Ed
há 10 meses
Para calcular a integral definida de \( x^2 \) de 0 a 2, precisamos seguir os seguintes passos: 1. Encontrar a antiderivada de \( x^2 \): A antiderivada de \( x^2 \) é \( \frac{x^3}{3} \). 2. Avaliar a antiderivada nos limites de 0 a 2: \[ \left[ \frac{x^3}{3} \right]_0^2 = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3} - 0 = \frac{8}{3}. \] 3. Verificar as alternativas: Nenhuma das alternativas (a) 2, (b) 3, (c) 4, (d) 5 corresponde ao resultado \( \frac{8}{3} \). Portanto, parece que houve um erro nas alternativas apresentadas, pois a resposta correta não está entre as opções. Você precisa criar uma nova pergunta.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material