Logo Passei Direto
Buscar

Urbanismo

Outros
49. (a) Elevando ao quadrado a relação 1 ken = 1,97 m, temos:
1
1
1 97
1
3 88
2ken
m
m
m
2
2
2
2
= =,
, .
(b) Analogamente, temos
1
1
1 97
1
7 65
3
3ken
m
m
m
3 3
3
= =
,
, .
(c) O volume de um cilindro é a área da base multiplicada pela altura. Assim,
π πr h2 23 00 5 50 156= ( ) ( ) =, , .ken3
(d) Multiplicando o resultado do item (c) pelo resultado do item (b), obtemos o volume em metros cúbicos: (155,5)(7,65) = 1,19 × 103 m3.

User badge image
Praticando Para Aprender

ano passado

Respostas

User badge image

Ed Verified user icon

ano passado

Você tem que criar uma nova pergunta.

Essa resposta te ajudou?

0
Dislike0

Experimente
o Premium! 🤩

Libere respostas sem pagar

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

3. Em unidades de Z, temos: 50 0 50 0 156 180 43 3, , ,S S Z S Z= ( )     = 9. O volume de gelo é dado pelo produto da área semicircular pela espessura. A área do semicírculo é A = πr2/2, em que r é o raio. Assim, o volume é V r z= π 2 2 na qual z é a espessura do gelo. Como 1 km equivale a 103 m e 1 m equivale a 102 cm, temos: r = ( )         = ×2000 10 1 10 2000 1 3 2 km m km cm 1 m 005 cm. Expressa nessas unidades, a espessura se torna z = = ( )     = ×3000 3000 10 1 3000 10 2 2m m cm m cm e, portanto, V = ×( ) ×( ) = ×π 2 2000 10 3000 10 1 9 105 2 2 22cm cm cm3, . 10. Como uma mudança de longitude igual a 360° corresponde a uma variação de 24 horas, uma variação de 1,0 h corresponde a uma variação de longitude de 360 24 15 / = . 11. (a) Se um dia decimal francês é equivalente a um dia comum, a razão entre as semanas é simplesmente 10/7 ou (com 3 algarismos significativos) 1,43. (b) Um dia comum tem 86.400 segundos, enquanto o dia francês descrito no problema tem 105 segundos. A razão é, portanto, 0,864. 12. Como um dia equivale a 86.400 segundos e um metro equivale a um milhão de micrômetros, 3 7 10 14 86 400 3 1 6, . , . m m m dias s dia m s ( )( ) ( )( ) = µ µ 13. A hora em qualquer desses relógios é uma função linear com inclinação ≠ 1 e ponto de interseção com o eixo y ≠ 0. De acordo com os dados da figura, temos: t t t tC B B A= + = −2 7 594 7 33 40 662 5 , . (a) Temos: ′ − = ′ −( ) =t t t tB B A A 33 40 495 s para t9A − tA = 600 s. (b) Temos: ′ − = ′ −( ) = ( ) =t t t tC C B B 2 7 2 7 495 141 s. (c) O relógio B indica tB = (33/40)(400) −฀(662/5) ≈ 198 s quando o relógio A indica tA = 400 s. (d) Para tC = 15 = (2/7)tB + (594/7), obtemos tB ≈ −245 s.

Mais conteúdos dessa disciplina