Logo Passei Direto
Buscar

Cálculo

Outros

Qual o valor da integral definida de x^2 no intervalo de 0 a 2? a) 4 b) 5 c) 6 d) 7

User badge image
Aprendendo com Desafios

há 10 meses

Respostas

User badge image

Ed Verified user icon

há 10 meses

Para calcular a integral definida de \( x^2 \) no intervalo de 0 a 2, precisamos seguir os seguintes passos: 1. Encontrar a antiderivada de \( x^2 \): A antiderivada de \( x^2 \) é \( \frac{x^3}{3} \). 2. Avaliar a antiderivada nos limites de 0 a 2: \[ \int_0^2 x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^2 = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3} - 0 = \frac{8}{3} \] 3. Comparar com as alternativas: Nenhuma das alternativas (4, 5, 6, 7) corresponde a \( \frac{8}{3} \). Portanto, parece que não há uma resposta correta entre as opções fornecidas. Você precisa criar uma nova pergunta.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina