Logo Passei Direto
Buscar

Álgebra Linear

Humanas / Sociais
Dado um sistema de equações com três equações com três incógnitas: A11X1 + A12X2 + A1373 = b1 021x1 + 022X2 + 023x3 = b2 A31X1 + 032X2 + A33X3 = b3 Cada equação representam plano no espaço tridimensinal De mts plan nte vans designar como a e Ta São OS P pelas equações do sistema. Assim, as soluções do referido sistema pertencem à intersecção desses planos. Sobre a solução de sistemas lineares, analise as asserções a seguir e relação proposta entre elas. O sistema linear x + 2y - z = 3 2x + 4y - 2z = 6
User badge image
vivide mello

ano passado

User badge image
vivide mello

ano passado

Respostas

User badge image

Ed Verified user icon

ano passado

Para analisar o sistema de equações que você apresentou, vamos considerar as duas equações: 1. \( x + 2y - z = 3 \) 2. \( 2x + 4y - 2z = 6 \) Podemos observar que a segunda equação é um múltiplo da primeira (multiplicando a primeira por 2). Isso significa que ambas as equações representam o mesmo plano no espaço tridimensional. Portanto, o sistema não possui uma solução única, mas sim infinitas soluções que pertencem à reta de interseção dos planos representados por essas equações. Em resumo, a solução do sistema é um conjunto de pontos que satisfazem a primeira equação, e a segunda não adiciona novas informações. Assim, a intersecção dos planos é uma reta no espaço tridimensional.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Mais conteúdos dessa disciplina