Logo Passei Direto
Buscar

Urbanismo

Outros
21. Usamos a Eq. 2-2 para calcular a velocidade média e a Eq. 2-7 para calcular a aceleração média. A posição inicial do homem é tomada como a origem e o sentido do movimento no intervalo 5 min ≤ t ≤ 10 min como sentido positivo do eixo x. Usamos também o fato de que ∆ ∆x v t= ' se a velocidade é constante em um intervalo de tempo ∆t '. (a) O intervalo de tempo total considerado é ∆t = 8 – 2 = 6 min, que equivale a 360 s, enquanto o subintervalo durante o qual o homem está em movimento é apenas ∆t9 = 8 − 5 = 3 min = 180 s. A posição do homem em t = 2 min é x = 0 e a posição em t = 8 min é x v t= =∆ ' (2,2)(180) = 396 m. Assim, vméd m s m/s= − =396 0 360 1 10. (b) O homem está em repouso em t = 2 min e está se movendo com velocidade v = +2,2 m/s em t = 8 min. Assim, conservando apenas 3 algarismos significativos, améd 2m/s s m/s= − =2 2 0 360 0 00611. (c) O intervalo inteiro é ∆t = 9 – 3 = 6 min (360 s), enquanto o subintervalo no qual o homem está se movendo é ∆t ' min= − = =9 5 4 240 s). A posição do homem em t = 3 min é x = 0 e a posição em t = 9 min é x = v∆t9 = (2,2)(240) = 528 m.

User badge image
Questões para Estudantes

ano passado

Respostas

User badge image

Ed Verified user icon

ano passado

Você tem que criar uma nova pergunta.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

3. Em unidades de Z, temos: 50 0 50 0 156 180 43 3, , ,S S Z S Z= ( )     = 9. O volume de gelo é dado pelo produto da área semicircular pela espessura. A área do semicírculo é A = πr2/2, em que r é o raio. Assim, o volume é V r z= π 2 2 na qual z é a espessura do gelo. Como 1 km equivale a 103 m e 1 m equivale a 102 cm, temos: r = ( )         = ×2000 10 1 10 2000 1 3 2 km m km cm 1 m 005 cm. Expressa nessas unidades, a espessura se torna z = = ( )     = ×3000 3000 10 1 3000 10 2 2m m cm m cm e, portanto, V = ×( ) ×( ) = ×π 2 2000 10 3000 10 1 9 105 2 2 22cm cm cm3, . 10. Como uma mudança de longitude igual a 360° corresponde a uma variação de 24 horas, uma variação de 1,0 h corresponde a uma variação de longitude de 360 24 15 / = . 11. (a) Se um dia decimal francês é equivalente a um dia comum, a razão entre as semanas é simplesmente 10/7 ou (com 3 algarismos significativos) 1,43. (b) Um dia comum tem 86.400 segundos, enquanto o dia francês descrito no problema tem 105 segundos. A razão é, portanto, 0,864. 12. Como um dia equivale a 86.400 segundos e um metro equivale a um milhão de micrômetros, 3 7 10 14 86 400 3 1 6, . , . m m m dias s dia m s ( )( ) ( )( ) = µ µ 13. A hora em qualquer desses relógios é uma função linear com inclinação ≠ 1 e ponto de interseção com o eixo y ≠ 0. De acordo com os dados da figura, temos: t t t tC B B A= + = −2 7 594 7 33 40 662 5 , . (a) Temos: ′ − = ′ −( ) =t t t tB B A A 33 40 495 s para t9A − tA = 600 s. (b) Temos: ′ − = ′ −( ) = ( ) =t t t tC C B B 2 7 2 7 495 141 s. (c) O relógio B indica tB = (33/40)(400) −฀(662/5) ≈ 198 s quando o relógio A indica tA = 400 s. (d) Para tC = 15 = (2/7)tB + (594/7), obtemos tB ≈ −245 s.

Mais conteúdos dessa disciplina