumento de menos de 4% em fugacidade, para um au-
mento de pressão de cerca de 500 atm. 
 
A atividade se calcula prontamente como a razão entre fugacidades, 
)1(/)500( atmPfatmPfa CuCuCu === =1,038, 
o que ressalta a pequena influência da pressão sobre a atividade de espécies conden-
sadas. 
 
 
Fugacidade e atividade de uma espécie em uma dada solução estão, por definição, 
relacionadas ao potencial químico da espécie; como conseqüência fugacidade e ativi-
dade são naturalmente dependentes de temperatura, pressão e composição. O parale-
lismo entre as definições de atividade e fugacidade, por outro lado, permite que a dis-
cussão sobre influência de temperatura, pressão e composição seja integralmente a-
proveitada. 
 
Por exemplo, considerando que 
i
o
ii anR
T
µµ
l=
−
 
 
a aplicação da equação de Gibbs-Helmholtz indica 
 
 50 
 
2
i
P,n
i
T
H∆
dT
T)∆µd(
i
−=





 
 
 2
__
o
ii
P,n
i
TR
HH
dT
and
i
−
−=




 l
 
 
Aqui oii HH − representa a variação de entalpia parcial molar de dissolução da espé-
cie i na solução; em parte considerável dos casos os dados a respeito da variação de 
o
ii HH − com a temperatura são escassos, de forma que é comum desprezar esta in-
fluencia. Neste caso a integração da equação anterior rende: 
 






−=−
12
i
12
11
R
H∆
TT
anan TiTi ll 
 
Esta expressão reflete a alteração no valor de atividade quando a temperatura da solu-
ção é alterada de 1T a 2T , a pressão e composição constantes. 
 
É fácil notar que, como a derivada parcial anterior precisa ser realizada com todos os 
números de mols, de todos os componentes, mantidos constantes, o que implica em 
sistema fechado, então, como 
 
iµ = oiµ +RT ln iX +RT ln iγ 
 
resulta 
 
2
i
P,n
i
P,n
i
P,n
i
T
H∆
dT
nRd
dT
anRd
dT
T)∆µd(
iii
−=





=





=




 γll
 






−=−
12
i
12
11
R
H∆
TT
nn TiTi γγ ll 
 
Exemplo: os dados (em cal/mol) da tabela se referem à formação de soluções líquidas 
cobre-alumínio, líquidas, a 1373 oK e 1 atm, a partir do cobre e alumínio puros e líqui-
dos. Estime a atividade do alumínio, em uma solução líquida tal que AlX = 0,8, a 1700 
K. Utilize: 1- o método das tangentes, sabendo se que =∆G 18711 2AlX -
18758 AlX cal/mol; 0 ≤ CuX ≤ 0,3; 2- a relação entre grandezas parciais molares e inte-
gral 
 
 
 
 
 
 
 
 51 
 
AlX CuX Ala Al
__
G∆ Al
__
H∆ Cu
__
G∆ Cu
__
H∆ G∆ H∆ 
1 0 1 0 0 ∞− -4225 0 0 
0,9 0,1 0,889 -320 29 -14349 -4849 -1723 -459 
0,8 0,2 0,759 -753 44 -11833 -4975 -2969 -960 
0,7 0,3 0,609 -1354 -60 -10025 -4675 -3955 -1445 
0,6 0,4 0,441 -2235 -391 -8396 -4071 -4699 -1863 
0,5 0,5 0,266 -3611 -1055 -6728 -3271 -5170 -2163 
0,4 0,6 0,116 -5873 -2878 -4900 -1838 -5289 -2254 
0,3 0,7 0,028 -9709 -5012 -2848 -679 -4906 -1979 
0,2 0,8 0,006 -14062 -5864 -1394 -259 -3928 -1380 
0,1 0,9 0,001 -19307 -7415 -478 -65 -2361 -800 
0 1 0 ∞− -8625 0 0 0 0 
 
Esta tabela, de fato, apresenta várias possibilidades de cálculo. Por exemplo, para a fração 
molar citada se tem 
 
AlX Ala Al
__
G∆ Al
__
H∆ Cu
__
G∆ Cu
__
H∆ G∆ H∆ 
0,8 0,759 -753 44 -11833 -4975 -2969 -960 
 
Várias relações se aplicam, por exemplo, 
Al
__
G∆ = Al
__
H∆ - T AlS
__
∆ ; -753 = 44 – 1373 AlS
__
∆ ; AlS
__
∆ = 0,58 cal/mol.K 
 
G∆ = H∆ - T S∆ ; -2969 = -960 – 1373 S∆ ; S∆ = 2,09 cal/mol.K 
 
S∆ = AlX AlS
__
∆ + CuX CuS
__
∆ ; 2,09 = 0,8 x 0,58 + 0,2 CuS
__
∆ ; CuS
__
∆ =8,14 cal/mol.K 
 
H∆ = AlX AlH
__
∆ + CuX CuH
__
∆ ; -960 = 0,8 x 44 + 0,2 x (-4975) 
 
e também 
G∆ = AlX AlG
__
∆ + CuX CuG
__
∆ ; -2969 = 0,8 x(-753)+0,2 CuG
__
∆ ; CuG
__
∆ =-11833 ca/mol 
CuG
__
∆ = RT Cualn ; -11833= 1,987 x 1373 Cualn ; Cua =0,013 . 
 
Numa faixa limitada de composições se aponta que 
=∆G 18711 2AlX -18758 AlX cal/mol; 0 ≤ CuX ≤ 0,3 
e logo, de acordo com o método das tangentes, 
 52 
 
CuG
__
∆ = G∆ + AlX
CudX
Gd∆
 
CuG
__
∆ = 18711 2AlX -18758 AlX + AlX {-37422 AlX +18758} se 0 ≤ CuX ≤ 0,3 
 
 
CuG
__
∆ = -11975 ; -11975 = 1,987 x 1373 Cualn ; Cua =0,0124, para CuX =0,2 
 
Finalmente o valor de atividade a 1700 oK se pode estimar considerando 






−=−
12
i
12
11
R
H∆
TT
nn TiTi γγ ll 
onde, 
Ala =0,759; Alγ = Ala / AlX =0,759/0,8 = 0,948; Al
__
H∆ =44 cal/mol, a 1373 oK 






−=−
1373
1
1700
1
R
H∆ Al
13731700 AlAl nn γγ ll 
 
 





−=−
1373
1
1700
1
1,987
44948,01700 nn Al ll γ 
Alγ (1700 oK)= 0,947. 
 
Exemplo: a tabela seguinte diz respeito à formação de soluções líquidas ouro-estanho, 
a 823 K e 1 atm, a partir de ouro e estanho líquidos e puros.; os valores estão em 
cal/mol. Pede-se: 1- Traçar a curva de atividade do estanho; 2- Determinar a quantida-
de de calor liberada quando a dissolução de um mol de Sn líquido em grande quanti-
dade de uma liga com 0,3 molar Sn. 
 
SnX 0,193 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 
H∆ -1837 -1889 -2467 -2749 -2766 -2540 -2090 -1471 -760 
G∆ -3111 -3172 -3875 -4191 -4157 -3832 -3239 -2414 -1368 
 
Os valores da tabela podem ser utilizados para

Continue navegando