Ed
ano passado
Para determinar a velocidade na seção 2 da tubulação, podemos usar a equação da continuidade, que afirma que o fluxo volumétrico deve ser constante em um tubo: \[ A_1 \cdot v_1 = A_2 \cdot v_2 \] Onde: - \( A_1 = 10 \, \text{cm}^2 = 0,001 \, \text{m}^2 \) - \( A_2 = 5 \, \text{cm}^2 = 0,0005 \, \text{m}^2 \) - \( v_1 = 1 \, \text{m/s} \) Substituindo os valores na equação: \[ 0,001 \cdot 1 = 0,0005 \cdot v_2 \] Resolvendo para \( v_2 \): \[ v_2 = \frac{0,001}{0,0005} = 2 \, \text{m/s} \] Portanto, a velocidade na seção 2 é de 2 m/s.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Ed
há 2 anos
Para determinar a velocidade na seção (2) da tubulação, podemos usar a equação de continuidade, que afirma que a vazão mássica é constante em um fluxo incompressível. A fórmula é dada por A1 * v1 = A2 * v2, onde A é a área da seção e v é a velocidade do fluido. Substituindo os valores fornecidos: A1 = 10 cm² = 0,001 m² A2 = 5 cm² = 0,0005 m² v1 = 1 m/s Podemos calcular v2: 0,001 m² * 1 m/s = 0,0005 m² * v2 v2 = (0,001 m² * 1 m/s) / 0,0005 m² v2 = 2 m/s Portanto, a velocidade na seção (2) da tubulação é de 2 m/s.